三维模型检索及相关方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以三维模型为处理对象的数字几何处理技术正在快速发展,这使得三维模型检索成为研究的热点。特征提取是三维模型检索的关键技术,特征的优劣直接决定检索的效果。同时,输入样本的多元化极大地方便了用户。
     本文以国家自然科学基金项目“融合三维统计形变结构的光学分子断层成像稀疏重建方法(编号:61372046)”为背景,在深入研究分析三维模型特征提取方法研究现状以及现有三维模型检索平台的基础上,综合运用微分几何、小波分析和数字图形图像处理等方法,研究以三维模型和二维图像为输入样本的三维模型检索问题。从多个角度提取出三维模型特征,如局部细节特征、整体距离特征、轮廓重心整体约束特征等,将多特征融合并应用于三维模型检索。同时,研究了图像变形方法,以提高基于二维图像的三维模型检索效率。
     本文的主要工作如下:
     (1)提出对局部特征的球函数进行调和分析的三维模型检索方法。三维模型面片顶点的平均曲率是函数的二次微分,表达了三维模型的细节信息。利用三维模型表面特征点的空间位置(θ,φ)与平均曲率(H)构造函数关系(θ,φ,H),通过对此函数进行球面调和分析得到模型的一组旋转、平移、缩放不变的新的局部特征,实现三维模型检索。
     (2)提出对全局特征和局部特征进行特征融合的三维模型检索方法。利用整体特征,即模型表面特征点到其重心的距离对新的局部特征进行加权,得到一组新的特征向量,用于三维模型检索。新特征包含了三维模型局部与整体两方面的信息。使用新特征对三维模型库进行检索,实验结果表明新特征在查全率与查准率方面均优于单独使用整体或局部特征。
     (3)提出二维图像轮廓重心整体约束特征描述子及其提取方法。针对以二维图像或手绘图为输入样本,采用改进场力优化的GVF-Snake模型与射线法联合提取出二维图像中的物体轮廓,提高了物体轮廓的提取准确度;为使三维模型特征库中三维模型的二维轮廓包含更丰富的信息,采用深度缓存投影的方法对三维模型进行二维图像轮廓提取;提出使用轮廓重心距离对轮廓线树形描述子进行加权,使轮廓线的相对位置得以限制,再融合轮廓线显著度,用以提高轮廓的辨识度,即可得轮廓重心整体约束特征描述子;最后,将得到的二维图像轮廓重心整体约束特征描述子和二维轮廓的Fourier特征描述子相融合进行三维模型检索。实验结果表明,融合空域和频域特征的二维轮廓描述子较之Fourier特征描述子有更高的查全率与查准率。
     (4)提出基于点的小波滤波移动最小二乘(Moving Least Squares, MLS)图像变形方法。针对基于二维图像轮廓的三维模型检索,使检索者已有的二维图像或手绘图通过变形更接近于理想三维模型的二维图像,以提高三维模型检索效率。改变以往直接对图像进行变形的做法,首先对图像进行小波滤波,分成高频子图像和低频子图像,二者分别为原图像的细节信息与轮廓信息。轮廓的改变直接影响到基于二维轮廓特征的提取,故只对低频子图像进行MLS变形,高频子图像不作处理,这样则很好地保持了原图像的细节信息。再把变形后的轮廓信息与细节信息相加,得到最终的变形图像。实验表明这种方法操作简单,便于检索者表达出理想图像,使图像产生平滑和具有真实感的变形效果。
     (5)提出基于控制曲线的小波滤波移动最小二乘图像变形方法。由于控制曲线比控制点有更好的控制能力和使图像变形更加平滑的能力,从而对基于控制点的图像变形进行了改进。小波滤波后,根据原图像的轮廓信息或在需要变形的地方设置关键点,使其生成控制曲线,把控制曲线移动到目标位置;然后,利用MLS方法实现图像变形。最后,再把变形后的轮廓信息与细节信息相加,生成最终的变形图像。所给方法较好地描述了轮廓信息,使变形成功率得到了提高。因为滤除了大量不需要变形的点,所以变形速度相应也得到了很大的提高。此方法也可以应用于一般领域的图像变形。
Digital geometry processing which takes3D model as the process object is rapidly developing. This phenomenon has made3D model retrieval become a research focus. What's more, feature extraction is a key technology in the process of the3D model retrieval and the retrieval result is directly determined by the quality of the features. Meanwhile, the diversity of input samples has brought great convenience to users.
