基于微管蛋白靶标的几种蔬菜主要病原真菌耐药性与抗药性机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多菌灵和乙霉威是生产上防治多种作物病害的重要杀菌剂,作用靶标均为β-微管蛋白。多菌灵是一种广谱杀菌剂,对子囊菌、多数半知菌有活性,但对鞭毛菌和少数半知菌无效,即这些真菌对其具有耐药性。随着多菌灵的广泛使用,多种作物病害的病原菌对其产生抗药性;乙霉威作为负交互抗药性杀菌剂用于多菌灵抗性菌株的治理。本研究一方面以多主棒孢菌(Corynespora cassiicola)等几种多菌灵耐药性真菌为研究对象,对其β-微管蛋白基因进行克隆及氨基酸序列分析,探究其耐药性分子机理;另一方面多主棒孢菌(Corynespora cassiicola)为对象,对其多菌灵和乙霉威的抗药性进行了系统研究,重要研究结果如下:
     1.β-微管蛋白167位氨基酸突变为酪氨酸可能与植物病原真菌对多菌灵的耐药性有关。
     (1)明确了链格孢属3个种、匍柄霉属2个种和两种卵菌对多菌灵具有耐药性。
     通过测定20个属23种蔬菜和花卉病害病原菌对多菌灵敏感性,发现多菌灵浓度为1μg/ml,对灰葡萄孢(Botrytis cinerea)菌丝生长抑制率已达100%;多菌灵浓度为100μg/ml,对瓜链格孢(Alternaria.cucumerina)、茄链格孢(Alternaria.solani)、链格孢(Alternaria. alternata)、茄匍柄霉(Stemphylium solani),菠菜匍柄霉(Stemphylium spinaciae)辣椒疫霉(Phytophthora. capsici)和德巴利腐霉(Pythium. debaryanum)菌丝生长仍无明显抑制效果,表明上述7种真菌为多菌灵耐药性真菌。
     (2)初步明确了β-微管蛋白167位氨基酸突变为酪氨酸是链格孢属3个种、匍柄霉属2个种和两种卵菌对多菌灵具有耐药性的重要原因。
     对链格孢属3个种瓜链格孢、茄链格孢和链格孢,匍柄霉属2个种茄匍柄霉和菠菜匍柄霉,2种卵菌辣椒疫霉和德巴利腐霉β-微管蛋白基因进行了克隆并对其氨基酸序列进行分析,其β-微管蛋白167位氨基酸均为酪氨酸(Tyr),而其他对多菌灵敏感的真菌167位均为苯丙氨酸(Phe)。据此推测植物病原真菌β-微管蛋白167位氨基酸由苯丙氨酸(Phe)突变为酪氨酸是对多菌灵产生抗药性的原因。
     2.明确了我国多主棒孢菌对多菌灵和乙霉威抗性频率、抗性菌株适合度、交互抗药性及其对多菌灵和乙霉威抗药性分子机制。
     (1)我国多主棒孢菌对多菌灵抗性频率极高,而对多菌灵和乙霉威双抗频率较低。对采自我国12个地区,18个寄主的163株多主棒孢菌对多菌灵和乙霉威的敏感性进行分析,145个菌株对多菌灵具有抗药性,抗性频率高达89.0%,18个菌株对多菌灵敏感,占供试菌株的11.0%。24个菌株对多菌灵和乙霉威具有双重抗药性,双抗频率为14.7%。
     (2)多菌灵高抗(MBCHR)和多菌灵乙霉威双抗(MBCHRNPCR)菌株的适合度无明显下降。野生菌株(MBCS)菌落直径为55.17mm和50.83mm,产孢量为1.78×105个/ml和2.50×105个/ml,病指为79.80和83.37,多菌灵高抗(MBCHR)和多菌灵乙霉威双抗(MBCHRNPCR)菌株菌落直径在50.17mm-59.83mm之间,产孢量在1.89个/ml-2.94×105个/ml之间,病指在81.33-89.29之间。三种敏感性类型菌株菌丝生长速率、产孢量和致病力并无明显的差别。
     (3)多菌灵高抗(MBCHR)和多菌灵乙霉威双抗(MBCHRNPCR)菌株与其它5种类型杀菌剂无交互抗药性。烟酰胺类杀菌剂啶酰菌胺对多主棒孢菌两个野生菌(MBCS)的EC50分别为0.49μg/ml和0.651μg/ml,而对于高抗(MBCHR)和双抗(MBCHRNPCR)菌株EC50在0.36μg/ml-0.71μg/ml之间。苯基吡咯类杀菌剂咯菌腈对多主棒孢菌两个野生菌株(MBCS)的EC50分别为0.26μg/ml和0.20μg/ml,而对于高抗(MBCHR)和双抗(MBCHRNPCR)菌株EC50在0.15μg/ml-0.27μg/ml之间。咪唑类杀菌剂咪鲜胺对多主棒孢菌两个野生菌株(MBCS)的EC50分别为0.14μg/ml和0.191μg/ml,而对于高抗(MBCHR)和双抗菌株(MBCHRNPCR) EC50在0.14μg/ml-0.26μg/ml之间。嘧啶胺杀菌剂嘧菌环胺对多主棒孢菌两个野生菌株(MBCS)的EC50分别为0.7μg/ml和0.75μg/ml,而对于高抗(MBCHR)和双抗(MBCR)菌株EC50在0.67-0.83μg/ml之间。二甲酰亚胺类杀菌剂腐霉利对多主棒孢菌两个野生菌株(MBCS)的EC50分别为0.45μg/ml和0.37μg/ml,而对于高抗(MBCHR)和双抗(MBCHRNPCR)菌株EC50在0.37μg/ml-0.50μg/ml之间。
