甘蓝型油菜隐性核不育恢复基因BnMS2的精细定位与候选基因鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油菜是我国主要的油料作物,而杂种优势利用又是提高油菜产量、缓解产量与品质之间矛盾、增强品种抗(耐)逆性的一条有效途径。油菜隐性细胞核雄性不育具有不育性彻底稳定、细胞质来源丰富、恢复源广等优点,在国内已经成为杂种优势利用的一个重要途径,但在杂交制种时需人工拔除母本行中50%的可育株,限制了其广泛应用。隐性细胞核雄性不育材料S45A的不育性受两对重叠隐性基因控制(潘涛等,1988),S45B的BnMs1位点处于杂合状态,而Bnms2位点处于隐性纯合状态。本研究以S45A和育性正常的普通甘蓝型油菜IL362-2-4为材料通过两亲本的杂交、自交、兄妹交及等位性分析构建了在BnMs2位点分离的近等基因系S4516AB,在此基础上对隐性核不育基因BnMs2进行了精细定位,克隆和转基因研究,一方面为雄性不育的选育提供分子标记,另一方面以期加深对雄性不育机理的认识。主要研究结果如下:
     1.对S4516B和S45B的杂合位点进行等位性分析,为S4516AB定位群体的确立打下了基础。通过对NIL系S4516AB的育性调查结果表明,兄妹交后代的育性分离比为1:1,可育株自交后代的育性比例符合3:1,说明S4516B为单位点杂合,结合等位性分析的结果证实了两型系S4516AB的基因型,不育株S4516A为Bnms1Bnms1 Bnms2bnms2,可育株S4516B为Bnms1Bnms1 BnMs2Bnms2。
     2.利用AFLP结合BSA的分析方法,通过筛选1024对AFLP引物组合找到了与BnMs2连锁的AFLP标记12个,在262株的NIL分离群体中对BnMs2进行了初步定位,将目标基因锁定在3.5cM内,另外8个AFLP标记与BnMs2共分离。
     3.对12个AFLP标记回收克隆测序后,用PCR walking分离了8个共分离标记的侧翼序列,延长后的标记序列长度在815-2661bp之间,并成功转化了5个SCAR标记,其中2个为共显性标记。继续在2650株的不育大群体中采用改良的混合样品作图法和侧翼分子标记分析法对BnMs2进行精细定位,将8个在小群体中共分离的标记定位在BnMs2两侧1.0cM区域内,其中最近标记Lm10和Lm11距目标基因分别只有0.038cM和0.075cM。
     4.通过图谱定位将与BnMs2连锁的4个标记整合到2个DH群体(Tapidor×Ningyou7和Quantum×No.2127-17)的连锁群上,成功将BnMs2定位到甘蓝型油菜C基因组N16染色体上。并在TN群体的N16连锁群上找到1个共显性的SSR标记Na12A05。
     5.延伸后的标记序列与拟南芥进行同源性比较,在拟南芥第1条染色体下方找到一个包含121个拟南芥基因的共线性区域。基于拟南芥基因组信息及网上大量芸苔属EST、GSS、BAC序列信息,开发了1个ACGM标记B14,同时Lm10经1个白菜BAC为桥梁被定位在拟南芥基因Atlg69510和Atlg69520之间。B14和Lm10将BnMs2在拟南芥上的候选基因缩小到12个。由于BnMs2和BnMs1功能相同,都可以恢复S45A和S4516A不育株的育性,而本定位研究筛选出的12个候选基因又包括BnMs1的2个候选基因,因此BnMs2基因也必在BnMs1的2个候选基因中,将这2个BnMs2的候选基因命名为BnG1和BnG2。
     6.对2个候选基因BnG1、BnG2分别构建转基因表达载体p2301G1和p2301G2进行互补测验,以S4516AB为外植体通过农杆菌介导的遗传转化均获得了转基因阳性株。在7株BnG1的转化株中,S4516A没有能恢复育性;在3株BnG2的转化株中,也没有发现S4516A育性恢复。
     7.根据BnMs1和BnG2基因cDNA5'端的保守序列构建反义表达载体p2301AntiG2,通过转基因对Westar中的BnMs1和BnG2进行反义抑制,获得了20株阳性株,对其中12株在花期进行育性检测没有发现预期的不育表型。
     8.构建候选基因BnG2启动子的GUS融合基因表达载体p121P2GUS,对目标基因启动子进行组织特异性表达分析。经对11株阳性株的GUS染色,成功地分离了BnG2启动子,结果显示该基因仅限在花药某一特定时期(花蕾1-3mm)表达,在其它组织器官中均无表达。
Rapeseed is one of the major oil crops in China and the utilization of heterosis in rapeseed is an efficient way to increase yield, to mitigate the contradiction between yield and quality, and to improve resistance/tolerance. In China the recessive genic male sterility system (GMS) has become one of the most important approaches in virtue of the characteristics of complete and stable sterility, rich sources of cytoplasm and affluent restorer resources. However, the production of F1 hybrid seed requires the removal of 50% of the fertile plants in the female line, which limits its wide application. S45AB is a recessive GMS two-type line in Brassica napus and genetic analysis indicated that two duplicate recessive genes controlled the male sterility in S45A (Pan et al.,1988). For S45B, the BnMsl locus is heterozygous and Bnms2 locus is homozygous. In this study, for the fine mapping and cloning of BnMs2, a near isogenic line S4516AB, derived from S45A×IL362-2-4, was constructed by crossing, selfing, allelism testing and repeated full-sib mating. The objectives of this research are:(1) to develop a set of markers tightly linked to BnMs2 for marker assisted selection (MAS) in breeding of RGMS lines; (2) to isolate the BnMs2 gene and analyse its promoter to better our understanding of the mechanism of male sterility. The main results are as follows:
     1. The allelism analysis between S4516B and S45B indicated that the heterozygous locus of S4516B was not allelic to that of S45B. After assaying the segregation ratio of sterile plants and fertile plants in the NIL population of 262 individuals, S4516B was proved to be a single locus segregating line. Combining with the result of allelism study, the genotype of S4516A was Bnms1 Bnms1 Bnms2Bnms2 and that of S4516B was Bnms1Bnms1BnMs2Bnms2.
     2. From survey of 1024 AFLP primer combinations,12 AFLP markers tightly linked to the BnMs2 gene were idendified by the method of AFLP and BSA. In the NIL population of 262 plants, BnMs2 was mapped in the interval of 3.5cM and 8 AFLP markers co-segregated with BnMs2.
     3. Twelve AFLP markers were cloned and sequenced. By PCR walking we extended all the sequences of the eight co-segregation AFLP markers, the size range of which was 815-2661bp. Five SCAR markers were successfully obtained and two of them were co-dominant markers. Fine mapping was conducted in 2650 sterile plants with the methodology of pooled sampling strategy and flanking marker analysis. The eight AFLP markers and five SCAR markers were all mapped in a 1.0cM region around BnMs2 gene. Among these flanking markers of BnMs2 gene, AFLP markers Lm10 and Lm11 were the most closely linked ones, which were 0.038cM and 0.075cM from BnMs2 gene, respectively.