     Under the support of National Natural Science Foundation Project "Sparse reconstruction method for optical molecular tomography combing a three-dimension statistical deformable model"(Granted No.61372046), based on the research status of the development on the extraction of3D model feature as well as existing3D model retrieval platforms, by synthetically utilizing differential geometry, wavelet analysis and digital image processing method and so on, this thesis researches on3D models retrieval which uses3D models and two-dimensional images as input samples.3D model features are extracted in many ways, such as local detail features, entire distance features and entire constraint feature of contour barycenter and so on. The result of the multi-feature fusion is applied to the3D model retrieval. Meanwhile, the image deformation method has been researched to improve the efficiency of the3D model retrieval based on two-dimensional images. The main work completed in the thesis is listed as follows:
     (1) A3D model retrieval method based on harmonic analysis of spherical function with local features is proposed. The mean curvature of3D model facet vertex is quadratic differential of function, which expresses3D model's detail information. The thesis structures a function which uses the spatial position and the mean curvature of the3D model surface feature point. The new local features of the model with the characteristic of no changing in rotation, translation and zoom is obtained by spherical harmonic analysis of the function.
     (2) A3D model retrieval method based on the fusion of local and entire features is proposed. The entire feature which is the distance from the surface points to the model barycenter is used to weight new local feature and a group of feature vectors is gained. The new features contain both local and entire information of the3D model. The new feature is used to retrieve models in the3D model database and the experimental results show that the use of new feature the recall ratio and precision ratio are higher than the single use of entire or local feature.
     (3) The entire restraint feature extraction method of the two-dimensional image contour barycenter is proposed. Aiming at input samples of the two-dimensional image or hand-drawing image, the object contour in the two-dimensional image is extracted by using combination of the improved field force optimize GVF-Snake model and ray method which improves the accuracy of object contour extraction; In order to make the3D model's two-dimensional contour in3D model feature database contain extensive information, the depth buffer projection method is adopted to extract the two-dimensional image contour of3D model; the contour barycenter distance is used to weight the contour tree descriptor, so that the relative position of the contour can be restricted. Moreover, fused with contour significant degree to improve the recognition of the contour, then the contour barycenter constraint feature descriptor is obtained. Finally, the overall constraint feature descriptor of two-dimensional image contours barycenter and feature descriptor Fourier of the two-dimensional contours to retrieve3D models is fused. The experimental results show that using the integration of spatial and frequency domain characteristics of the two-dimensional contour descriptor have higher recall ratio and precision ratio than using Fourier feature descriptor.
     (4) An image deformation method based on wavelet filter using moving least squares (Moving Least Squares, MLS) is proposed. According to3D model retrieval based on two-dimensional image contour, the existing two-dimensional image or hand-drawing image of users can be closer to the two-dimensional images of ideal3D model by deformation. By improving the old ways which deform the image directly, this method can filter the original image into a high and a low frequency sub-image with wavelet which can better describe the detail and contour information respectively. As contour changes affect the extraction based on two-dimensional contour feature directly, so the low frequency image is deformed by MLS and the high-frequency sub-image isn't processed which can keep the detail information effectively. The final deformation image will appear by adding the deformed contour information to the details. The experimental results show that this method can be operated easily and it is easy for user to express ideal image, therefore the deformation results are satisfactory and realistic.
     (5) An image deformation method based on wavelet filter using control curves and moving least squares is proposed. As the control curve has better control ability as well as better capacity in smoothing image deformation than control point, so the image deformation based on control points is improved. After wavelet filtering, according to contour information of original image or setting the key points in the needed deformation place, control curves can be generated and moved to target position to realize the deforming of image by using moving least squares. At last, the final deformation image can be obtained by adding the detail information to the contour information after deformation. This method can improve the success rate of the deformation by well describing the contour information. Because of having filtered out a great quantity of unnecessary deformation points, this method not only can improve the deformation peed greatly, but also can be applied to image deformation in general field.
引文
本章的相关工作己发表于2013年《Journal of Computational Information Systems》(EI期刊)。
    本章的相关工作已发表于2013年《Journal of Information and Computational Science》(EI期刊)
    本章的相关工作已发表于2013年《小型微型计算机系统》和2014年《Journal of Telecommunication, Computing, Electronics and Control》(EI期刊)
    [1]Jeannin S., Cieplinski L., Ohm J.R., et al. Mpeg-7 visual part of experimentation model version 9.0[J]. ISO/IEC JTC1/SC29/WG11 N,2001,3914.
    [2]Chew B.S., Chau L.P., He Y., et al. Spectral geometry image:image based 3D models for digital broadcasting applications [J]. Broadcasting, IEEE Transactions on,2011, 57(3):636-645.
    [3]Vyshali S., Subramanyam M.V., Rajan K.S. Topology coding in spectral domain for effective medical image retrieval[J]. International Journal of Engineering Science & Technology,2011,3(12).
    [4]Ding K., Liu Y. A probabilistic 3D model retrieval system using sphere image[M]. Computer Vision-ACCV 2012. Springer Berlin Heidelberg,2013:536-547.
    [5]Trapp M., Schulze F., Buhler K., et al.3D object retrieval in an atlas of neuronal structures[J]. The Visual Computer,2013,29(12):1363-1373.
    [6]Liu M., Vemuri B.C., Amari S.I., et al. Shape retrieval using hierarchical total bregman soft clustering [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2012,34(12):2407-2419.