     (4)明确了多主棒孢菌对多菌灵抗药性和多菌灵乙霉威双重抗药性分子机制。通过比较多主棒孢菌敏感、多菌灵高抗(MBCHR)和多菌灵乙霉威双抗(MBCHRNPCR)菌株β-微管蛋白序列,发现198位氨基酸由谷氨酸(Glu)突变为丙氨酸(Ala)是导致其对多菌灵产生高等抗药性的原因。198位氨基酸由谷氨酸突变为赖氨酸(Lys),200位氨基酸由苯丙氨酸(Phe)突变为酪氨酸(Tyr)是其对多菌灵和乙霉威产生双重抗药性的原因。
     本研究首次提出植物病原真菌β-微管蛋白167位氨基酸的种类可能与多菌灵对不同属植物病原真菌敏感性有关,从分子水平解释了多菌灵对不同属植物病原真菌的敏感性,为进一步开发基于p-微管蛋白的新型杀菌剂和筛选模型奠定基础;此外,在我国首次报道了多主棒孢菌多菌灵高抗(MBCHR)和多菌灵乙霉威双抗(MBCHRNPCR)菌株及其抗药性的分子机理,上述结果将为我国多主棒孢菌的化学防治,抗性菌株的分子检测等提供有用的信息。
Carbendazim and diethofencarb that target on fungus β-tubulin, are two important fungicides for controlling various crop diseases. Carbendazim shows a broaden-spectrum active efficiency on inhibiting the mycelia expension of ascomycetes and most of deuteromycetes, but exerts no effect on mastigomycotina and few deuteromycetes that might possess tolerant properties to carbendazim.Diethofencarb has a negative cross-resistant spectrum of carbendazim and usually been used to control carbendazim-resistant isolates. In this dissertation, the carbendazim-tolerant mechanism was explored on several carbendazim-resistant fungi by cloning β-tubulin gene, analyzing and comparing the mutant amino acid sequences. Meanwhile, the resistance of Corynespora cassiicola to carbendazim and diethofencarb was also studied systematically. The research progresses were shown as follows:
     1.The changes of amino acid at the position167of β-tubulin may be responsible for the sensitivity of plant pathogenic fungi from different genus to carbendazim.
     (1)Three Alternaria, two Stemphylium and two-Oomycetes species have been shown carbendazim-tolerant properties.
     The sensitivities of23pathogenic fungi from20genus were determined to carbendazim. The results showed that1μg/ml carbendazim inhibited thoroughly the mycelium growth of Botrytis cinerea, but100μg/ml carbendazim revealed no significant effect on Alternaria cucumerina, Alternaria solani, Alternaria Alternate, Stemphylium solani, Stemphylium spinaciae, Phytophthora capsici and Pythium debaryanum, indicating that these fungi were tolerant to carbendazim.
