几种兴奋剂的分子光谱检测新方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
兴奋剂是国际上体育界对违禁药物的总称。兴奋剂的服用不仅使竞技体育失去了公平竞争、催人奋发向上的本质,而且严重地威胁着运动员的身心健康。因此,研究灵敏度高、选择性好的兴奋剂检测新方法具有十分重要的意义。本论文详细研究了几种兴奋剂的光谱性质,以荧光法和瑞利散射光谱法研究并建立了分析测定这几种兴奋剂的新方法。主要内容如下:
     1.利用盐酸普萘洛尔的内源荧光特性建立了一种简单、快速、灵敏的分析方法。考察了溶剂、表面活性剂和酸度等对其荧光特性的影响。在最佳实验条件下,盐酸普萘洛尔的线性范围和检测限分别为1.0×10~(-8)~3.0×10~(-6)mol/L和1.5×10~(-9)mol/L。用于片剂及尿样中盐酸普萘洛尔的测定,获得满意的结果。
     2.利用瑞利散射光谱和紫外-可见吸收光谱,并结合透射电子显微技术研究了盐酸普萘洛尔与纳米金的相互作用。基于盐酸普萘洛尔诱导纳米金团聚并使溶液瑞利散射光(RLS)强度显著增强的现象,提出了瑞利散射光谱分析盐酸普萘洛尔的新方法。讨论了不同缓冲溶液,pH值,纳米金粒子浓度以及反应时间对体系RLS强度的影响。并考察了其它物质对此反应体系RLS强度的影响。采用固相微萃取技术处理尿样,可对盐酸普萘洛尔进行定性测定。
     3.通过考察8种兴奋剂与Triton X-100的相互作用,发现睾酮、甲基睾酮、安体舒通和苄硫噻嗪等四种兴奋剂使Triton X-100的荧光显著下降,且荧光下降程度与这四种兴奋剂浓度成一定的线性关系。在此基础上,建立了这四种兴奋剂荧光猝灭分析的新方法。吸收光谱研究表明四种兴奋剂对Triton X-100的荧光猝灭为动态猝灭类型,并测定了猝灭常数。本法用于合成样品中上述四种兴奋剂的测定,获得满意的结果。
     4.将四丁基溴化铵加入到Pb~(2+)的N,N-二甲基甲酰铵溶液中,形成强发光的簇状配合物Pb_4Br_(11)~(3-),且荧光强度与Pb~(2+)的浓度成正比。在此基础上,建立了一种检测痕量铅离子的荧光分析新方法。在最佳实验条件下,Pb~(2+)的线性范围和检测限分别为1.0×10~(-7)~1.0×10~(-5)mol/L和7.6×10~(-9)mol/L。对1.0×10~(-6)mol/L的标准溶液11次平行测定的相对标准偏差为1.6%。此法用于合成样品中铅的测定,得到了满意的结果。同时探讨了簇状配合物Pb_4Br_(11)~(3-)的形成及发光机理。
Doping agent is the total name of the forbidden substances in sport field in the world. The intake of doping agents will not only make the sport spirit lose justice, competition and encouragement, but also greatly threaten the health of athletes. Therefore, the studies of establishing sensitive and selective analytical methods to determine doping agents are of great importance. The optical properties of doping agents have been studied in this thesis, based on which, novel methods for their analysis and determination by fluorescence spectrum and Rayleigh light scattering spectrum were proposed. The main work are summarized as following:
    1. Based on the native fluorescence of propranolol, a simple and sensitive method for its determination was proposed. The effects of solvent, surfactant and acidity on the fluorescence intensity of propranolol were studied. Under the optimized conditions, the fluorescence intensity was proportional to the concentration of propranolol in the range 1.0×10-8~ 3.0xl0-6mol1-1. The limit detection was 1.5×10-9 mo11-1. The proposed method has been successfully applied to the determination of propranolol in tablet and urine.
    2. The interaction between propranolol and gold nanoparticle was studied by Rayleigh light scattering spectrum, ultraviolet-visible spectrum and transmission electron microscopy. The addition of propranolol to the solution of gold nanoparticle could induce its aggregation and the RLS intensity would increase quickly, based on which, a novel approach for the determination of propranolol by RLS spectrum was proposed. The effects of different buffer solution, pH, concentration of gold nanoparticle and reaction time on the intensity of RLS were discussed. Prorpanolol could be qualitatively determined in urine with the combination of solid phase microextraction.