    [7]Tangelder J.W.H., Veltkamp R.C. A survey of content based 3D shape retrieval methods [J]. Multimedia tools and applications,2008,39(3):441-471.
    [8]冷彪.三维模型检索的特征描述和相关性反馈算法的研究[D].清华大学,2009.
    [9]Chen Q., Fang B., Yu Y.M., et al.3D CAD model retrieval based on the combination of features [J]. Multimedia Tools and Applications,2014:1-19.
    [10]Liu Z.B., Bu S.H., Zhou K., et al. A survey on partial retrieval of 3D shapes[J]. Journal of Computer Science and Technology,2013,28(5):836-851.
    [11]Markonis D., Dormer R., Holzer M., et al. A Visual Information Retrieval System for Radiology Reports and the Medical Literature[C]. MultiMedia Modeling. Springer International Publishing,2014:390-393.
    [12]http://www.rcsb.org/pdb/[DB/OL].
    [13]Berman H.M., Westbrook J., Feng Z., et al. The protein data bank[J]. Nucleic acids research,2000,28(1):235-242.
    [14]http://www.designrepository.org/[DB/OL].
    [15]Regli W.C., Cicirello V. A. Managing digital libraries for computer-aided design[J]. Computer-Aided Design,2000,32(2):119-132.
    [16]http://purdue.edu/shapelab[DB/OL].
    [17]Wellisch H. From information science to informatics:a terminological investigation[J]. Journal of Librarianship and Information Science,1972,4(3):157-187.
    [18]Funkhouser T., Min P., Kazhdan M., et al. A search engine for 3D models[J]. ACM Transactions on Graphics (TOG),2003,22(1):83-105.
    [19]Min P., Halderman J.A., Kazhdan M., et al. Early experiences with a 3D model search engine[C]. Proceedings of the eighth international conference on 3D Web technology. ACM,2003:7-18.
    [20]Zhang C., Chen T. An active learning framework for content-based information retrieval[J]. Multimedia, IEEE Transactions on,2002,4(2):260-268.
    [21]崔晨旸,石教英.三维模型检索中的特征提取技术综述[J].计算机辅助设计与图形学学报,2004,16(7):882-889.
    [22]杨育彬,林珲,朱庆.基于内容的三维模型检索综述[J].计算机学报,2004,27(10):1297-1310.
    [23]徐士彪,车武军,张晓鹏.基于形状特征的三维模型检索技术综述[J].中国体视学与图像分析,2010,4:439-450.
    [24]Lian Z., Godil A., Bustos B., et al. A comparison of methods for non-rigid 3D shape retrieval[J]. Pattern Recognition,2013,46(1):449-461.
    [25]Vranic D.V., Saupe D.3D model retrieval[C]. Proc. Spring Conference on Computer Graphics and its Applications (SCCG2000),2000:89-93.
    [26]王慧玲.基于小波变换的三维模型特征提取技术的研究与实现[D].长春:东北师范大学,2011.
    [27]Suzuki M.T., Kato T., Otsu N. A similarity retrieval of 3D polygonal models using rotation invariant shape descriptors[C]. IEEE International Conference on Systems Man and Cybernetics,2000,4:2946-2952.
    [28]姜阳,吕学强,李琳,等.基于扩展射线法的三维模型检索[J].计算机应用,2013,33(2):463-467
    [29]Liu K., Skibbe H., Schmidt T., et al. Rotation-invariant HOG descriptors using fourier analysis in polar and spherical coordinates[J]. International Journal of Computer Vision,2014,106(3):342-364.
    [30]Funkhouser T., Min P., Kazhdan M., et al. A search engine for 3D models[J]. ACM Transactions on Graphics (TOG),2003,22(1):83-105.
    [31]Kazhdan M., Funkhouser T., Rusinkiewicz S. Rotation invariant spherical harmonic representation of 3D shape descriptors[C]. Proceedings of the 2003 Eurographics/ACM SIGGRAPH symposium on Geometry processing. Eurographics Association,2003:156-164.
    [32]Saavedra J.M., Bustos B., Scherer M., et al. STELA:sketch-based 3D model retrieval using a structure-based local approach[C]. Proceedings of the 1st ACM International Conference on Multimedia Retrieval. ACM,2011:26.
    [33]Hilaga M., Shinagawa Y., Kohmura T., et al. Topology matching for fully automatic similarity estimation of 3D shapes[C]. Proceedings of the 28th annual conference on Computer graphics and interactive techniques. ACM,2001:203-212.
    [34]Bai X., Latecki L.J. Path similarity skeleton graph matching[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2008,30(7):1282-1292.
    [35]Bardinet E., Vidal S.F., Arroyo S., et al. Structural object matching[C]. Proceedings of the 2nd International Symposium on Advanced Concepts for Intelligent Vision Systems (ACIVS 2000),2000,2:73-77.
    [36]Mademlis A., Daras P., Axenopoulos A., et al. Combining topological and geometrical features for global and partial 3-D shape retrieval [J]. Multimedia, IEEE Transactions on,2008,10(5):819-831.