     4. We integrated four BnMs2 linked AFLP or SCAR markers to two doubled-haploid (DH) populations (Tapidor×Ningyou7 and Quantum×No.2127-17), and BnMs2 was mapped on N16. On the N16 linkage map one co-dominant SSR marker Na12A05 was identified by analyzing the selfing progeny of S4516B and the NIL population of 262 plants.
     5. BLAST searches were carried out against the Arabidopsis genome with the extended marker sequences and a collinear region comprising 121 Arabidopsis genes was identified. On the basis of Arabidopsis genome information and many Brassica EST, GSS and BAC sequences, one ACGM marker B14 was developed and Lm10 was mapped between two Arabidopsis genes i.e., Atlg69510 and Atlg69520. Thus marker B14 and Lm10 delimited a region only containing 12 Arabidopsis genes in which the homolog of BnMs2 might exist. As both of BnMs2 and BnMs1 can restore the sterility of S45A and S4516A, and the 2 candidate genes of BnMs1 was included in the 12 candidate genes of BnMs2, therefore, we conclude that BnMs2 candidates should be the homologs of the two candidates of BnMs1. The two candidates of BnMs2 were then designated as BnG1 and BnG2, respectively.
     6. For the 2 candidate genes of BnG1 and BnG2, plant expression vectors p2301G1 and p2301G2 were constructed, respectively. Using S4516AB as explants, transgenic positive plants were obtained by Agrobacterium-mediated transformation. In the 7 BnG1 transgenic plants, no recovery of fertility was observed. In the 3 BnG2 transgenic plants, no plants showed recovery of fertility, as well.
     7. Antisense expression vector p2301AntiG2 was constructed according to the 5' reserved cDNA sequence of BnMsl and BnG2. Using Westar(Brassica napus) as explants,20 positive transgenic plants were recovered,12 of which were assayed as fertile at flowering time. No expected phenotype was found.
     8. Gus fusion gene drived by the putative BnG2 promoter was introduced into Westar and 11 positive plants were assayed for GUS activity at different developmental stages. Results indicated that the expression of GUS was restricted specifically to the developing anthers (flower buds of 2-3mm). No GUS expression was observed in vegetative organs of plants.
引文
1. 陈凤祥,胡宝成,李成,李强生,陈维生,张曼琳.甘蓝型油菜细胞核雄性不育性的遗传研究Ⅰ.隐性核不育系9012A的遗传.作物学报,1998,24(4):431-438
    2. 陈凤祥,胡宝成,李强生,侯树敏,吴新杰,费维新,李成,陈维生.甘蓝型油菜隐性上位互作核不育双低杂交种皖油14号的选育.中国油料作物学报,2003,25(1):63-65
    3.陈凤祥,胡宝成,李强生,侯树敏,吴新杰,费维新.甘蓝型油菜隐性上位互作核不育双低杂交种“皖油18”的选育.安徽农业科学,2002,30(4):535-537
    4. 陈凤祥,胡宝成,李强生.细胞核不育材料9012A的发现与初步遗传.见:全国植物雄性不育及杂种优势利用青年学术讨论会论文集.北京农业大学学报(A),1993,(2):20-25.
    5. 陈玉宁.甘蓝型油菜S45AB隐性细胞核雄性不育表达谱的研究.[博士学位论文].武汉:华中农业大学图书馆,2009
    6.崔德欣,邓锡兴.甘蓝型杂交油菜的研究利用.中国油料,1979,2:15-20
    7.傅廷栋,涂金星油菜杂种优势利用的现状与展望.见:刘后利主编,作物育种学论丛.北京:中国农业大学出版社,2002
    8.傅廷栋.加人WTO对我国农业的影响和发展优质油菜生产问题.安徽农学通报,2001,7:8-12
    9.傅廷栋.杂交油菜的育种与利用.武汉:湖北科学技术出版社,1995
    10.干滟,曾凡亚,赵云,张义正.甘蓝型油菜“79.7”细胞核雄性不育基因RAPD分子标记初步研究.西南农大学报,1999,12:111-115
    11.侯国佐,王华,张瑞茂.甘蓝型油菜细胞核雄性不育材料117A的遗传研究.中国油料,1990,(2):7-10
    12.侯国佐.甘蓝型油菜隐性核不育系可育、不育型初花前后特性的观察.种子,1991,5:29-31
    13.胡胜武.甘蓝型油菜(Brassica napus)新型核不育材料Shaan-GMS的遗传及核不育的分子机制研究.[博士学位论文].杨凌:西北农林科技大学图书馆,2003
    14.蒋梁材,蒲晓斌,王瑞,张启行,蔡平钟.甘蓝型油菜核不育基因的RAPD标记.中国油料作物学报,2000,22(2):1-4
    15.康俊根,张国裕,张延国,娄平,王晓武,方智远.四种甘蓝雄性不育类型差异基因表达分析.农业生物技术学报,2006,14(4):551-554
    16.李殿荣.甘蓝型油菜三系选育初报.陕西农业科学,1980,1:26-29
    17.李树林,钱玉秀,吴志华.甘蓝型油菜细胞核雄性不育性的遗传规律探讨及其应用.上海农业学报,1985,1(2):1-12
    18.李树林,钱玉秀,吴志华.甘蓝型油菜细胞核雄性不育性的遗传验证.上海农业学报,1986,2(2):1-8
    19.李树林,钱玉秀,周熙荣.显性核不育油菜的遗传性.上海农业学报,1987,3(2):1-8
    20.李树林,周熙荣,周志疆,钱玉秀.显性核不育油菜的遗传与利用.作物研究,1990,4(3):27-32
    21.李树林.油菜细胞核雄性不育杂种.见:傅廷栋(主编),杂交油菜的育种与利用.武汉:湖北科学技术出版社,1995:71-90
    22.刘春林,官春云,李栒,阮颖,寥晓兰,熊兴华,周小云,王国槐,陈社员.油菜分子标记图谱构建及抗菌核病性状的QTLs定位.遗传学报,2000,27:918-924
    23.刘忠松,官春云,陈社员.植物雄性不育机理的研究及应用.北京:中国农业出版社,2001
    24.陆光远,杨光圣,傅廷栋.甘蓝型油菜显性细胞核雄性不育基因的AFLP标记.作物学报,2004a,30(2):104-107