    3. Through the interaction of eight doping agents with Triton X-100, it was found that testosterone, methyltestosterone, spironolactone and benzthiazide could quench the fluorescence of Triton X-100. The fluorescence intensity of Triton X-100 decreased proportionally to the concentration of them, based on which, a novel, simple approach for the determination of the four doping agents was proposed. The studies of absorbance spectra indicated that the fluorescence quenching belonged to dynamic quenching type; the constants of quenching were also calculated. The proposed method has been applied to their determination in the synthetic samples with
    
    
    satisfactory results.
    4. Adding bromide to Pb solution of N,N'-dimethylformamide (DMF), the highly emissive cluster Pb4Br could be formed and the fluorescence intensity of the formed cluster was proportional to the concentration of Pb, based on which, a novel, simple approach that used the emission from itself as the sensor for determination of Pb was proposed. Under the optimum conditions, the linear range and detection limit were mol and 7.6xlO mol, respectively. The relative standard deviation (R.S.D.) of determining 11 samples containing 1.0 10 mol Pb was 1.6%. The proposed method has been successfully applied to the determination of lead in the synthetic samples. The mechanisms of the formation and luminescence of Pb4Br were also studied.
引文
[1] The 2004 prohibited list, World Anti-Doping Code, Nov. 25, 2003
    [2] 冯国旗,孙玉信,常用药物暨别名速查手册,2001年9月,第一版,科学出版社
    [3] 张家铨,吴景时,程鹏,常用药物手册,2001年1月,第二版,人民卫生出版社
    [4] 赵克健,化学药品药名手册,2000年2月,第一版,天津科学技术出版社
    [5] 王杉,常文保,兴奋剂-禁用物质及禁用手段简介,大学化学,2003,18:35
    [6] D. Whittington. E.D. Kharasch, Determination of morphine and morphine glucuronides in human plasma by 96-well plate solid-phase extraction and liquid chromatography-electrospray ionization mass spectrometry, J. Chromatogr. B, 2003, 796: 95
    [7] D. Projean, T.M. Tu, J. Ducharme, Rapid and simple method to determine morphine and its metabolites in rat plasma by liquid chromatography-mass spectrometry, J. Chromatogr. B, 2003, 787: 243
    [8] M.E.R. Rosas, K.L. Preston, D.H. Epstein, E.T. Moolchan, I.W. Wainer, Quantitative determination of the enantiomers of methadone and its metabolite (EDDP) in human saliva by enantio selective liquid chromatography with mass spectrometric detection, J. Chromatogr. B, 2003, 796: 355
    [9] E. Janowska, W. Piekoszewski, Determination of morphine and codeine in serum and saliva by gas chromatography-mass spectrometry, Chemia Analityczna, 2001, 46:857
    [10] R. Stanaszek, W. Piekoszewski, Determination of morphine, codeine, 6-monoacetylmorphine and methadone in hair after pentafluoropropionyl derivatisation by gas chromatography coupled with mass Spectrometry, Chemia Analityczna, 2003, 48: 1
    [11] T. Arinobu, H. Hattori, A. Ishii, Rapid analysis ofpentazocine in human plasma by liquid chromatography/mass spectrometry with sonic spray ionization, Anal. Chim. Acta., 2003, 492: 249
    [12] J. Malone, D. Clements, D. Giltrap, An HPLC-MS/MS assay method for the determination of oxycodone and two of its metabolites, noroxycodone and oxymorphone, in human plasma, Drug Metabol. Rev., 2002, 34:163
    [13] A. Ishii, M. Tanaka, R. Kurihara, Sensitive determination of pethidine in body fluids by gas chromatography-tandem mass spectrometry, J. Chromatogr. B, 2003, 792: 117
    [14] J. Y. Zhang, J.P. Xie, J.Q. Liu, J.N. Tian, X.G. Chen, Z.D. Hu, Microemulsion electrokinetic chromatography with laser-induced fluorescence detection for sensitive determination of ephedrine and pseudoephedrine, Electrophoresis, 2004, 25: 74
    [15] 郑一宁,谢天尧,莫金垣,韦寿莲,高效毛细管电泳分离/电导检测麻黄碱和伪麻黄碱,高等学校化学学报,2002,23:199
    [16] Z. Senturk, N. Erk, S.A. Ozkan, C. Akay, S. Cevheroglu, Determination of theophylline and ephedrine HCL in tablets by ratio-spectra derivative spectrophotometry and LC, J.