     (2)Tyrosine at the position167of P-tubulins in three Alternaria, two Stemphylium, two-Oomycetes species play an important role on these fungi's tolerance to carbendazim.
     P-tubulin genes of A. cucumerina, A.solani, A Alternate, S.solani, S.spinaciae, P.capsici, and P.debaryanum were cloned and their amino acid sequences were analysed. The results showed that the amino acid at position167were changed from phenylalanine in carbendazim-sensitive isolate totyrosine in carbendazim-tolerant isolate, indicating that the mutation of the amino acid at positon167of β-tubulins caused the tolerance of plant pathogenic fungi to carbendazim.
     2.The resistance mechanisms of Chinese C.cassiicola to carbendazim and diethofencarb have been clarified explicitly. Meanwhile, the characters of the tolerant strains have been elucidated clearly on bases of the resistance frequency, the fitness and the cross-resistant property.
     (1)Most of163C.cassiicola isolates revealed a strong resistance to carbendazim and a low resistant frequency to diethofencarb, including145isolates that expressed high resistance to carbendazim with MIC value greater than10μg/ml and18isolates that were sensitive to carbendazim. The resistant frequency among the total isolates was89.0%to carbendazim and14.7%to both carbendazim and diethofencarb.
     (2)The fitness of MBCHR and MBCHRNPCR isolates had been reduced insignificantly. Under normal cultured condition, MBCS isolates developed55.17mm-50.83mm of round colony, produced1.78×105/ml-2.50×105/ml of spores, and displayed79.50-82.80of disease index. However, MBCHR and MBCHRNPCR isolates showed50.17mm-59.83mm of round colony,1.89×105/ml and2.94×105/ml of spores,81.40and85.40of disease index, respectively.
     (3)MBCHR and MBCHRNPCR isolates exibited no cross resistance to boscalid, fludioxonil, prochloraz, cyprodinil and procymidone. For two MBCS isolates, the EC50values of the above five fungicides were0.49μg/ml and0.65μg/ml,0.26and0.20μg/ml,0.14and0.19μg/ml,0.71and0.75μg/ml, and0.45μg/ml and0.37μg/ml, respectively. For MBCHR and MBCHRNPCR isolates,the EC50values of the five fungicides were about0.36μg/ml-0.71μg/ml,0.15μg/ml-0.27μg/ml,0.14μg/ml-0.26μg/ml,0.67μg/ml-0.83μg/ml and0.37μg/ml-0.50μg/ml, respectively.
     (4)The resistance mechanism of C.cassiicola to carbendazim and diethofencarb were taken into in-depth investigated. Sequence comparison revealed that a point mutation at the position198had replaced MBCS alanine with MBCHR glutamic, and the amino acids at the position198and200have been changed from MBCS glutamic and phenylalanine to MBCHRNPCR lysine and tyrosine.
     In this dissertation, the amino acid at the position167of β-tubulinwas found to be relative to the sensitivity of plant pathogenic fungi to carbendazim at the first time.The MBCHR and MBCHRNPCR isolates were also first reported in China. The resistance mechanism of C.cassiicola to carbendazim and diethofencarb had been studied systematically. The results laid a foundation todevelop new fungicide and fungicide screening modeland provide better strategy for the chemical control and molecular detection of resistant strains.
引文
1.安智慧,黄大野,石延霞等.2010.百合镰刀菌枯萎病防治药剂的研究.中国蔬菜,(18):23-26.
    2.贲海燕.2008.我国北方主要花卉新病害及病原鉴定.东北农业大学硕士论文,26-27,58.
    3.毕朝位.2009.禾谷镰刀菌Fusarium graminearum Schwabe两个β-微管蛋白基因功能及对多菌灵的抗药性分子机理.南京农业大学博士论文,21.
    4.蔡吉苗,王涓,陈勇等.2007.云南橡胶树棒孢霉落叶病病情调查与病原鉴定.热带农业科技,30(4):1-4.
    5.陈平,柳训才.2007.咪鲜胺的应用概况及其残留检测研究.湖北农业科学,46(3):478-480.
    6.陈万义,薛振祥,王能武.1996.新农药研究与开发.北京:化学工业出版社,50-51.