    25.陆光远,杨光圣,傅廷栋.甘蓝型油菜分子标记连锁图谱的构建及显性细胞核雄性不育基因的图谱定位.遗传学报,2004b,31(11):1309-1315
    26.潘涛,曾凡亚,吴书慧,赵云.甘蓝型低芥酸油菜雄性不育两用系的选育与利用研究.中国油料,1988,(3):5-8
    27.石华娟,董云麟.川油15核不育三系制种技术的应用研究.西南农业学报,2004,17:12-15
    28.宋来强,傅廷栋,杨光圣,涂金星,马朝芝.1对复等位基因控制的油菜(Brassica napus L.)显性核不育系609AB的遗传验证.作物学报,2005,31:869-875
    29.宋来强.甘蓝型油菜显性细胞核雄性不育的遗传与应用模式.武汉:华中农业大学,2006
    30.孙超才,王伟荣,李延莉,周熙荣,钱小芳.甘蓝型双低隐性核不育杂交种“沪油杂2号”的选育.上海农业学报,2005,21:1-3
    31.孙超才,赵华,王伟荣,李延莉,钱小芳,方光华.甘蓝型双低隐性核不育杂交种沪油杂1号的选育.中国油料作物学报,2004,26(1):63-65
    32.涂金星,傅廷栋,郑用琏.甘蓝型油菜核不育材料育性基因的RAPD标记.华中农业大学学报,1997,16(2):112-117
    33.王道杰,郭蔼光,李殿荣,田建华.油菜单显性核雄性不育基因的分子标记.植物生理与分了牛物学学报,2006,32(5):513-51
    34.王贵春.甘蓝型油菜隐性细胞核雄性不育两型系9012AB雄性不育基因的分子标记开发.博士学位论文].武汉:华中农业大学图书馆,2007
    35.王华,汤晓华,李厚英,赵继献.油菜生态型雄性不育材料H90S温光特性研究.作 物研究,2003,(1):24-27
    36.王华,汤晓华,赵继献.甘蓝型油菜核不育材料H90S的遗传研究.中国油料作物学报,2001,23(4):11-15
    37.王俊霞,杨光圣,傅廷栋,孟金陵.甘蓝型油菜Pol CMS育性恢复基因的RAPD标记.作物学报,2000,26(5):575-578
    38.王泽立,戴景瑞,王斌.植物基因的图位克隆.生物技术通报,2000,4:21-27
    39.吴建勇.甘蓝型油菜显性细胞核雄性不育差异表达基因及雄配子发育研究.[博士学位论文].武汉:华中农业大学图书馆,2006
    40.席代汶,陈卫江,宁祖良.甘蓝型油菜温敏核不育系“湘91S”的选育.湖南农业科学,1994,(4):25-27
    41.闫其涛,逯慧,毛万霞,李建粤.植物基因分离的图位克隆技术.分子植物育种,2005,3(4):585-590
    42.杨光圣,傅廷栋.环境条件对油菜细胞质雄性不育的影响.中国油料,1987,(3):15-19
    43.杨光圣.甘蓝型油菜细胞质雄性不育研究.遗传,1988,10(5):8-11
    44.姚雪琴.拟南芥及芸薹属A、C基因组Ms候选基因区共线性比较.[硕士学位论文].武汉:华中农业大学图书馆,2007
    45.易斌,陈伟,马朝芝,傅廷栋,涂金星.甘蓝型油菜产量及相关性状得QTL分析.作物学报,2006,32:676-682
    46.易斌.甘蓝型油菜隐性核不育基因Bnmsl的精细定位和克隆.[博士学位论文].武汉:华中农业大学图书馆,2007
    47.杂交新品种核杂3号的选育.上海交通大学学报(农业科学版),2003,21:304-308
    48.周熙荣,李树林,周志疆,庄静,顾龙弟.蓝型(Brassica napus L.)显性核不育双低油菜杂交新品种核杂3号的选育.上海交通大学学报:农业科学版,2003,21(4):304-308
    49.周熙荣.甘蓝型油菜显性核不育三系杂交种“核杂7号”.农业科技通讯,2005,33:62
    50. Aarts M G M, Dirkse W G, Stiekema W J, Pereira A. Transposon tagging of a male sterility gene in Arabidopsis. Nature,1993,363:715-717
    51. Aarts M G, Hodge R, Kalantidis K, Florack D, Wilson Z A, Mulligan B J, Stiekema W J, Scott R, Pereira A. The Arabidopsis MALE STERILITY 2 protein shares similarity with reductases in elongation/condensation complexes. Plant J,1997, 12:615-623
    52. Allen G C, Hall G E, Childs L C, Weissinger A K, Spiker S and Thompson W F. Scaffold attachment regions increase gene expression in stably transformed plant cells. Plant Cell,1993,5:603-613
    53. Allen G C, Spiker S, Thompson W F. Use of matrix attachment regions (MARs) to minimize transgene silencing. Plant Mol Biol,2000,43:361-376
    54. Ariizumi T, Hatakeyama K, Hinata K, Inatsugi R, Nishida I, Sato S, Kato T, Tabata S, Toriyama K. Disruption of the novel plant protein NEF1 affects lipid accumulation in the plastids of the tapetum and exine formation of pollen, resulting in male sterility in Arabidopsis thaliana. Plant J,2004,39:170-181
    55. Ariizumi T, Hatakeyama K, Hinata K, Sato S, Kato T, Tabata S, Toriyama K. A novel male-sterile mutant of Arabidopsis thaliana, faceless pollen-1, produces pollen with a smooth surface and an acetolysis-sensitive exine. Plant Mol. Biol.2003,53:107-116
    56. Babula D, Kaczmarek M, Barakat A, Delseny M, Quiros C F, Sadowski J. Chromosomal mapping of Brassica oleracea based on ESTs from Arabidopsis thaliana:complexity of the comparative map. Mol Genet Genom,2003,268:656-665
    57. Badani A, Rod S, Roland B, Luhs W, Horn R, Friedt W. QTL mapping for yellow seed colour in oilseed rape (Brassica napus). Abstract,2003,11th international rapeseed congress. Copenhagen, Denmark, Plant breeding-molecular markers,85-87
    58. Bannerot H, Boudidard L, Chupeau Y. Unexpected difficulties met with the radish cytoplasm in Brassica oleracea. Eucarpia Cruciferae Newsletter,1977, (2):16
    59. Bonnet A. Breeding in France of a radish Fl hybrid obtained by use of cytoplasmic male sterility. Eucarpia Cruciferae Newsl,1977,2:5
    60. Botstein D, White RC, Skolonick M, et al. Construction of genetic linkage map in man using restriction fragment length polymorphism. Am J Hum Genet,1980, 32:314-331.