    
    Pharm. Biomed Anal., 2002, 29:291
    [17] J.Y. Zhang, J.P. Xie, X.G. Chen, Z.D. Hu, Sensitive determination of ephedrine and pseudoephedrine by capillary electrophoresis with laser-induced fluorescence detection. Analyst, 2003, 128: 369
    [18] M.R. Fuh, C.H. Haung, S.L. Lin, W.H.T. Pan, Determination of free-form amphetamine in rat brain by ion-pair liquid chromatography-electrospray mass spectrometry with in vivo microdialysis, J. Chromatogr. A, 2004, 1031: 197
    [19] M.R. Fuh, H.T. Lin, W.H.T. Pan, F.R. Lin, Simultaneous determination of free-form amphetamine in rat's blood and brain by in-vivo microdialysis and liquid chromatography with fluorescence detection, Talanta, 2002, 58: 1357
    [20] G. Boatto, M.V. Faedda, A. Pau, B. Asproni, S. Menconi, R. Cerri, Determination of amphetamines in human whole blood by capillary electrophoresis with photodiode array detection, J. Pharm. Biomed. Anal., 2002, 29:1073
    [21] 翦英红,龙远德,马言顺,黄天宝,柱前衍生高效液相色谱法测定减肥药中的芬氟拉明,分析化学,2004,32:366
    [22] M. Nishida, A. Namera, M. Yashiki, T. Kojima, Routine analysis of amphetamine and methamphetamine in biological materials by gas chromatography-mass spectrometry and on-column derivatization, J. Chromatogr. B, 2003, 789: 65
    [23] K. Nakashima, A. Kaddoumi, Y. shida, T. Itoh, K. Taki, Determination of methamphetamine and amphetamine in abusers' plasma and hair samples with HPLC-FL, Biomed. Chromatogr., 2003, 17: 471
    [24] P. Fernandez, M. Leon, A.M. Bouzas, A.M. Bermejo, M.J. Tabernero, Use of high performance liquid chromatography for the determination of cocaine and benzoylecgonine in human hair, J. Liq. Chrom. & Rel. Technol., 2003, 26: 2003
    [25] R. Bakhtiar, L. Ramos, F.L.S. Tse, Quantification of methylphenidate in rat, rabbit and dog plasma using a chiral liquid-chromatography/tandem mass spectrometry method Application to toxicokinetic studies, Anal. Chim. Acta., 2002, 469:261
    [26] N. Barbarin, D.B. Mawhinney, R. Black, J. Henion, High-throughput selected reaction monitoring liquid chromatography-mass spectrometry determination of methylphenidate and its major metabolite, ritalinic acid, in rat plasma employing monolithic columns, J. Chromatogr. B, 2003, 783: 73
    [27] J.Y. Zhang, S.F. Wang, X.G. Chen, Z.D. Hu, X. Ma, Capillary electrophoresis with field-enhanced stacking for rapid and sensitive determination of strychnine and brucine, Anal. Bioanal. Chem., 2003, 376: 210
    [28] M. Sato, M. Hida, H. Nagase, Analysis of dimethylamphetamine and its metabolites in human urine by liquid chromatography-electrospray ionization-mass spectrometry with direct sample injection, Fore.c Sci. Inter, 2002, 128: 146
    
    
    [29] T. Katsu, K. Ido, K. Kataoka, Poly(vinyl chloride) membrane electrode for a stimulant, phentermine, using tris(2-ethylhexyl) phosphate as a solvent mediator, Sensors Actuat. B, 2002, 81: 267
    [30] S. H. Gorman, Determination of modafinil, modafinil acid and modafinil sulfone in human plasma utilizing liquid-liquid extraction and high-performance liquid chromatography, J. Chromatogr. B, 2002, 767:269
    [31] A. Kaddoumi, M.N. Nakashima, T. Maki, Y. Matsumura, J. Nakamura, K. Nakashima, Liquid chromatography studies on the pharmacokinetics, of phentermine and fenfluramine in brain and blood microdialysates after intraperitoneal administration to rats, J. Chromatogr. B, 2003, 791: 291
    [32] H.T. Feng, S.F.Y. Li, Determination of five toxic alkaloids in two common herbal medicines with capillary electrophoresis, J. Chromatogr. A, 2002, 973: 243
    [33] F. Musshoff, D.W. Lachenmeier, L. Kroener, B. Madea, Automated headspace solid-phase dynamic extraction for the determination of amphetamines and synthetic designer drugs in hair samples, J. Chromatogr. A, 2002, 958: 231
    [34] A. Ceccato, R. Klinkenberg, P. Hubert, B. Streel, Sensitive determination of buprenorphine and its N-dealkylated metabolite norbuprenorphine in human plasma by liquid chromatography coupled to tandem mass spectrometry, J. Pharm. Biomed Anal., 2003, 32: 619