    7.陈万义.王龙根.李钟华.2007.新农药的研发方法进展.北京:化学工业出版社,19-35.
    8.丁中,刘峰,王会利等.2001.番茄灰霉病多重抗药性研究.山东农业大学学报,32(4):452-456.
    9.范文玉,马韵升.2005.嘧菌环胺.精细与专用化学品,13.
    10.房德纯,傅俊范.1994.黄瓜褐斑病病原与发病情况调查研究初报.植物保护,20(3):23-24.
    11.方中达.1998.植病研究方法(第三版).北京:中国农业出版社,124.
    12.高苇,李宝聚,石延霞等.2011a.多主棒孢菌在黄瓜番茄和茄子寄主上致病力的分化.园艺学报,38(3):465-470.
    13.高苇.2011b.我国黄瓜棒孢叶斑病的病原学及诊断技术的研究.中国农业科学院博士论文,63
    14.韩小爽,高苇,傅俊范等.2011.黄瓜棒孢叶斑病的诊断与防治.中国蔬菜,(9):20-21.
    15.黄大野,张扬,李宝聚.2011.甲氧基丙烯酸酯类杀菌剂防治蔬菜病害.中国蔬菜,(13):22-23.
    16.纪军建,张小风,王文桥等.2010.黄瓜褐斑病化学药剂防治研究进展.河北农业科学,14(8):28-31.
    17.纪明山,程根武,张益先等.1998.灰霉病菌对多菌灵和乙霉威抗性研究.沈阳农业大学学报,29(3):213-216.
    18.贾俊超,马琳,范志金等.2008.病原菌对Strobilurin类杀菌剂抗药性机理的研究进展.农药学学报,10(1):1-9.
    19.阚琳娜,李宝聚,纪明山等.2007.黄瓜褐斑病防治药剂的活体筛选.中国蔬菜,(4):22-24.
    20.康立娟,张小风,王文桥.2000.灰霉菌的抗药性与适合度测定.农药学学报,3(2):39-42.
    21.李宝聚,陈立芹,孟伟军等.2004.温度调控对番茄灰霉病菌侵染的影响.植物保护,30(2):75-79.
    22.李宝聚,赵彦杰,于淑晶等.2008.2008年秋季河北青县黄瓜棒孢叶斑病大发生.中国蔬菜,(11):51-52.
    23.李宝聚,周艳芳,赵彦杰等.2009.番茄灰叶斑病的发生与防治.中国蔬菜,(17):24-26.
    24.李宝聚,朱国仁,关天舒等.2003.节能日光温室中番茄灰霉病发生规律的研究,植物保护,29(2):26-29.
    25.李超萍,潘羡心,农卫东等.2007.广西橡胶树棒孢霉落叶病病情调查与病原鉴定.广西热带农业,(6):26-29.
    26.李红霞,陆悦健,王建新等.2003.禾谷镰孢菌p-微管蛋白基因克隆及其与多菌灵抗药性关系的分析.微生物学报,43:424-4291.
    27.李红霞,陆悦健,周明国.2002.苯并咪唑类杀菌剂的研究进展[M]//周明国:中国植物病害化学防治研究(第三卷).北京:中国农业科技出版社,24-32.
    28.李红霞,王建新,周明国.2004.杀菌剂抗性分子检测技术的研究进展.农药学学报,6(4):1-6.
    29.李明远,李兴红,张涛等.2001.辽宁发生茄子棒孢叶斑病.植物保护,27(6):48-49.
    30.李炜,张志铭,李川等.1998.马铃薯晚疫病菌对瑞毒霉抗性的测定.河北农业大学学报,21(2):63-65.
    31.刘长令.2001.新农药研究开发文集.北京:化学工业出版社,9.
    32.刘长令.2006.世界农药大全杀菌剂卷.北京:化学工业出版社,116.
    33.刘超萍,潘羡心,农卫东等.2007.广西橡胶树棒孢霉落叶病病情调查与病原鉴定.广西热带农业,(6):26-29.
    34.刘德荣,谢丙炎,黄三文等.2001.应用特异等位PCR快速鉴定灰葡萄孢菌抗苯莱特与乙霉威菌株.菌物系统,20(2):238-243.