    61. Brown G G, Formanova N, Jin H, Wargachuk R, Dendy C, Patil P, Laforest M, Zhang J, Cheung W Y, Landry B S. The radish Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats. Plant J,2003,35:262-272
    62. Brunel D, Froger N, Pelletier G. Development of amplified consensus genetic markers (ACGM) in Brassica napus from Arabidopsis thaliana sequences of known biological function. Genome,1999,42:387-402
    63. Cardoza V, Stewart C N. Increased Agrobacterium-mediated transformation and rooting efficiencies in canola (Brassica napus L.) from hypocotyl segment explants. Plant Cell Rep,2003,21:599-604
    64. Cavell A C, Lydiate D J, Parkin I A, Dean C, Trick M. Collinearity between a 30-centimorgan segment of Arabidopsis thaliana chromosome 4 and duplicated regions within the Brassica napus genome. Genome,1998,41:62-69
    65. Chen W, Zhang Y, Liu X P, Chen B Y, Tu J X, Fu T D. Detection of QTL for six yield-related traits in oilseed rape (Brassica napus) using DH and immortalized F2 populations. Theor Appl Genet,2007,115:849-858
    66. Cheng X M, Xu J S, Xia S, Gu J X, Yang Y, Fu J, Qian X J, Zhang S C, Wu J S, Liu K D. Development and genetic mapping of microsatellite markers from genome survey sequences in Brassica napus. Theor Appl Genet,2009,118:1121-1131
    67. Cheung W Y, Champagne G, Hubert N, Landry B S. Comparison of the genetic maps of Brassica napus and Brassica oleracea. Theor Appl Genet,1997,94:569-582
    68. Cheung W Y, Champagne G, Hubert N, Tulsieram L, Charne D, Patel J, Landry B S. Conservation of S-locus for self-incompatibility in Brassica napus (L.) and Brassica oleraceo (L.). TheorAppl Genet.1998,95:7-82
    69. Chevre A M, Barret P, Eber F, Dupuy P. Selection of stable Brassica napus-B. juncea recombinant lines resistant to blackleg (Leptosphaeria maculans). Identification of molecular markers, chromosomal and genomic origin of the introgression. Theor Appl Genet,1997,95:1104-1111
    70. Churchill G A, Giovannoni J J, Tanksley S D, et al. Pooled-sampling makes high-resolution mapping practical with DNA markers. Proc Natl Acad Sci USA,1993, 90:16-20.
    71. Delourme R, Bouchereau A, Hubert N, Renard M, Landry B S. Identification of RAPD markers linked to fertility restorer gene for the Ogura radish cytoplasmic male sterility of rapeseed (Brassica napus L.). Theor Appl Genet,1994,88:741-748
    72. Delourme R, Eber F. Linkage between an isozyme marker and a restorer gene in radish cytoplasmic male sterility of rapeseed (Brassica napus L.). Theor Appl Genet, 1992,97:129-134
    73. Delourme R, Falentin C, Huteau V, Clouet V, Horvais R, Gandon B, Specel S, Hanneton L, Dheu J E, Deschamps M, Margale E, Vincourt P, Renard M. Genetic control of oil content in oilseed rape (Brassica napus L.).Theor Appl Genet,2006, 113:1331-1345
    74. Delourme R, Horvais R, Renard M. Double low restored Fl can be produced with the Ogu-INRA CMS in rapeseed. Proc 10th Int Rapeseed Cong,1999.
    75. Desloire S, Gherbi H, Wassila L, Marhadour S, Clouet LC, Falentin C, Giancola V. Identification of the fertility restoration locus, Rfo, in radish, as a member of the pentatricopeptide repeat protein family. EMBO J.2003,4:588-596
    76. Devic M, Albert S, Delseny M, Roscoe T J. Efficient PCR walking on plant genomic DNA. Plant Physiol Biochem,1997,35:331-339
    77. Dixon M S, Jones D A, Hatzixanthis K, et al. High-resolution mapping of the physical location of the tomato Cf-2 gene. Mol Plant Microbe Interact,1995,8: 200-206
    78. Doyle J J, Doyle J L. Isolation of plant DNA from fresh tissue. Focus,1990,12: 13-15
    79. Ecke W, Uzunova M, Weibleder K. Mapping the genome of rapeseed (Brassica napus) Ⅱ:localization of genes controlling erucic acid synthesis and seed oil content. Theor Appl Genet,1995,91:972-977
    80. Fan Z, Stefansson B R, Sernyk J L. Maintainers and restorers for three male sterility inducing cytoplasm in rape (Brassica napus L.). Can J Plant Sci,1986,66:229-234
    81. Fan Z, Stefansson B R. Influence of temperature on sterility of two cytoplasmic male sterility in rape (B. napus L.). Can J Plant Sci,1986,66:221-227
    82. Fang G H, McVetty P B E. Inheritance of male fertility restoration for the Polima CMS system in Brassica napus L. Proc 7th Int Rapeseed Cong, Poznan, Poland. 1987,1:73-78
    83. Ferreira M E, Rimmer S R, Williams P H, Osborn T C. Mapping loci controlling Brassica napus resistance to Leptosphaeria maculans under different screening conditions. Phytopath,1995a,90:213-217
    84. Ferreira M E, Williams P H and Osborn T C. RFLP mapping of Brassica using doubled haploid lines. Theor Appl Genet,1994,89:615-621
    85. Foisset N, Delourme R, Barret P, Hubert N, Landry B S and Renard M. Molecular mapping analysis of Brassica napus using isozyme, RAPD and RFLP markers on double haploid progeny. Theor Appl Genet,1996,93:1017-1025
    86. Furmann M, Barret P, Froger C, Baron F, Charlot R, Brunel D. From Arabidopsis thaliana to Brassica napus:development of amplified consensus genetic marker (ACGM) for construction of a gene map. Theor Appl Genet,2002,105:1196-1206
    87. Gao M, Li G, Yang B, McCombie W R, Quiros C F. Comparative analysis of a Brassica BAC clone containing several major aliphatic glucosinolate genes with its corresponding Arabidopsis sequence. Genome,2004,47:666-679
    88. Giancola S, Marhadour S, Desloire S, Clouet V, Laloui W, Falentin C, Pelletire G, Renard M, Bendahmane A, Delourme R, Buder F. Characterization of a radish introgression carrying the Ogura fertility restorer gene Rfo in rapeseed, using the Arabidopsis genome sequence and radish genetic mapping. Theor Appl Genet,2002, 105:1196-1296