    [35] Y.L. Chen, G.D. Hanson, X.Y. Jiang, N.D. Weng, Simultaneous determination of hydrocodone and hydromorphone in human plasma by liquid chromatography with tandem mass spectrometric detection, J. Chromatogr. B, 2002, 769: 55
    [36] D.E. Moody, M.H. Slawson, E.C. Strain, J.D. Laycock, A.C. Spanbauer, R.L. Foltz, A liquid chromatographic-electrospray ionization-tandem mass spectrometric method for determination of buprenorphine, its metabolite, norBuprenorphine, and a coformulant, naloxone, that is suitable for in vivo and in vitro metabolism studies, Anal.Biochem., 2002, 306: 31
    [37] Y. Gemba, H. Hashimoto, M. Konishi, Simultaneous determination of oxycodone and noroxycodone in dog plasma and urine by HPLC, with post-column chemiluminescence detection using electrogenerated tris(2,2'-bipyridyl) ruthenium(Ⅲ), J. Liq. Chrom. & Rel. Technol., 2004, 27: 843
    [38] P.A. Greenwood, C. Merrin, T. McCreedy, G.M. Greenway, Chemiluminescence mu TAS for the determination of atropine and pethidine, Talanta, 2002, 56: 539
    [39] S. Emara, I. Darwish, D. Youssef, T. Masujima, On the perspectives of capillary electrophoresis modes for the determination of morphine in human plasma without sample pretreatment, Biomed. Chromatogr, 2004, 18: 21
    [40] A. Alnajjar, B. McCord, Determination of heroin metabolites in human urine using
    
    capillary zone electrophoresis with beta-cyclodextrin and UV detection, J. Pharm. Biomed Anal., 2003, 33: 463
    [41] J.Q. Mi, X.X. Zhang, W.B. Chang, Determination of morphine by capillary zone electrophoresis immunoassay combined with laser-induced fluorescence detection, J. Immunoass, Immunochem. , 2004, 25: 57
    [42] R. Dams, T. Benijts, W.E. Lambert, A.P. De Leenheer, Simultaneous determination of in total 17 opium alkaloids and opioids in blood and urine by fast liquid chromatography-diode-array detection-fluorescence detection, after solid-phase extraction, J. Chromatogr. B, 2002, 773:53
    [43] S. Khalil, A. Kelzieh, New polyvinyl chloride membrane electrode without inner reference solution for the determination of methadone, J. Pharm. Biomed. Anal., 2003, 31: 601
    [44] Z.H. Liu, M.L. Wen, Y. Yao, J. Xiong, A pethidine selective polymeric membrane electrode, Boletin De La Sociedad Chilena De Quimica, 2002, 47:163
    [45] T.S. Zhou, H. Yu, Q. Hu, Y.Z. Fang, Determination of codeine and its metabolite in human urine by CE with amperometric detection, J. Pharm. Biomed. Anal., 2002, 30: 13
    [46] F. Xu, M.N. Gao, L. Wang, T.S. Zhou, L.T. Jin, J.Y. Jin, Amperometric determination of morphine on cobalt hexacyanoferrate modified electrode in rat brain microdialysates, Talanta, 2002, 58: 427
    [47] 王杉,宓捷波,常文保,EPO检测技术的研究进展,化学进展,2003,15:117
    [48] 佟卫群,王元勋,陈硕,刘兆乾,郭振泉,兴奋剂促红细胞生成素免疫检测方法的研究,现代康复,2000,4:1362
    [49] C. Toriumi, K. Imai, Determination of insulin in a single islet of Langerhans by high-performance liquid chromatography with fluorescence detection, Anal. Chem., 2002, 74:2321
    [50] N.F.C. Visser, H. Lingeman, H. Irth, On-line SPE-RP-LC for the determination of insulin derivatives in biological matrices, J. Pharm. Biomed Anal., 2003, 32: 295
    [51] N.F.C. Visser, M. van Harmelen, H. Lingeman, H. Irth, On-line SPE-CE for the determination of insulin derivatives in biological fluids, J. Pharm. Biomed. Anal., 2003, 33: 451
    [52] P. Moslemi, A.R. Najafabadi, H. Tajerzadeh, A rapid and sensitive method for simultaneous determination of insulin and A21-desamido insulin by high-performance liquid chromatography, J. Pharm. Biomed. Anal., 2003, 33:45
    [53] M.A. Popot, S. BoNn, Y. Bonnaire, High performance liquid chromatography-lon trap mass spectrometry for the determination of insulin-like growth factor-Ⅰ in horse plasma, Chromatographia, 2001, 54: 737.