    [37]Chen D.Y., Tian X.P., Shen Y.T., et al. On visual similarity based 3D model retrieval[C]. Computer graphics forum. Blackwell Publishing, Inc,2003,22(3):223-232.
    [38]Makadia A., Brewington B., Limber M., et al. Methods and systems for 3D shape retrieval:U.S. Patent No.8606774[P],2013-12-10.
    [39]Heczko M., Keim D., Saupe D., et al. Methods for similarity search on 3D databases[J]. Datenbank-Spektrum,2002,2(2):54-63.
    [40]Liu Z., Li L. A Method of Automatic Semantic Annotation of 3D Model Based on Content Feature[C]. Information Technology and Applications (ITA),2013 International Conference on. IEEE,2013:324-327.
    [41]Shih J.L., Lee C.H., Wang J.T. A new 3D model retrieval approach based on the elevation descriptor[J]. Pattern Recognition,2007,40(1):283-295.
    [42]Shih J.L. Combination of Interior and Exterior Shape Descriptors for 3D Model[J]. Journal of Information Technology and Applications,2012,6(1):31.
    [43]Cyr C.M., Kimia B.B.3D Object Recognition Using Shape Similiarity-Based Aspect Graph[C]. Computer Vision, IEEE International Conference on. IEEE Computer Society,2001,1:254-261.
    [44]Ulrich M., Wiedemann C, Steger C. Combining scale-space and similarity-based aspect graphs for fast 3D object recognition[J]. IEEE transactions on pattern analysis and machine intelligence,2012,34(10):1902-1914.
    [45]Vranic D.V. DESIRE:a composite 3D-shape descriptor[C].2012 IEEE International Conference on Multimedia and Expo. IEEE,2005:4.
    [46]Liu Z., Li L. A Method of Automatic Semantic Annotation of 3D Model Based on Content Feature[C]. Information Technology and Applications (ITA),2013 International Conference on. IEEE,2013:324-327.
    [47]Shih J.L., Chen H.Y. A 3D model retrieval approach using the interior and exterior 3D shape information[J]. Multimedia Tools and Applications,2009,43(1):45-62.
    [48]Smith J.R. Integrated spatial and feature image systems:Retrieval, analysis and compression[D]. Columbia University,1997.
    [49]Niblack C.W., Barber R., Equitz W., et al. QBIC project:querying images by content, using color, texture, and shape[C]. IS&T/SPIE's Symposium on Electronic Imaging: Science and Technology. International Society for Optics and Photonics,1993:173-187.
    [50]Swain M.J., Ballard D. H. Color indexing[J]. International journal of computer vision, 1991,7(1):11-32.
    [51]Rubner Y., Tomasi C., Guibas L.J. A metric for distributions with applications to image databases[C]. Computer Vision,1998. Sixth International Conference on. IEEE, 1998:59-66.
    [52]Rubner Y., Tomasi C, Guibas L.J. The earth mover's distance as a metric for image retrieval[J]. International Journal of Computer Vision,2000,40(2):99-121.
    [53]Strieker M.A., Orengo M. Similarity of color images[C]. IS&T/SPIE's Symposium on Electronic Imaging:Science & Technology. International Society for Optics and Photonics,1995:381-392.
    [54]Cohen S., Guibas L. The earth mover's distance under transformation sets[C]. Computer Vision,1999. The Proceedings of the Seventh IEEE International Conference on. IEEE,1999,2:1076-1083.
    [55]Beecks C., Kirchhoff S., Seidl T. On stability of signature-based similarity measures for content-based image retrieval[J]. Multimedia Tools and Applications,2013:1-14.
    [56]Leifman G., Katz S., Tal A., et al. Signatures of 3D Models for Retrieval[J].2003:1-5.
    [57]Shilane P., Funkhouser T. Distinctive regions of 3D surfaces[J]. ACM Transactions on Graphics (TOG),2007,26(2):Article 7.
    [58]Jarvelin K., Kekalainen J. IR evaluation methods for retrieving highly relevant documents[C]. Proceedings of the 23rd annual international ACM SIGIR conference on Research and development in information retrieval. ACM,2000:41-48.
    [59]Weinland D., Ronfard R., Boyer E. A survey of vision-based methods for action representation, segmentation and recognition[J]. Computer Vision and Image Understanding,2011,115(2):224-241.
    [60]Erturk S., Dennis T.J.3D model representation using spherical harmonics[J]. Electronics Letters,1997,33(11):951-952.
    [61]Osada R., Funkhouser T., Chazell B. Shape distributions [J]. ACM Transactions on Graphics,2002,21(4):807-823.
    [62]Zhang, Fiume. Shape Matching of 3D Contours Using Normalized Fourier Descriptors[C]. International Conference on Shape Modeling and Applications,2002: 261-271.