    89. Girke A, Heiko C B, Gabriele M E. Resynthesized rapeseed as a new gene pool for hybrid breeding. Proc 10th Int Rapeseed Cong (Canberra, Australia),1999.90
    90. Glover J, Grelon M, Craig S, Chaudhury A and Dennis E. Cloning and characterization of MS5 from Arabidopsis:a gene critical in male meiosis. Plant J, 1998,15(3):345-356
    91. Grant M R, McDowell J M, Sharpe A G, de Torres Zabala M, Lydiate D J, Dangl J L. Independent deletions of a pathogen resistance gene in Brassica and Arabidopsis. Proc Natl Acad Sci USA,1998,95:15843-15848
    92. Hansen M, Hallden CN, Nilsson O, Ball T. Marker-assisted selection of restored male-fertile Brassica napus plants using a set of dominant RAPD markers. Mol Breed, 1997,3:449-456
    93. He J P, Ke L P, Hong D F, Xie Y Z, Wang G C, Liu P W, Yang G S. Fine mapping of a recessive genic male sterility gene (Bnms3) in rapeseed (Brassica napus) with AFLP-and Arabidopsis-derived PCR markers. Theor Appl Genet,2008,117:11-18
    94. Higginson T, Li S F, Parish R W. AtMYB103 regulates tapetum and trichome development in Arabidopsis thaliana. Plant J.,2003,35:177-92
    95. Hong D F, Wan L L, Liu P W, Yang G S, He Q B. AFLP and SCAR markers linked to the suppressor gene (Rf) of a dominant genetic male sterility in rapeseed (Brassica napus L.). Euphytica,2006,151:401-409
    96. Huang Z, Chen Y F, Yi B, Xiao L, Ma C Z, Tu J X, Fu T D. Fine mapping of the recessive genic male sterility gene (Bnms3) in Brassica napus L. Theor Appl Genet, 2007,115:113-118
    97. Imai R, Koizuka N, Fujimoto H, Hayakawa T Sakai T, Imamura J. Delimitation of the fertility restorer locus Rfk1 to a 43-kb contig in Kosena radish (Raphanus sativus L.) Mol Gen Genomics,2003,269:388-394
    98. Jackson S A, Cheng Z, Wang M L, Goodman H M, Jiang J. Comparative fluorescence in situ hybridization mapping of a 4312 kb Arabidopsis thaliana bacterial artificial chromosome contig reveals the role of chromosomal duplications in the expansion of the Brassica rapa genome Genetics,2000,156:833-838
    99. James C. Global review of commercialized transgenic crops:2002. ISAAA briefs, 2002, No.27
    100.Janeja H S, Banga S K, Bhaskar P B, Banga S S. Alloplasmic male sterile Brassica napus with Enarthrocarpus lyratus cytoplasm:introgression and molecular mapping of an E. lyratus chromosome segment carrying a fertility restoring gene. Genome, 2003b,46:792-797
    101.Janeja H S, Banga S S, Lakshmikumaran M. Identification of AFLP markers linked to fertility restorer genes for tournefortii cytoplasmic male-sterility system in Brassica napus. Theor Appl Genet,2003 a,107:148-154
    102.Jean M, Brown G G, Landry B S. Targeted mapping approaches to identify DNA markers for the'Polima'CMS of canola (Brassica napus L.). Theor Appl Genet, 1998,97:431-438
    103. Jean M, Brown G G, Landry B S. Genetic mapping of nuclear fertility restorer genes for the 'Polima' cytoplasmic male sterility in canola (Brassica napus L.) using DNA markers, Theor Appl Genet,1997,95:321-328
    104.Jean M, Brown G G, Landry B S. Genetic mapping of nuclear fertility restorer genes for the 'Polima' cytoplasmic male sterility in canola (Brassica napus L.) using DNA markers, Theor Appl Genet,1997,95:321-328
    105.Kalos M, Fournier R F K. Position independent transgene expression mediated by boundary elements from the alipoprotein B chromatin domain. Mol Cell Biol 1995, 15:198-207
    106.Ke L P, Sun Y Q, Hong D F, Liu P W, Yang G S. Identication of AFLP markers linked to one recessive genic male sterility gene in oilseed rape, Brassica napus. Plant Breed,2005,124:367-370
    107.Ke L P, Sun Y Q, Liu P W, Yang G S. Identification of AFLP fragments linked to one recessive genic male sterility (RGMS) in rapeseed (Brassica napus L.) and conversion to SCAR markers for marker-aided selection. Euphytica,2004,138: 163-168
    108.Koizuka N, Imai R, Fujimoto F, Hayakawa T, Kimura Y, Kahno-Murase JK, Sakai T, Kawasaki S, Imamura J. Genetic characterization of a pentatricopeptide repeat protein gene, orf687, that restores fertility in the cytoplasmic male sterile Kosena radish. Plant J,2003,34:407-415
    109.Kowalski S, Lan T, Feldmann K, Paterson A. Comparative mapping of Arabidopsis thaliana and Brassica oleracea reveal islands of conserved organization. Genetics, 1994,138:499-510
    110.L'Homme Y, Brown G G. Organizational differences between cytoplasmic male sterile and male fertile Brassica mitochondrial genomes are confined to a single transposed locus. Nucl Acids Res,1993,21(8):1903-1909
    111.Lagercrantz U, Lydiate D. Comparative genome analysis in Brassica. Genetics, 1996a,144:1903-1909
    112.Lagercrantz U. Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics,1998,150:1217-1228
    113.Lagercrantz, U., Putterill, J., Coupland, G, and Lydiate, D. Comparative mapping in Arabidopsis and Brassica, fine scale genome collinearity and congruence of genes controlling flowering time. Plant J,1996b,9:13-20
    114.Lan T H, Delmonte T A, Reischmann K P, Hyman J, Owalski S P, Mcferson J, Kresovich S, Paterson A H. An EST-enriched comparative map of Brassica oleracea and Arabidopsis thaliana. Genome Res,2000,10:776-788
    115.Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Newburg L. MAPMAKER:an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics,1987,1:174-181
    116.Landry B S and Hubert N. A genetic map for Brassica napus based on restriction fragment length polymorphisms detected with expressed DNA sequences. Genome, 1991,34:543-552