    [54] 赵利霞,林金明,屈峰,微板式磁化学发光酶免疫分析法对人绒毛膜促性腺激素(HCG)的灵敏快速测定,化学学报,2004,62:71
    
    
    [55] B.Zhang, Q.G. Mao, X. Zhang, A novel piezoelectric quartz micro-array immunosensor based on self-assembled monolayer for determination of human chorionic gonadotropin, Biosensors & Bioelectronics, 2004, 19: 711
    [56] L. Amendola, C. Colamonici, F. Rossi, F. Botre, Determination of clenbuterol in human urine by GC-MS-MS-MS: confirmation analysis in antidoping control, J. Chromatogr. B, 2002, 773: 7
    [57] F. Ramos, A. Cristino, P. Carrola, Clenbuterol food poisoning diagnosis by gas chromatography-mass spectrometric serum analysis, Anal. Chim. Acta., 2003, 483: 207
    [58] 谢孟峡,刘媛,蒋敏,固相萃取—气相色谱—质谱分析肉样中盐酸克伦特罗的残留量,分析化学,2002,30:1308
    [59] 高效液相色谱法紫外电化学串联检测测定鸡肉中克伦特罗残留,分析化学,2003,31:1024
    [60] X.Z. Zhang, Y.R. Gan, F.N. Zhao, Determination of clenbuterol in pig liver by high-performance liquid chromatography with a coulometric electrode array system, Anal. Chim. Acta., 2003, 489: 95
    [61] F.Y. Guan, C.E. Uboh, L.R. Soma, Quantification of clenbuterol in equine plasma, urine and tissue by liquid chromatography coupled on-line with quadrupole time-of-flight mass spectrometry, Rap. Com. Mass Spectro., 2002, 16: 1642
    [62] Y.R. Song, D.F. Wang, Y.P. Hu, X.X. Chen, Y.G. Jiao, D.Y. Hou, Direct separation and quantitative determination of clenbuterol enantiomers by high performance liquid chromatography using an amide type ehiral stationary phase, J. Pharm. Biomed. Anal., 2003, 31: 311
    [63] B.H. Ng, K.H. Yuen, Determination of plasma testosterone using a simple liquid chromatographic method, J. Chromatogr. B, 2003, 793: 421
    [64] G. Friedrich, T. Rose, K. Rissler, Determination of testosterone metabolites in human hepatocytes-Ⅰ. Development of an on-line sample preparation liquid chromatography technique and mass spectroscopic detection of 6 beta-hydroxytestosterone, J. Chromatogr. B, 2003, 784: 49
    [65] L. Guven, S. Ozsar, N. Marasli, S. Marasli, A. Ozcan, Development of an enzyme immunoassay for the determination of testosterone, Turkish J. Veter. Anim. Sci., 2003, 27: 45
    [66] F. Buiarelli, G.P. Cartoni, F. Coccioli, A. De Rossi, B. Neri, Determination of trenbolone and its metabolite in bovine fluids by liquid chromatography-tandem mass spectrometry, J. Chromatogr. B, 2003, 784: 1
    [67] A.A.M. Stolker, E.F. van Tricht, P.W. Zoontjes, L.A. van Ginkel, R.W. Stephany, Rapid method for the determination of stanozolol in meat with supercritical fluid extraction and liquid chromatography-mass spectrometry, Anal. Chim. Acta., 2003, 483: 1
    
    
    [68] K. Mitamura, Y. Nagaoka, K. Shimada, Simultaneous determination of androstenediol 3-sulfate and dehydroepiandrosterone sulfate in human serum using isotope diluted liquid chromatography-electrospray ionization-mass spectrometry, J. Chromatogr. B, 2003, 796: 121
    [69] S. Diallo, L. Lecanu, J. Greeson, V. Papadopoulos, A capillary gas chromatography/mass spectrometric method for the quantification of hydroxysteroids in human plasma, Anal. Biochem., 2004, 324: 123
    [70] C. R. Cardoso, M.A.S. Marques, R.C. Caminha, M.C. Maioli, F.R.A. Neto, Validation of the determination of oxymetholone in human plasma analysis using gas chromatography-mass spectrometry-Application to pharmacokinetic studies, J. Chromatogr. B, 2002, 775: 1
    [71] E. O. van Bennekom, L. Brouwer, E.H.M. Laurant, H. Hooijerink, M.W.F. Nielen, Confirmatory analysis method for zeranol, its metabolites and related mycotoxins in urine by liquid chromatography-negative ion electrospray tandem mass spectrometry, Anal Chim. Acta., 2002, 473: 151
    [72] R. Gonzalo-Lumbreras, R. Izquierdo-Hornillos, Conventional and micellar liquid chromatography method development for danazol and validation in capsules, J. Pharm. Biorned. Anal., 2003, 32: 433
    [73] R. Gonzalo-Lumbreras, R. Izquierdo-Hornillos, Optimization and validation of conventional and micellar LC methods for the analysis of methyltestosterone in sugar-coated pills, J. Pharm. Biomed. Anal., 2003, 31: 201