    [63]Makadia A., Daniilidis K. Spherical correlation of visual representations for 3D model retrieval[J]. International Journal of Computer Vision,2010,89(2-3):193-210.
    [64]陈维桓.微分几何[M].北京大学出版社,2006.
    [65]Hill F., Kelley S. Computer Graphics Using OpenGL,3/E[M]. Pearson,2007.
    [66]Osada R., Funkhouser T., Chazelle B., et al. Matching 3D models with shape distributions[C]. Shape Modeling and Applications, SMI 2001 International Conference on. IEEE,2001:154-166.
    [67]方惠兰,王国瑾.三角网格曲面上离散曲率估算方法的比较与分析[J].计算机辅助设计与图形学学报,2006,17(11):2500-2507.
    [68]方惠兰.网格曲面上离散曲率计算方法的比较与研究[D].浙江大学,2005.
    [69]Moreton H. P., Sequin C. H. Functional optimization for fair surface design[M]. ACM, 1992:1167-1176.
    [70]Mayer U.F. Numerical solutions for the surface diffusion flow in three space dimensions [J]. Computational and Applied Mathematics,2001,20(3):361-379.
    [71]Taubin G. A signal processing approach to fair surface design[C]. Proceedings of the 22nd annual conference on Computer graphics and interactive techniques. ACM,1995: 351-358.
    [72]罗良峰.离散三角网格上的法向量和曲率估计[D].大连理工大学,2007.
    [73]阎少宏,孙丽萍,纪楠,等.离散曲面上的单位法向量与平均曲率的计算[J].河 北理工大学学报:自然科学版,2008,30(1):104-106.
    [74]齐宝明.三角网格离散曲率估计和Taubin方法改进[D].大连理工大学,2008.
    [75]Desbrun M., Meyer M., Schroder P., et al. Implicit fairing of irregular meshes using diffusion and curvature flow[C]. Proceedings of the 26th annual conference on Computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co.,1999:317-324.
    [76]Dyn N., Hormann K., Kim S.J., et al. Optimizing 3D triangulations using discrete curvature analysis[J]. Mathematical methods for curves and surfaces,2001:135-146.
    [77]Meyer M., Desbrun M., Schroder P., et al. Discrete differential-geometry operators for triangulated 2-manifolds[M]. Visualization and mathematics Ⅲ. Springer Berlin Heidelberg,2003:35-57.
    [78]Moller T., Trumbore B. Fast, minimum storage ray-triangle intersection[J]. Journal of graphics tools,1997,2(1):21-28.
    [79]Liang J., Gong J., Li W., et al. A visualization-oriented 3D method for efficient computation of urban solar radiation based on 3D-2D surface mapping[J]. International Journal of Geographical Information Science,2014:1-19.
    [80]Vranic D.V., Saupe D.3D shape descriptor based on 3D Fourier transform[M]. Bibliothek der Universitat Konstanz,2001.
    [81]Elhachloufi M., El. Oirrak A., Aboutajdine D., et al. Affine invariant descriptors of 3D object using multiple regression model[J]. International Journal of Computer Science & Information Technology,2011,3(1):1-10.
    [82]Liem M.C., Gavrila D.M. Person appearance modeling and orientation estimation using Spherical Harmonics[C].2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG). IEEE,2013:1-6.
    [83]Vranic D.V.3D model retrieval [D]. University of Leipzig, Germany, PhD thesis,2004.
    [84]Bucking U. Minimal surfaces from circle patterns:Boundary value problems, examples, Discrete Differential Geometry (A.I. Bobenko, P. Schroeder, J.M. Sullivan, G.M. Ziegler, eds.)[C]. Oberwolfach Seminars, vol.38, Birkhauser,2008:37-56.
    [85]Stephenson K. Introduction to circle packing:The theory of discrete analytic functions[M]. Cambridge University Press,2005.
    [86]Cieslinski J., Doliwa A., Santini P.M. The integrable discrete analogues of orthogonal coordinate systems are multi-dimensional circular lattices [J]. Physics Letters A,1997, 235(5):480-488.
    [87]Grinspun E. A discrete model of thin shells, Discrete Differential Geometry (A.I. Bobenko, P. Schroeder, J.M. Sullivan, G.M. Ziegler, eds.)[C]. Oberwolfach Seminars, vol.38, Birkhauser,2008:325-337.
    [88]Hoffman D., Karcher H. Complete embedded minimal surfaces of finite total curvature[J]. Geometry V:Minimal surfaces (R. Osserman, ed.), Encyclopaedia of Mathematical Sciences, vol.90, Springer-Verlag, Berlin,1997:5-93.
    [89]Liu Yujie, Li Zongmin, Li Hua. Spherical Harmonic Representation of Extended Distance Feature for 3D Model Retrieval. Journal of Computer-Aided Design & Computer Graphics,2006,11(18):1671-1675.
    [90]De Reyna R. How to draw what you see[M]. Random House Digital, Inc.,1996.