    117.Lei S L, Yao X Q, Yi B, Chen W, Ma CZ, Tu J X, Fu T D. Towards map-based cloning:fine mapping of a recessive genic male-sterile gene(BnMs2) in Brassica napus L. and syntenic region identification based on the Arabidopsis thaliana genome sequences. Theor Appl Genet,2007,115 (5):643-651
    118.Li C X, Cowling W. Identification of a single dominant allele for resistance to blackleg in Brassica napus'Surpass 400'. Plant Breeding,2003,122:485-488
    119.Li Y Y, Ma C Z, Fu T D, Yang G S, Tu J X, Chen Q F, Wang T H, Zhang X G, Li C Y. Construction of a molecular functional map of rapeseed(Brassica napus L.) using differentially expressed genes between hybrid and its parents. Euphitica,2006,152: 25-39
    120.Lincoln S, Daly M, Lander E. Constructing genetic linkage maps with Mapmaker/exp 3.0:a tutorial and reference manual,3rd edn,1992, Whitehead Institute Technical Report
    121.Liu C L, Guan C Y, Li X, Ruan Y, Liao X L, Xiong X H, Zhou X Y, Wang G H, Chen S Y. Construction of linkage map and mapping resistance gene of Scterotinia scterotiorum in Brassica napus. Yi Chuan Xue Bao,2000,27:918-924
    122.Liu L Z, Meng J L, Lin N, Chen L, Tang Z L, Zhang X K, Li J N. QTLs mapping of seed coat color for yellow seeded Brassica napus. Yi Chuan Xue Bao,2006,33: 181-187
    123.Liu N, Shan Y, Wang F P, Xu C G, Peng K M, Li X H, Zhang Q. Identification of an 85-kb DNA fragment containing pmsl, a locus for photoperiod-sensitive genic male sterility in rice. Mol Genet Genomics,2001,266:271-275
    124.Liu Q G and Guo Z P. Molecular cloning and characterization of a profilin gene BnPFN from Brassica nigra that expressing in a pollen-specific manner. Mol Biol Rep,2007, DOI 10.1007/s11033-007-9161-8
    125.Liu X P, Tu J X, Liu Z W, Chen B Y, Fu T D. Construction of a molecular marker linkage map and Its use for QTL analysis of Erucic Acid Content in Brassica napus L Acta Agronomica Sinica,2005,31(3):275-282
    126.Liu Z, Fu T, Tu J, Chen B. Inheritance of seed colour and identification of RAPD and AFLP markers linked to the seed colour gene in rapeseed(Brassica napus L.). Theor Appl Genet,2005,110:303-310
    127.Lombard V, Delourme R. A consensus linkage map for rapeseed (Brassica napus L.): construction and integration of three individual maps from DH populations. Theor Appl Genet,2001,103:491-507
    128.Lowe A J, Jones A E, Raybould A F, Trick M, Moule CJ, Edwards KJ. Transferability and genome specificity of a new set of microsatellite primers among Brassica species of the U triangle. Mol Ecol Notes,2002,2:7-11
    129.Lowe A J, Moule C, Trick M, Edwards K J. Efficient large-scale development of microsatellites for marker and mapping applications in Brassica crop species. Theor Appl Genet,2004,108:1103-1112
    130.Lukens L, Zou F, Lydiate D, Parkin I, Osborn T. Comparison of a Brassica oleracea genetic map with the genome of Arabidopsis thaliana. Genetics 2003,164:359-372
    131.Malek B V, Graaff E V D, Schneitz K, Keller B. The Arabidopsis male-sterile mutant dde2-2 is defective in the ALLENE OXIDE SYNTHASE gene encoding one of the key enzymes of the jasmonic acid biosynthesis pathway. Planta,2002,216:187-192
    132.Mankin S L, Allen G C, Phelan T, Spiker S Thompson W F. Elevation of transgene expression level by flanking matrix attachment regions (MAR) is promoter dependent: a study of the interactions of six promoters with the RB7 3'MAR. Transgenic research,2003,12:3-12
    133.Mariani C, de Beuckeleer M, Truettner J, Leemans J, Goldberg R B. Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature,1990,347:737-741
    134.Mariani C, Gossele V, De Beuckeleer M, De Blcok M, Goldberg M, De Greef R, Leemans J. A chimaeric robonuclease inhibitor gene restores fertility to male sterile plants. Nature,1992,357:384-387
    135.Mayerhofer R, Bansal V K, Thiagarajah M R, Stringam G R, Good A G. Molecular mapping of resistance to Leptosphaeria maculans in Austrilian cultivars of Brassica napus. Genome,1997,40:294-301
    136.Mayerhofer R, Wilde K, Mayerhofer M, Lydiate D, Bansal V, Good A, Parkin I. Complexities of chromosome landing in a highly duplicated genome:Towards map based cloning of a gene controlling blackleg resistance in Brassica napus. Genetics, 2005,171,1977-1988
    137.McGrath J M, Quiros C F. Generation of alien chromosome addition lines from synthetic Brassica napus, morphology, cytology, fertility, and chromosome transmission. Genome,1990,33,374-383
    138.Michelmore R W, Paran I, and Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis:a rapid method to detect markers in specific genomic regions by using segregating populations, Proc Natl Acad Sc.,1991,88(21):9828-9832
    139.Mizuno S, Osakabe Y, Maruyama K, Ito T, Osakabe K, Sato T, Shinozaki K, Yamaguchi-Shinozak K. Receptor-like protein kinase 2 (RPK2) is a novel factor controlling anther development in Arabidopsis thaliana. Plant J,2007,50:751-766
    140.Mohring S, Esch E, Wricke G. Breeding hybrid varitiles in winter rapeseed using recessivly inherited self-incompatibility. Proc 10th Int Rapeseed Cong (Canberra, Australia),1999,72
    141.Morant M, Jφrgensen K, Schaller H, Pinot F, Mφller B L, Werck-Reichhart D, Bak S. CYP703 is an ancient cytochrome P450 in land plants catalyzing in-chain hydroxylation of lauric acid to provide building blocks for sporopollenin synthesis in pollen. Plant Cell,2007,19(5):1473-1487
    142.Muangprom A, Osborn T C. Characterization of a dwarf gene in Brassica rapa, including the identification of a candidate gene. Theor Appl Genet,2004,108: 1378-1384
    143.Muller J. Fossil pollen records of extent angiosperms. Bot. Rev.1981,47:1-142.