    [74] J. Rodriguez, J.J. Berzas, A.M. Contento, M.P. Cabello, Capillary gas chromatographic determination of Tamoxifen in the presence of a number of antidepressants in urine, J Sep. Sci., 2003, 26: 915
    [75] J.J. Berzas, J. Rodriguez, A.M. Contento, M.P. Cabello, Determination of drugs used in advanced breast cancer by capillary gas chromatography of pharmaceutical formulations, J. Sep. Sci., 2003, 26: 908
    [76] M.J. Hilton, K.V. Thomas, Determination of selected human pharmaceutical compounds in effluent and surface water samples by high-performance liquid chromatography-electrospray tandem mass spectrometry, J. Chromatogr. A, 2003, 1015: 129
    [77] J. M. Sanders, M.L. Cunningham, Determination of tamoxifen and metabolites in mouse fetal tissue using nonaqueous capillary electrophoresis, Electrophoresis, 2002, 23: 502
    [78] J.R. FIores, J.J.B. Nevado, G.C. Penalvo, M.I.R. Caceres, Micellar electrokinetic capillary chromatographic method for simultaneous determination of drugs used to treat advanced breast cancer, Chromatographia, 2002, 56: 283
    [79] S.W. Myung, H.K.Min, D.H. Kim, Mass spectrometric analysis of cyclofenil and its metabolites in human urine, Rap. Com. Mass Spectro., 2002, 16: 761
    
    
    [80] G. Rao, EA. Devi, K.M.M. Prasad, C.S.P. Sastry, DDO(2,3-dichloro-5,6-dicyano-pbenzoquinone) as a chromogenic reagent for the determination of clindamycin hydrochloride, clomiphene citrate and mefloquine hydrochloride, J. Ind. Chem. Soc., 2002, 79: 848
    [81] S. Carda-Broch, J. Esteve-Romero, M.J. Ruiz-Angel, M.C. Garcia-Alvarez-Coque, Determination of furosemide in urine samples by direct injection in a micellar liquid chromatographic system, Analyst, 2002, 127: 29
    [82] M. F. Cholbi-Cholbi, J.J. Martinez-Pla, S. Sagrado, R.M. Villanueva-Camanas, M.J. Medina-Hernandez, Determination of anticonvulsant drugs in pharmaceutical preprations by micellar liquid chromatography, J. Liq. Chrom. & Rel. Technol., 2004, 27: 153
    [83] D. endelovska, T. Stafilov, P. Milosevski, Development of solid-phase extraction method and its application for determination of hydrochlorothiazide in human plasma using HPLC, Biomed. Chromatogr., 2004, 18: 71-76.
    [84] I. Niopas, A.C. Daftsios, A validated HPLC method for the determination of hydrochlorothiazide in human plasma and its application in pharmacokinetic studies, J. Liq. Chrom. & Rel. Technol., 2002, 25: 487
    [85] Y.S. El-Saharty, Simultaneous high-performance liquid chromatographic assay of furosemide and propranolol HCL and its application in a pharmacokinetic study, J. Pharm. Biomed. Anal., 2003, 33:699
    [86] A. Guzman, L. Agui, M. Pedrero, P. Yanez-Sedeno, J.M. Pingarron, Flow injection and HPLC determination of furosemide using pulsed amperometric detection at microelectrodes, J. Pharm. Biomed. Anal., 2003, 33: 923
    [87] V. anz-Nebot, I. Toro, R. Berges, R. Ventura, J. Segura, J. Barbosa, Determination and characterization of diuretics in human urine by liquid chromatography coupled to pneumatically assisted electrospray ionization mass spectrometry, J. Mass Spectrom., 2001, 36: 652
    [88] M.E. Abdel-Hamid, High-performance liquid chromatography-mass spectrometric analysis of furosemide in plasma and its use in pharmacokinetic studies, Farmaco, 2000, 55: 448
    [89] 秦旸,朱绍棠,张长久,兴奋剂中利尿剂的检测方法,分析测试学报,2001,20:82
    [90] J. Caslavska, W. Thormann, Rapid analysis of furosemide in human urine by capillary electrophoresis with laser-induced fluorescence and electrospray ionization-ion trap mass spectrometric detection, J. Chromatogr B, 2002, 770: 207
    [91] Q.J. Wang, F. Ding, H. Li, P.G. He, Y.Z. Fang, Determination of hydrochlorothiazide and rutin in Chinese herb medicines and human urine by capillary zone electrophoresis with amperometric detection, J.Pharm.Biomed. Anal., 2003, 30:1507
    [92] I.E. Panderi, Simultaneous determination of benazepril hydrochloride and hydrochlorothiazide in tablets by second-order derivative spectrophotometry, J. Pharm.