    [91]Cole F., Golovinskiy A., Limpaecher A., et al. Where do people draw lines?[C]. ACM Transactions on Graphics (TOG). ACM,2008,27(3):88.
    [92]Song J.J., Golshani F. Shape-based 3D model retrieval[C]. Tools with Artificial Intelligence,2003. Proceedings.15th IEEE International Conference on. IEEE,2003: 636-640.
    [93]Funkhouser T., Min P., Kazhdan M., et al. A search engine for 3D models[J]. ACM Transactions on Graphics (TOG),2003,22(1):83-105.
    [94]http://shape.cs.princeton.edu/benchmark/[DB/OL].
    [95]http://3d.csie.ntu.edu.tw/[DB/OL].
    [96]Min P. A 3D model search engine[D]. Princeton University,2004.
    [97]邹柏贤,林京壤.图像轮廓提取方法研究[J].计算机工程与应用,2009,44(25):161-165.
    [98]章毓晋.图像处理与分析[M].北京:清华大学出版社,1999:192-195.
    [99]Perez P., Blake A., Gangnet M. Jetstream:Probabilistic contour extraction with particles[C]. Computer Vision,2001. ICCV 2001. Proceedings. Eighth IEEE International Conference on. IEEE,2001,2:524-531.
    [100]樊鑫,梁德群.引入形状统计先验的轮廓提取的概率方法[J].计算机辅助设计与图形学学报,2005,17(4):829-833.
    [101]Yang J., Li X.. Directional morphology and its application in boundary detection[J]. 1995.
    [102]姚庆梅,牛君.一种基于方向形态学的图像轮廓提取方法[J].山东大学学报:工学版,2005,35(4):47-50.
    [103]王程,王润生.SAR图像直线提取[J].电子学报,2003,31(6):816-820.
    [104]李立春,冯卫东,于起峰.根据边缘梯度方向的十字丝目标快速自动检测[J].光学技术,2004,30(3):351-353.
    [105]张小虎,李由,李立春,等.一种基于梯度方向直方图的直线轮廓提取新方法[J].光学技术,2006,32(6):824-826.
    [106]Osher S., Sethian J.A. Fronts propagating with curvature-dependent speed:algorithms based on Hamilton-Jacobi formulations[J]. Journal of computational physics,1988, 79(1):12-49.
    [107]Kass M., Witkin A., Terzopoulos D. Snakes:Active contour models[J]. International journal of computer vision,1988,1(4):321-331.
    [108]Xu C., Prince J.L. Snakes, shapes, and gradient vector flow[J]. Image Processing, IEEE Transactions on,1998,7(3):359-369.
    [109]Cao Zhijiang, Research on 3-D body measurement for individual made to measure[D]. Shanghai:Donghua University,2008.
    [110]Song Liang. Research on the information extraction and 3D reconstruction of skull and face based on CT data[D]. Xi'an:Northwest University,2009.
    [111]Wang Fei. Contour extraction and contour-based craniofacial model reconstruction algorithm research[D]. Xi'an:Northwest University,2010.
    [112]Zhang L., da Fonseca M., Ferreira A., et al. Survey on 3D shape descriptors[R]. Technical Report, DecorAR (FCT POSC/EIA/59938/2004),2007.
    [113]Daras P., Axenopoulos A. A 3D shape retrieval framework supporting multimodal queries[J]. International Journal of Computer Vision,2010,89(2-3):229-247.
    [114]Min P., Chen J, Funkhouser T. A 2D sketch interface for a 3D model search engine[C]. ACM SIGGRAPH 2002 conference abstracts and applications. ACM,2002:138-138.
    [115]Lian Z., Godil A., Sun X. Visual similarity based 3D shape retrieval using bag-of-features[C]. Shape Modeling International Conference (SMI),2010. IEEE,2010:25-36.
    [116]Papadakis P., Pratikakis I., Perantonis S., et al. Efficient 3D shape matching and retrieval using a concrete radialized spherical projection representation[J]. Pattern Recognition,2007,40(9):2437-2452.
    [117]Chaouch M., Verroust-Blondet A. Enhanced 2D/3D approaches based on relevance index for 3D-shape retrieval[C]. Shape Modeling and Applications,2006. SMI 2006. IEEE International Conference on. IEEE,2006:36-36.
    [118]Ohbuchi R., Nakazawa M., Takei T. Retrieving 3D shapes based on their appearance [C]. Proceedings of the 5th ACM SIGMM international workshop on Multimedia information retrieval. ACM,2003:39-45.
    [119]Hetzel G., Leibe B., Levi P., et al.3D object recognition from range images using local feature histograms[C]. Computer Vision and Pattern Recognition,2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on. IEEE,2001,2: Ⅱ-394-Ⅱ-399 vol.2.
    [120]王小凤,张飞,耿国华,等.一个基于深度图像的三维模型检索算法[J].计算机工程与应用,2012,48(7):197-200.