    144.O'Neill C N, Bancroft I. Comparative physical mapping of segments of the genome of Brassica oleracea var. alboglabra that are homoeologous to sequenced regions of chromosomes 4 and 5 of Arabidopsis thaliana. Plant J,2000,23:233-243
    145.Ogura H. Studies on the new male sterility in Japanese Radish, with special references to the utilization of this sterility towards the practical raising of hybrid seed. Mem Fac Agric Kagoshima Univ,1968,6(2):39-78
    146.Osborn T C, Kole C, Parkin I A P, Sharpe A G, Kuiper M, Lydiate D J, Trick M. Comparison of flowering time genes in Brassica rapa, B. napus and Arabidopsis thaliana. Genetics,1997,146:1123-1129
    147.Parkin I A P, Sharpe A G, Keith D J, Lydiate D J. Identification of the A and C genomes of amphidiploid Brassica napus (oilseed rape). Genome,1995,38: 1122-1131
    148.Parkin I A P, Sharpe A G, Lydiate D J. Patterns of genome duplication within the Brassica napus genome. Genome,2003,46:291-303
    149.Parkin I A, Gulden S M, Sharpe A G, Lukens L, Trick M, Osborn, T C, Lydiate D J. Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics,2005,171:765-781
    150.Parkin I A, Lydiate D J, Trick M. Assessing the level of collinearity between Arabidopsis thaliana and Brassica napus for A. thaliana chromosome 5. Genome, 2002,45:356-366
    151.Paxson-Sowders D M, Dodrill C H, Owen H A, Makaroff C A. DEX1, a novel plant protein, is required for exine pattern formation during pollen development in Arabidopsis. Plant Physiol,2001,127:1739-1749
    152.Paxson-Sowders D M, Owen H A, Makaroff C A. A comparative ultrastructural analysis of exine pattern development in wild-type Arabidopsis and a mutant defective in pattern formation. Protoplasma,1997,198:53-65
    153.Pelletier G, Primard C, Vedel P. Intergeneric cytoplasmic hybridization in Cruciferae by protoplast fusion. Curr Genet,1983,191:244-250
    154.Phi-Van L, Stratling W H. Dissection of the ability of the chicken lysozyme gene 5' matrix attachment region to stimulate transgene expression and to dampen position effect. Biochemistry,1996,35:10735-10742
    155.Pilet M L, Delourme R, Foisset N, Renard M. Identification of loci contributing to quantitative field resistance to blackleg disease, causal agent Leptosphaeria maculans (Desm) Ces et de Not., in winter rapeseed (Brassica napus L.). Theor Appl Genet, 1998a,96:23-30
    156.Pilet M L, Delourme R, Foisset N, Renard M. Identification of QTLs involved in field resistance to light leaf spot (Pyrenopeziza brassicae) and blackleg resistance (Leptosphaeria maculans) in winter rapeseed (Brassica napus L). Theor Appl Genet, 1998b,97:398-406
    157.Piquemal J, Cinquin E, Couton F, Rondeau C, Seignoret E, Doucet I, Perret D, Villeger M J, Vincourt P, Blanchard P. Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theor Appl Genet,2005,111:1514-1523
    158.Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, Zhuang X, Wang Y, Tan X, Dietrich E, Weihmann T, Everett C, Vanstraelen S, Beckett P, Fraser F, Trick M, Barnes S, Wilmer J, Schmidt R, Li J, Li D, Meng J, Bancroft I. A comparative linkage map of oilseed rape and its use for QTLs analysis of seed oil and erucic acid content. Theor Appl Genet,2006,114(1):67-80
    159.Rajcan I, Kasha K J, Kott L S, Beversdorf W D. Detection of molecular markers associated with linolenic and erucic acid levels in spring rapeseed (Brassica napus L.). Euphytica,1999,105:173-181
    160.Robbelen G. Citation at the occasion of presenting the GCIRC Superior Scientist Award to Fu Tingdong. Proc 8th Int Rapeseed Cong (Sasktoon Canada),1991,1:2-5
    161.Sadowski J, Gaubier P, Delseny M, Quiros C F. Genetic and physical mapping in Brassica diploid species of a gene cluster defined in Arabidopsis thaliana. Mol Gen Genet,1996,251:298-306
    162.Schiefthaler U, Balasubramanian S, Sieber P, Chevalier D, Wisman E and Schneitz K. Molecular analysis of NOZZLE, a gene involved in pattern formation and early sporogenesis during sex organ development in Arabidopsis thaliana. Proc Natl Acad Sci USA,1999,96:11664-11669
    163.Schierholt A, Becker H C, Ecke W. Mapping a high oleic acid mutation in winter oilseed rape (Brassica napus L.). Theor Appl Genet,2000,101:897-901
    164.Schranz M E, Quijada P, Sung S B, Lukens L, Amasino R, Osborn T C. Characterization and effects of the replicated flowering time gene FLC in Brassica rapa. Genetics,2002,162,1457-1468
    165.Sharpe A G, Parkin I A P, Keith D J and Lydiate D J. Frequent nonreciprocal translocations in the amphidiploid genome of oilseed rape (Brassica napus). Genome, 1995,38:1112-1121
    166.Shiga T and Baba B. Cytoplasmic male sterility in oilseed rape (Brassica napus L.) and its utilization to breeding. Jap J Breed,1973,23(4):1987-197
    167.Shiga T and Baba B. Cytoplasmic male sterility in rape plant (Brassica napus L.). Jap J Breed,21, Suppl,1971,2:16-17
    168.Siebert P D, Chenchick A, Kellogg D E, Lukyanov K A, Lukyanov S A. An improved PCR method for walking in uncloned genomic DNA. Nucl Acids Res,1995,23: 1087-1088
    169.Sieburth L E and Meyerowitz E M. Molecular dissection of the AGAMOUS control region shows that cis elements for spatial regulation are located lntragenically. Plant Cell,1997,9:355-365
    170.Singh M, Brown G G. Suppression of cytoplasmic male sterility by nuclear genes alter expression of a novel mitochondrial gene region. Plant Cell,1991,3:1349-1362
    171.Singh M, Hamel N. Nuclear genes associated with a single Brassica CMS restorer locus influence transcripts of three different mitochondrial gene regions. Genetics, 1996,143:505-516
    172.Somers D J, Rakow G, Prabhu V K, Friesen K R. Identification of a major gene and RAPD markers for yellow seed coat colour in Brassica napus. Genome,2001,44: 1077-1082
    173.Song L Q, Fu T D Tu J X, Ma C Z Yang G S. Molecular validation of multiple allele inheritance for dominantgenic male sterility gene in Brassica napus L. Theor Appl Genet,2006,113:55-62
    174.Sorensen A M, Krober S, Unte U S, Huijser P, Dekker K, Saedler H. The Arabidopsis ABORTED MICROSPORES (AMS) gene encodes a MYC class transcription factor. Plant J.,2003,33:413-423
    175.Sun Z, Wang Z, Tu J, Zhang J, Yu F, McVetty P B E, Li G. An ultradense genetic recombination map for Brassica napus, consisting of 13551 SRAP markers. Theor Appl Genet,2007,114:1305-1317
    176.Tanhuanpaa P K, Vilkki J P, Vilkki H J. Association of RAPD marker with linolenic acid concentration in the seed oil of rapeseed (Brassica napus L.). Genome,1995,38: 414-416
    177.Tanksley S D, Bernatzky R, Lapitan N L, Prince J P. Conservation of gene repertoire but not gene order in pepper and tomato. Proc Natl Acad Sci USA,1988,85: 6419-6423
    178.Tanksley S D, Ganal M W, and Martin G B. Chromosome landing:a paradigm for map-based gene cloning in plants with large genomes, Trends Genet,1995,11(2): 63-68
    179.Thomas CM, Vos P, Zabeau M, Jones D, Norcott KA, Chadwick BP,Jones JDG. Identification of amplified restriction fragment polymorphism (AFLP) markers tightly linked to the tomato Cf-9 gene for resistance to Cladosprorium fulvum. Plant J, 1995,8:785-794
    180.Thompson K F. Cytoplasmic male sterility in oilseed rape. Heredity, London,1972, 29:253-257
    181.Thormann C E, Romero J, Mantet J, Osborn T C. Mapping loci controlling the concentrations of erucic and linolenic acids in seed oil of Brassica napus L. Theor Appl Genet,1996,93:282-286
    182.Toroser D, Thormann C E and Osborn T C. RFLP mapping of quantitative trait loci controlling seed aliphatic glucosinolate content in oilseed tape (Brassica napus L.). Theor Appl Genet,1995,91:802-808
    183.Town C D, Cheung F, Maiti R, Crabtree J, Haas B J, Wortman J R, Hine E E, Althoff R, Arbogast T S, Tallon L J, Vigouroux M, Trick M, Bancroft I. Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy. Plant Cell,2006,18:1348-1359
    184.Truco M J, Hu J, Sadowski J, Quiros C F. Inter-and intra-genomic homology of the Brassica genomes:implications for their origin and evolution. Theor App Genet, 1996,93:1225-123
    185.Tuinstra M R. Identification of quantitative trait loci associated with pre-flowering drought tolerance in sorghum. Crop Sci,1996,36:1337-1344
    186.U N. Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn JBot,1935,7:389-452
    187.Udall J A, Quijada P A, Osborn T C. Detection of chromosomal rearrangements derived from homoeologous recombination in four mapping populations of Brassica napus L. Genetics,2005,169:967-979
    188.Uzunova M, Ecke W, Weissleder K and Robbelen G. Mapping the genome of rapeseed (Brassica napus L.) I. Construction of an RFLP linkage map and localization of QTLs for seed glucosinolate content. Theor Appl Genet,1995,90: 194-204
    189.Van Deynze A E, Landry B S, Pauls K P. The identification of restriction fragment length polymorphisms linked to seed colour genes in Brassica napus. Genome,1995, 38:534-537
    190.Vos P, Hogers R, Bleeker M, et al. AFLP:a new technique for DNA fingerprinting. Nucleic Acid Res,1995,23:4407-4414
    191.Williams J G K, Kubelik A R, Livak K J, et al. DNA polymorphisms amplified by arbitrary primers are useful genetic markers. Nucleic Acid Res,1990,18:6331-6535.