    
    Biomed. Anal., 1999, 21: 257
    [93] M.I. Toral, S. Pope, S. Quintanilla, E Richter, Simultaneous determination of amiloride and furosemide in pharmaceutical formulations by first digital derivative spectrophotometry, Intern. J.Pharm., 2002, 249:117
    [94] K. Kargosha, A.H.M. Sarrafi, Spectrophotometric simultaneous determination of triamterene and hydrochlorothiazide in triamterene-H tablets by multivariate calibration methods, J. Pharm. Biomed. Anal., 2001, 26: 273
    [95] M.S. Linares, J.M.G. Fraga, A.I. Jimenez, F. Jimenez, J.J. Arias, Influence of the selected wavelength range on the simultaneous spectrophotometric determination of mixture components by use of partial least-squares regression, Anal Lett., 1999, 32: 2489
    [96] J.A.M. Pulgarin, A.A. Molina, P.F. Lopez, Simultaneous direct determination of amiloride and triamterene in urine using isopotential fluorometry, Anal Biochem., 2001, 292: 59
    [97] J.A.M. Pulgarin, A.A. Molina, P.F. Lopez, Direct analysis of amiloride and triamterene mixtures by fluorescence spectrometry using partial-least squares calibration, Anal. Chim. Acta., 2001, 449: 179
    [98] M. L. Luis, J.M.G. Fraga, A.I. Jimenez, F. Jimenez, O. Hernandez, J.J. Arias, Application of PLS regression to fluorimetric data for the determination of furosemide and triamterene in pharmaceutical preparations and triamterene in urine, Talanta, 2004, 62:307
    [99] P.C. Ioannou, N.V. Rusakova, D.A. Andrikopoulou, K.M. Glynou, G.M. Tzompanaki, Spectrofluorimetric determination of anthranilic acid derivatives based on terbium sensitized fluorescence, Analyst, 1998, 123: 2839
    [100] N. Arnaud, J. Georges, Investigation of the luminescent properties of terbium-anthranilate complexes and application to the determination of anthranilic acid derivatives in aqueous solutions, Anal. Chim. Acta., 2003, 476: 149
    [101] Y. Rao, X.R. Zhang, G.A. Luo, W.R.G. Baeyens, Chemiluminescence flow-injection determination of furosemide based on a rhodamine 6G sensitized cerium(Ⅳ) method, Anal. Chim. Acta., 1999, 396: 273
    [102] J. Ouyang, W.R.G.B., J. Delanghe, G. Van der weken, A.C. Calokerinos, Cerium(Ⅳ)-based chemiluminescence analysis of hydrochlorothiazide, Talanta, 1998, 46:961
    [103] M.M. Ayad, A. Shalaby, H.E. Abdellatef, M.M. Hosny, Spectrophotometric methods for determination of enalapril and timolol in bulk and in drug formulations, Anal.Bioanal. Chem., 2003, 375: 556
    [104] S.M. Al-Ghannam, F. Belal, Kinetic spectrophotometric determination of atenolol in dosage forms, J. Aoac Inter., 2002, 85: 817
    [105] H. Salem, Spectrophotometric determination of beta-adrenergic blocking agents in pharmaceutical formulations, J. Pharm. Biomed. Anal., 2002, 29: 527
    [106] A. S. Amin, G.H. Ragab, H. Saleh, Colorimetric determination of beta-blockers in
    
    pharmaceutical formulations, J. Pharm. Biomed. Anal., 2002, 30: 1347
    [107] F. Belal, S. Al-Shaboury, A.S. Al-Tamrah, Spectrofluorometric determination of labetolol in pharmaceutical preparations and spiked human urine through the formation of coumarin derivative, J. Pharm. Biomed Anal., 2002, 30: 1191
    [108] W.Q. Long, Z.X. Zhang, L.D. Li, Studies on properties and application of non-protected room temperature phosphorescence of propranolol, Spectrochimica A cta Part A, 2002, 58: 2185
    [109] B.C. Diaz, C.C. Blanco, A.S. Carretero, A.F. Gutierrez, Simple determination of propranolol in pharmaceutical preparations by heavy atom induced room temperature phosphorescence, J. Pharm. Biomed. Anal., 2002, 30: 987
    [110] A. Townshend, J.A.M. Pulgarin, M.T.A. Pardo, Flow injection-chemiluminescence determination of propranolol in pharmaceutical preparations, Anal. Chim. Acta., 2003, 488: 81