    [121]Cooley J.W., Tukey J.W. An algorithm for the machine calculation of complex Fourier series[J]. Mathematics of computation,1965,19(90):297-301.
    [122]Akbar S., Kung J., Wagner R., et al. Multi-Feature Integration with Relevance Feedback on 3D Model Similarity Retrieval[J]. J. Mobile Multimedia,2007,3(3): 235-254.
    [123]Lu M., Lee H.S., Hadley D., et al. Supervised categorical principal component analysis for genome-wide association analyses[J]. BMC Genomics,2014,15(1):1-10.
    [124]张必欢.基于手绘草图的三维模型检索系统[D].南京航空航天大学,2009.
    [125]唐大伟,鲁东明,杨冰,等.轮廓整体结构约束的壁画图像相似性度量[J].中国图象图形学报,2013,18(8):968-975.
    [126]Donoser M., Riemenschneider H., Bischof H. Efficient partial shape matching of outer contours[M]. Computer Vision-ACCV 2009. Springer Berlin Heidelberg,2010:281-292.
    [127]Belongie S., Malik J., Puzicha J. Shape matching and object recognition using shape contexts[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2002, 24(4):509-522.
    [128]Felzenszwalb P.F., Schwartz J.D. Hierarchical Matching of Deformable Shapes[C]. 2013 IEEE Conference on Computer Vision and Pattern Recognition. IEEE,2007:1-8.
    [129]Shotton J., Blake A., Cipolla R. Contour-based learning for object detection[C]. Computer Vision,2005. ICCV 2005. Tenth IEEE International Conference on. IEEE, 2005,1:503-510.
    [130]Schmid C. Groups of Adjacent Contour Segments for Object Detection[J]. IEEE Traansctions on Pattern Anallysis and Machinen intelligence,2008,30(1):36-51.
    [131]Ravishankar S., Jain A., Mittal A. Multi-stage contour based detection of deformable objects[M]. Computer Vision-ECCV 2008. Springer Berlin Heidelberg,2008:483- 496.
    [132]姜阳,吕学强,付成睿,等.基于边界点描述符的三维模型检索研究[J].微电子学与计算机,2013,30(8):71-74.
    [133]Wang S., Kubota T., Siskind J.M., et al. Salient closed boundary extraction with ratio contour[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2005, 27(4):546-561.
    [134]Bishop C.M., Nasrabadi N.M. Pattern recognition and machine learning[M]. New York:springer,2006:326-345.
    [135]Cai Fei, Cai Xun, Shi Tongguang, et al.An image retrieval method based on shape feature[J]. Computer Applications and Software,2005,22(12):98-99.
    [136]曾接贤,毕东格.一种基于轮廓特征和拓扑关系的图像检索方法[J].计算机工程与应用,2008,44(5):90-92.
    [137]戴磊.轮廓检测的图像检索方法[J].计算机仿真,2009(10):270-273.
    [138]董卫军,周明全,耿国华.基于形状-空间关系的图像检索技术[J].计算机工程,2006,31(20):170-172.
    [139]Iyer N., Kalyanaraman Y., Lou K., et al. A Reconfigurable 3D Engineering Shape Search System:Part Ⅰ—Shape Representation[C]. ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers,2003:89-98.
    [140]Atmosukarto I., Leow W.K., Huang Z. Feature combination and relevance feedback for 3D model retrieval[C]. Multimedia Modelling Conference,2005. MMM 2005. Proceedings of the 11th International. IEEE,2005:334-339.
    [141]Bustos B., Keim D., Saupe D., et al. Automatic selection and combination of descriptors for effective 3D similarity search[C]. Multimedia Software Engineering, 2004. Proceedings. IEEE Sixth International Symposium on. IEEE,2004:514-521.
    [142]Bustos B., Keim D.A., Saupe D., et al. Using entropy impurity for improved 3D object similarity search[C].2004 IEEE International Conference on Multimedia and Expo. 2004,2:1303-1306.
    [143]宋骞.一种基于从图片中提取轮廓的三维模型检索方法[D].吉林大学,2008.
    [144]刘曙,罗予频,杨士元.基于多尺度的轮廓匹配方法[J].计算机工程,2008,34(1):201-203.
    [145]卢汉清,彭嘉雄.离散形状的特征区域匹配识别[J].自动化学报,1993,19(1):122-125.
    [146]管伟光,马颂德.具有形变的平面轮廓匹配问题[J].自动化学报,1996,22(6):666-671.
    [147]Xu K., Li H., Zhang H., et al. Style-content separation by anisotropic part scales[C]. ACM Transactions on Graphics (TOG). ACM,2010,29(6):184-192.
    [148]Smythe, D.B. A two-pass mesh warping algorithm for object transformation and image interpolation[R]. Tech. Rep.1030, ILM Computer Graphics Department,1990.
    [149]Bookstein, F.L. Thin-plate splices and the decomposition of deformations[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1989,11(6):567-585.
    [150]姚敏.数字图像处理(第2版)[M].北京:机械工业出版社,2012:6-23.