    35.陆家云.2001.植物病原真菌学.科学出版社中国农业出版社,65
    36.陆悦健,周明国,叶钟音等.2000.抗苯并咪唑的小麦赤霉病菌β-tubulin基因序列分析与特性研究.植物病理学报,30:30-34.
    37.马志强,刘国容,严乐恩等.1997.小麦白粉病菌对三唑酮抗药性的监测.植物保护学报,24(1):85--87.
    38.马志强,刘国容,张小风等.1996.小麦白粉病对三唑酮抗药性的监测方法.南京农业大学学报,19:38-41.
    39.祁之秋,纪明山,陆田等.2009.黄瓜褐斑病防治药剂的离体活性筛选.植物保护,35(2):140-143.
    40.山本出,深见顺一.1988.化学工业出版社,农药的选择毒性和抗性,109
    41.石志琦,周明国,叶钟音.2000.核盘菌对菌核净的抗药性机制初探.农药学学报,2:47-51.
    42.王文桥,刘国容.1996.卵菌对内吸杀菌剂的抗药性及对策.植物病理学报,26(4):294-296.
    43.夏烨,周益林,段霞瑜等.2005.2002年部分麦区小麦白粉病菌对三唑酮的抗药性监测及苯氧菌酯敏感基线的建立.植物病理学报,35(6):74-78.
    44.许远,张予军,邹庆道等.2000.黄瓜褐斑病的药剂防治研究.辽宁农业科学,(6):47-48.
    45.杨华铮.2003.农药分子设计.科学出版社,87.
    46.杨家书,赵颖,郑永成等.1998.辽宁春麦区小麦白粉菌抗药性监测研究.沈阳农业大学学报,29(3):201-204.
    47.杨谦.2003.植物病原菌抗药性分子生物学.科学出版社:科学出版社,3.
    48.杨玉柱,焦必宁.2007.新型杀菌剂咯菌腈研究进展.现代农药,6(5):35-39.
    49.张一宾,张怿,伍贤英.2010.世界农药新进展(二).北京:化学工业出版社,165.
    50.周明国.2001.植物病原菌抗药性.农药市场信息,(8):23-25.
    51.周明国.2005.杀菌剂在果菜上的使用现状和存在问题.中国蔬菜,(1):49-50.
    52.祝明亮,严金平,孙启玲等.2005.植物病原真菌对二甲酰亚胺类杀菌剂的抗性分子机制.生物技术,15(5):95-97.
    53. Albertini C, Gredt M,Leroux P.1999. Mutations of the β-tubulin gene associated with different phenotypes of benzimidazole resistance in the cereal eyespot fungi Tapesia yallundae and Tapesia acutormis. Pesticide Biochemistry and Physiology,64:17-23.
    54. Anonym.1984. Comparative virulence of different isolates of Corynespora cassiicola. AVRDC Progress Report,75-76.
    55. Antiprotozoal activities of benzimidazoles and correlations with β-tubulin sequence. Antimicrobial Agents and Chemotherapy,38(9):2086-2090.
    56. Avenot H F, Michailides T J.2010. Progress in understanding molecular mechanism and evolution of resistance to succinate dehydrogenase inhibiting(SDHI) fungicides in phytopathogenic fungi.Crop protection,29:643-651.
    57. Baraldi E, Mari M, Chierici E, et al.2003. Studies on thiabendazole resistance of Penicillium expansun of pears, pathogenic fitness and genetic characterization. Plant Pathology,52:362-370.
    58. Bartz J A. Mitchell J E.1970. Comparative interaction of n-dodecylguanidine acetate with four plant pathogenic fungi. Evidence for the metabolic detoxification of n-dodecylguanidine acetate by ungerminated macro-conidia of Fusarium solani f.sp. phaseoli. Phytopathology.60(2):345-349.
    59. Basallote-Ureba M J, Prados-Ligero A M, Melero-Vara J M.1998. Effectiveness of tebuconazole and procymidone in the control of Stemphylium leaf spots in garlic. Crop Protection,17(6):491-495.
    60. Beever R E, Brien H M R.1983. A survey of resistance to dicarboximide fungicides in Botrytis cinerea.Agricultural.Research,26:391-400.