    [111] Y. J. Park, D.W. Lee, W.Y. Lee, Determination of beta-blockers in pharmaceutical preparations and human urine by high-performance liquid chromatography with tris(2,2'-bipyridyl)ruthenium(Ⅱ) electrogenerated chemiluminescence detection, Anal. Chim. Acta., 2002, 471: 51
    [112] Z. Aturki, F. Vichi, A. Messina, M. Sinibaldi, Indirect resolution of beta-blocker agents by reversed-phase capillary electrochromatography,.Electrophoresis, 2004, 25:607
    [113] B. Awadallah, P.C. Schmidt, U. Holzgrabe, M.A. Wahl, Quantitation oftalinolol and other beta-blockers by capillary electrophoresis for in vitro drug absorption studies, Electrophoresis, 2003, 24: 2627
    [114] A. Gumieniczek, H. Hopkala, A. Berecka, Densitometric and videodensitometric determination of nadolol and pindolol in tablets by quantitative HPTLC, J. Liq. Chrom. & Rel. Technol., 2002, 25: 1401
    [115] V. P. Ranta, E. Toropainen, A. Talvitie, S. Auriola, A. Urtti, Simultaneous determination of eight beta-blockers by gradient high-performance liquid chromatography with combined ultraviolet and fluorescence detection in corneal permeability studies in vitro, J. Chromatogr B, 2002, 772: 81
    [116] A.F.Zuppa, H. Shi, P.C. Adamson, Liquid chromatography-electrospray mass spectrometry (LC-MS) method for determination of esmolol concentration in human plasma, J. Chromatogr. B, 2003, 796: 293
    [117] A. Farca, F. Tache, A. Medvedovici, V. David, Validation of the assay of metoprolol in human plasma using liquid-liquid extraction and high performance liquid chromatography with fluorescence detection, Chemia Analityczna, 2003, 48: 677
    [118] M.I. Maguregui, R.M. Jimenez, R.M. Alonso, U. Akesolo, Quantitative determination of oxprenolol and timolol in urine by capillary zone electrophoresis, J. Chromatogr. A, 2002,
    
    949: 91
    [119] B. Dulger, N.E. Basci, I. Sagdic-Yalvac, A. Temizer, Determination of betaxolol in human aqueous humour by high-performance liquid chromatography with fluorescence detection, J. Chromatogr. B, 2002, 772: 179
    [120] A. J. Braza, P. Modamio, C. F. Lastra, E. L. Marino, Development, validation and analytical error function of two chromatographic methods with fluorimetric detection for the determination of bisoprolol and metoprolol in human plasma, Biomed. Chromatogr., 2002, 16: 517
    [121] E. Badaloni, I. D'Acquarica, E Gasparrini, Enantioselective liquid chromatographicelectrospray mass spectrometric assay of beta-adrenergic blockers: application to a pharmacokinetic study of sotalol in human plasma, J. Chromatogr. B, 2003, 796: 45
    [122] J. J. Martinez-Pla, Y. Martin-Biosca, S. Sagrado, R.M. Villanueva-Camanas, M.J. Medina-Hernandez, Fast enantiomeric separation of propranolol by affinity capillary electrophoresis using human serum albumin as chiral selector: application to quality control of pharmaceuticals, Anal Chim. Acta., 2004, 507: 171
    [123] G. Lamprecht, L. Gruber, K. Stoschitzky, W. Lindner, Enantioselective analysis of (R)-and (S)-carvedilol in human plasma by high-performance liquid chromatography, Chromatographia, 2002, 56: 25
    [124] A. Radi, A.A. Wassel, M.A. El Ries, Adsorptive behaviour and voltammetric analysis of propranolol at carbon paste electrode, Chemia Analityczna, 2004, 49:51
    [125] M.M. Ghoneim, A.M. Beltagi, A. Radi, Indirect determination ofpropranolol by cathodic adsorptive stripping voltammetry, Quimica Analitica, 2002, 20: 237
    [126] M.A. El-Ries, M.M. Abou-Sekkina, A.A. Wassel, Polarographic determination of propranolol in pharmaceutical formulation, J. Pharm. Biomed. Anal., 2002, 30: 837