    [151]胡亮.人脸图像变形动画技术研究[D].中南林业科技大学,2010.
    [152]Wolberg G. Digital image warping[M]. Los Alamitos, CA:IEEE computer society press,1990.
    [153]张静波,张桂林.基于特征网格的面部图象变形算法[J].中国图象图形学报:A辑,2002,7(3):256-260.
    [154]朱桂斌,张邦礼,吴乐华,等.基于Delaunay三角剖分的图象变形技术研究[J].中国图象图形学报:A辑,2004,8(6):641-646.
    [155]Beier T., Neely S. Feature-based image metamorphosis[C]. ACM SIGGRAPH Computer Graphics. ACM,1992,26(2):35-42.
    [156]Arad N., Dyn N., Reisfeld D., et al. Image warping by radial basis functions: Application to facial expressions [J]. CVGIP:Graphical models and image processing, 1994,56(2):161-172.
    [157]Arad N., Reisfeld D. Image warping using few anchor points and radial functions[C]. Computer Graphics Forum. Blackwell Science Ltd,1995,14(1):35-46.
    [158]翁妙凤,吴翰声.人像变换的图象处理方法研究[J].计算机研究与发展,1996,33(9):677-682.
    [159]李旭东,张振跃.非对称径向基函数与稳定边界图像变形算法[J].计算机辅助设计与图形学学报,2004,16(6):747-752.
    [160]Litwinowicz P., Williams L. Animating images with drawings[C]. Proceedings of the 21st annual conference on Computer graphics and interactive techniques. ACM,1994: 409-412.
    [161]Lee S.Y., Chwa K.Y., Hahn J.K., et al. Image morphing using deformation techniques [J]. Journal of Visualization and Computer Animation,1996,7(1):3-23.
    [162]Yuksel K.A., Yucebilgin A., Balcisoy S., et al. Real-time feature-based image morphing for memory-efficient impostor rendering and animation on GPU[J]. The Visual Computer,2013,29(2):131-140.
    [163]Milenkovic V., Sacks E., Trac S. Planar shape manipulation using approximate geometric primitives [J]. International Journal of Computational Geometry & Applications,2013,23(01):1-27.
    [164]唐亮亮.基于正向映射的图像变形算法研究[D].上海交通大学,2010.
    [165]Rosenfeld A., Kak A.C. Digital picture processing[M]. Elsevier,2014.
    [166]Bao P., Xu D. Multiresolution image morphing in wavelet domain[C]. IEEE International Conference on Information Visualization,2000:309-314.
    [167]McMillan J.L. An image-based approach to three-dimensional computer graphics[D]. University of North Carolina,1997.
    [168]Mallat S.G. A theory for multiresolution signal decomposition:the wavelet representation[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 1989,11(7):674-693.
    [169]Mallat S.G. Multiresolution approximations and wavelet orthonormal bases of L2 (R) [J]. Transactions of the American Mathematical Society,1989,315(1):69-87.
    [170]Walnut D.F. An introduction to wavelet analysis[M]. Springer,2002.
    [171]Blinowska K.J., Durka P.J. Introduction to wavelet analysis[J]. British journal of audiology,1997,31(6):449-459.
    [172]Shapiro J.M. Embedded image coding using zerotrees of wavelet coefficients[J]. Signal Processing, IEEE Transactions on,1993,41(12):3445-3462.
    [173]Igarashi T., Moscovich T., Hughes J.F. As-rigid-as-possible shape manipulation[C]. ACM Transactions on Graphics (TOG). ACM,2005,24(3):1134-1141.
    [174]Igarashi T., Igarashi Y. Implementing as-rigid-as-possible shape manipulation and surface flattening[J]. Journal of Graphics, GPU, and Game Tools,2009,14(1):17-30.
    [175]Schaefer S., McPhail T., Warren J. Image deformation using moving least squares[J]. ACM Transactions on Graphics,2006,25(3):533-540.
    [176]Alexa M., Cohen-Or D., Levin D. As-rigid-as-possible shape interpolation[C]. Proceedings of the 27th annual conference on Computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co.,2000:157-164.
    [177]Horn B.K.P. Closed-form solution of absolute orientation using unit quaternions[J]. JOSA A,1987,4(4):629-642.
    [178]ISO/IEC JTC1/SC29/WG11 Document N3908, MPEG4 Video Verification Model version 18.0[S],2001.
    [179]李小红.基于积分投影的人脸图像的特征提取[J].计算机仿真,2005,21(12):189-191.
    [180]Wolberg G. Image morphing:a survey[J]. The visual computer,1998,14(8):360-372.
    [181]华顺刚,李晓晓,李绍帅.利用控制曲线和移动最小二乘法实现图像变形[J].小型微型计算机系统,2010,31(11):2251-2254.
    [182]Hua Shungang, Liu Ting. Study on image deformation based on moving least squares[J]. Journal of Coputer Applications,2009,29(1):71-73.