    61. Ben-yaacov R, Knoller S, Caldwell G, et al.1994.Candida albicans gene encoding resistance to benomyl and methotrexate is a multidrug resistance gene.Antimicrobial agents and chemotherapy,38(4): 648-652.
    62. Biggs A R.1994. Mycelial growth,sporulation and virulence to apple fruit of Altemaria alternata isolates resistant to iprodione. Plant Disease,78:732-735.
    63. Bollen G J, Fuchs A.1970. On the specificity of the in vitro and in vivo antifungal activity of benomyl. Netherlands Journal of Plant Pathology,76:299-312.
    64. Bollen G J.1972. A comparison of the in vitro antifungal spectra of thiophanates and benomyl. Netherlands Journal of Plant Pathology,78:55-64.
    65. Bollen G, Scholten J.1971. Acquired resistance to benomyl and some other systemic fungicides in a strain of Botrytis cinerea in cyclamen.Netherland Journal of Plant Pathology,77:83-90.
    66. Brasseur G, Saribas A S, Daldal F.1996. A Compliation of mutations located in the cytochrome b subunit of the bacterial and mitochondrial bcl complex. Biochemistry Biophysiology Acta,1275:61-69.
    67. Buczacki S T, Cadd S E.1976. Glasshouse evaluation of systemic compounds,derivatives of dithiocarbamic acid and other fungicides for the control of clubroot. Annuals of Applied Biology,84: 43-50.
    68. Buczacki S T.1973. Glasshouse evaluation of some systemic fungicides for control of clubroot of brassicae. Annuals of Applied Biology,74(1):85-90.
    69. Butters J A,Hollomon D W.1999. Resistance to benzimidazole can be caused by changes in β-tubulin isoforms. Pesticide Science,55:501-503.
    70. carbamate. Molecular and Gennral Genetic,240(1):73-80.
    71. Chin K M, Chavaillaz D, Kaesbohrer M, et al.2001. Characterizing resistance risk of Erysiphegraminis f.sp.tritici tostrobilurins. Crop Protection,20:87-96.
    72. Choi G J, Lee H J, Cho K Y,et al.1997. Involvement of catalase and superoxide dismutase in resistance of Botrytis cinerea to dicarboximide fungicide vinclozilin.Pesticide Biochemistry and Physiology,59:1-10.
    73. Corynespora cassiicola.Phytopathology,64,1364-1367.
    74. Cunha M G, Rizzo D M.2003. Development of fungicide cross resistance in Helminthosporium solani population from California. Plant Disease,87:798-803.
    75. Date H, Kataoka E, Tanina K, et al.2004. Sensitivity of Corynespora cassiicola, causal agent of Corynespora leaf spot cucumber, to thiophanate-methyl, diethofencarb and azoxystrobin. Japanese Journal of Phytopathology,70:10-13.
    76. Davidse L C and Flach W.1977. Differential binding of methyl benzimidazol-2-yl carbamateto fungal tubulin as a mechanism of resistance to this antimitotic agent in mutant strains of Aspergillus nidulans. The Journal of Cell Biology,72:174-193.
    77. Delye C, Bousset L, Corio-Costet M F.1998. PCR cloning and detection of point mutations in the eburicol 14 alpha-demethylase (CYP51) gene from Erysiphe graminis f.sp. hordei, a "recalcitrant" fungus. Current Genetics,34:399-403.
    78. Dixon L J,Schlub R L,Pernezny K et al.2009.Host specialization and phylogenetic diversity of Corynespora cassiicola. Phytopathology,99:1015-1027.
    79. Doyle O P E, Clancy K J.1986. Integrated chemical applications for the control of clubroot in brassicas. Brighton Crop Protection Conference-Pests and Diseases,8:923-930.
    80. Edgingon L V, Khew K L, Barron G L.1971.Fungitoxic spectrum of benzimidazole compounds. Phytopathology,61:42-44.
    81. Ellis M B, Holliday P.1971.Corynespora cassiicola.C.M.I. Description of Pathogenic Fungi and Bacteria,303.
    82. Esposti M D, Vries S D, Crimi M, et al.1993. Mitochondrial cytochrome b:evolution and structure of the protein. Biochimica et Biophysica Acta,1143:243-271.