    192.Wilson Z A, Morroll S M, Dawson J, Swarup R, Tighe P J. The Arabidopsis MALE STERILITY1 (MS1) gene is a transcriptional regulator of male gametogenesis, with homology to the PHD-finger family of transcription factors. Plant J,2001,28:27-39
    193.Witt U, Hansen S, Albaum M. Molecular analysis of the CMS-inducing'Polima' cytoplasm in Brassica napus L. Curr Genet,1991,19:323-327
    194.Wu K S, Tanksley S D. Abundance polymorphism and genetic mapping of microsatellites in rice. Mol Gen Genet,1993,241:225-235.
    195.Xiao L, Yi B, Chen Y F, Huang Z, Chen W, Ma C Z, Tu J X, Fu T D. Molecular markers linked to Bn;rf. a recessive epistatic inhibitor gene of recessive genic male sterility in Brassica napus L.. Euphytica,2008,164:377-384
    196.Xiao S, Xu J, Li Y, Zhang L, Shi S, Shi S, Wu J, Liu K. Generation and mapping of SCAR and CAPS markers linked to the seed coat color gene in Brassica napus using a genome-walking technique. Genome,2007,50(7):611-618
    197.Xie D X, Feys B F, James S, Nieto-Rostro M, Turner J G. Coll:An Arabidopsis gene required for jasmonate-regulated defense and fertility. Science,1998,280:1091-1094
    198.Xie Y Z, Hong D F, Xu Z H, Liu P W, Yang G S. Identification of AFLP markers linked to the epistatic suppressor gene of a recessive genic mal esterility in rapeseed and conversion to SCAR marker. Plant Breed,2008,127:1454-149
    199.Xu F S, Wang Y H, Meng J L. Mapping boron efficiency gene(s) in Brassica napus using RFLP and AFLP markers. Plant Breeding,2001,120:319-324
    200. Yang G S, Duan Z H, Fu T D, Wu C S. A promising alternative way of utilizing pol CMS for hybrid breeding in Brassica napus L. Proc 10th Int Rapeseed Cong (Canberra, Australia),1999,73
    201.Yang M, Hu Y, Lodhi M, McCombie W R, Ma H. The Arabidopsis SKP1-LIKE1 gene is essential for male meiosis and may control homologue separation. Proc Natl Acad Sci USA,1999,96:11416-11421
    202.Yang T J, Kim J S, Kwon S J, Lim K B, Choi B S, Kim J A, Jin M, Park J Y, LimMH, Kim H I, Lim Y P, Kang J J, Hong J H, Kim C B, Bhak J, Bancroft I, Park B S. Sequence-level analysis of the diploidization process in the triplicated FLOWERING LOCUS C region of Brassica rapa. Plant Cell,2006,18:1339-1347
    203. Yang X H, Makaroff C A, Ma H. The Arabidopsis MALE MEIOCYTE DEATH1 gene encodes a PHD-finger protein that is required for male meiosis. Plant Cell,2003,15: 1281-1295
    204. Yi B, Chen Y, Lei S, Tu J, Fu T. Fine mapping of the recessive genic male-sterile gene (Bnmsl) in Brassica napus L. TheorAppl Genet,2006,113(4):643-650
    205.Yu F, Lydiate D J, Rimmer S R. Identification of two novel genes for blackleg resistance in Brassica napus. Theor Appl Genet,2005,110:969-979
    206.Zhao D Z, Wang G F, Speal B, Ma H. The EXCESS MICROSPROCYTES1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther. Genes & Development,2002, 16:2021-2031
    207.Zhao J, Becker H C, Zhang D, Yang Y, Ecke W. Conditional QTL mapping of oil content in rapeseed with respect to protein content and traits related to plant development and grain yield. Theor Appl Genet,2006,113:33-38
    208.Zhao J, Becker H C, Zhang D, Zhang D,Ecke W. Oil content in a European x Chinese rapeseed population QTL with additive and epistatic effects and their genotype-environment interactions. Crop Sci,2005a,45:51-59
    209.Zhao J, Meng J. Detection of loci controlling seed glucosinolate content and their association with Sclerotinia resistance in Brassica napus. Plant Breeding,2003a,122: 19-23
    210.Zhao J, Meng J. Genetic analysis of loci associated with partial resistance to Sclerotinia sclerotiorum in rapeseed (Brassica napus L.). Theor Appl Genet,2003b, 106:759-764
    211.Zhao J, Udall J A, Quijada P A, Grau C R, Meng J, Osborn T C. Quantitative trait loci for resistance to Sclerotinia sclerotiorum and its association with a homeologous non-reciprocal transposition in Brassica napus L. Theor Appl Genet,2006,112: 509-516
    212.Zheng Z, Xia Q, Dauk M, Shen W, Selvaraj G, Zou J. Arabidopsis AtGPATl, a member of the membrane-bound glycerol-3-phosphate acyltransferase gene family, is essential for tapetum differentiation and male fertility. Plant Cell,2003,15: 1872-1887