    83. Fabritius A L, Shattock R C, Judelson H S.1997. Genetic analysis of metalaxyl insensitivity loci in Phytophthora infestans using linked DNA markers. Phytopathology,87:1034-1040.
    84. Faretra F, Pollastro S, Tonno A P.1989. New natural variants of Botrytis cinerea coupling benzimidazole-resistant to insensitivity toward the N-phenylcarbamate diethofencarb. Phytopathologia Mediterranea,28:98-104.
    85. Fletcher J T,Wolfe M.1982. Insensitivity of Erysiphe graminis f.sp. hordei to triadimefon and other fungicides,Proc Br Crop Prot conf,2:633-640.
    86. Fraaije B A, Cools H J, Fountaine J M et al.2005. Q0I resistant isolates of Mycosphaerella graminicola and the role of ascospores in further spread of resistant alleles in field populations.phytopathology, 95:933-941.
    87. Fry W E Goodwin S B.1997.Resurgence of the Irish potato famine fungus.Bioscience,47:363-371.
    88. Fujimura M, Kamakura T, Inoue H, et al.1992. Sensitivity of Neurospora crassa to benzimidazole and N-phenylcarbamates:Effect of amino-acid substitutions at position 198 in b-tubulin. Pesticide Biochemistry and Physiology,44:165-173.
    89. Fujimura M, Kamakura T, Inoue H, et al.1994. Amino-acid alterations in the-tubulin gene of Nevrospora crassa that confer resistance to carbendazim and diethofencarb.Current Genetic,25:418-422.
    90. Fujimura M.1994. Model action of diethofencarb to benzimidazole-resistance strains in Neuropora crassa. Journal of Pesticide Science,19:333-334.
    91. Gisi U, Sieritzki H, Cook A, et al.2002. Mechanisms Influencing the evolution of resistance to Qo Inhibition fungicides. Pest Management Science,58:850-867.
    92. Goldman G H, Temmerman, W, Jacobs D, et al.1993. A nucleotide substitution in one of b-tubulin genes of Trichoderma viride confers resistance to the antimitotic drug methyl benzimidazole-2-yl-
    93. Hasama W, Morita S, Kato T.1991. Control of Corynespora target leaf spot of cucumber by use of negatively-correlated cross resistance between benzimidazole fungicides and diethofencarb. Annals of the Phytopathological Society of Japan,57:319-325.
    94. Hasama W,Sato M.1996.Occurrence and distribution of fungicide-resistant field isolates of Corynespora cassiicola,ca.usal fungus of target leaf spot of cucumber,in Kyushu and Okinawa districts. Proceeding of the Association for Plant Protection of Kyushu,42:26-30.
    95. Hasama W.1991. Occurrence and characteristics of resistant strains of Corynespora melonis against benzimidazole compounds. Annals of the Phytopathological Society of Japan,57:312-318.
    96. Hosen M I,Ahmed A U,Zaman J, et al.2009. Cultural and physiological variation between isolates of Stemphylium botryosum the causal of stemphylium blight disease of Lentil (Lens culinaris). World Journal of Agricultural Sciences,5(1):94-98.
    97. Hutton D G.1988. The appearance of dicarboximide resistance in Altemaria alternata in passionfruit in south-east Queensland.Australasian Plant Pathology,17:34-36.
    98. Ian B D, Khor H Y, Don G H.2004. Dicarboximide resistance in field isolates of Alternaria alternate is mediated by a mutation in a two-component histidine kinase gene. Fungal Genetics and Biology,41: 102-108.
    99. Inclan Y, Nogales E.2001. Structural models for the self-assembly and microtubule interactions of gamma-, delta-and epsilon-tubulin. Journal of cell science,114:413-422.
    100. Ishii H, Yano K, Date H, et al.2007. Molecular characterization and diagnosis of Qol resistance in cucumber and eggplant fungal pathogens. Phytopathology,97(11):1458-1466.
    101. Ishii H,Fuaaije B A, Sugiyama T, et al.2001.Occurrence and molecular characterization of strobilurin resistance in cucumber powdery mildew and downy mildew. Phytopathology,12:1166-1171.
    102. its control. Phytopathology,64:255-256.
    103. Jung M K, Oakly B R.1990. Identification of an amino acid substitution in benA,β-tubulin gene of Aspergillus nidulans that confers thiabendazole resistance and benomyl supersensity. Cell Motility and the Cytoskeleton,17:87-94.
    104. Jung, M K, Wilder I B, Oakley B R.1992. Amino acid alterations in the benA (β-tubulin) gene of Aspergillus nidulans that confers benomyl resistance. Cell Motility and the Cytoskeleton,22:170-174.
    105. Kadish D, Cohen Y E.1988.Stimation of metalaxyl resistance in Phytophthora infestans. Phytopathology,78(7):915-919.
    106. Katan T, Elad Y, Yunis H.1989. Resistance to diethoencarb (NPC) in benomyl-resistant field isolates of Botrytis cinerea. Plant Pathology, (38):86-92.
    107. Katiyar S K, Edlind TD,1994.β-tubulin genes of Trichomonas vaginalis. Molecular and Biochemical
    108. Katiyar S K, Gordon VR, Mclaughlin GL, et al.1994. Antiprotozoal activities of benzimidazoles and correlations with β-tubulin sequence Antimicrobial Agents and Chemotherapy,38(9):2086-2090.
    109. Kawchuk L M, Hutcgison L J, Vergaegh C A, et al.2002. Isolation of the β-tubulin gene and characterization of thiabendazole resistance in Gibberella pulicaris. Canadian Joutnal of Plant Pathology, 24:233-238.
    110. Koenraadt H, Somerville S C, Jones A L.1992. Characterization of mutations in the beta-tubulin gene of benomyl-resistant field strains of Venturia inaequalis and other plant pathogenic fungi. Phytopathology, 82:1348-1354.
    111.Kraiczy P, Haase U, Gencic S, et al.1996. The molecular basis for the natural resistace of the cytochrome bcl complex from Strobilurin-producing Basidomycetes to center Qo inhibitors.European Journal of Biochemistry,235:54-63.
    112. Leroux P,Gredt M.1989. Negative cross-resistance of benzimidazole-resistant strains of Botrytis cinerea, Fusarium nivale and Pseudocercosporella herpotrichoides to various pesticides. European Journal of Plant Pathology,95(1):121-127.
    113. Luck J E,Gillings M R.1995. Rapid identification of benomyl resistant strains of Botrytis cinerea using the polymerase chain reaction. Mycological Research,99:1483-1488.
    114. Ma Z, Michailides T J,2004. Characterization of iprodione resistant Alternaria isolates from pistachio in California. Pesticide Biochemistry and Physiology,80:75-84.
    115. Ma Z, Yoshimura M, Michailides T J.2003. Identification and characterization of benzimidazole resistance in Monilinia fructicola from stone fruit orchards in California. Applied Environmental Microbiology,69:7145-7152.
    116. Marie A, Stojin V, Mitrovic P.1990. Cabbage clubroot(Plasmodiophora brassicae) in Semberia and possibilities of its control byfungicides. Zastita bilja,41:13-20.
    117. Marcia M,Falconer M,Seagull R W.1987. Amiprophos-methyl (APM):A rapid, reversible, Anti-microtuble agent for plant cell cultures. Protoplasma,136:118-124.
    118. McKay G J, Cooke L R.1997. A PCR-based method to characterize and identify benzimidazole resistance in Helminthosporium solani. FEMS Microbiology Letters,152:371-378.
    119. McKay G J, Egan D, Morris E, et al.1998.1dentification of benzimidazole resistance in Cladobotryum dendroides using a PCR-based method. Mycological Research,102:671-676.
    120. Mcphee W J.1980. Some characteristics of Altemaria alternata strains resistant to iprodione.Plant Disease,64:847-849.
    121. Meyer M P, Hausbeck M K, Podolsky R.2000. Optimal fungicide management of purple spot of asparagus and impact on yield. Plant Disease,84:525-530.
    122. Miller, J W, Alfieri S A.1973.Leaf spot of Ligustrum sinense caused by Corynespora cassiicola and
    123. Miyamoto T, Ishii H, Seko T,et al.2009. Occurrence of Corynespora cassiicola isolates resistant to boscalid on cucumber in Ibaraki Prefecture. Japan Plant Pathology,58:1144-1151.
    124. Miyamoto T, Ishii H, Stammler G, et al.2010.Distribution and molecular characterization of Corynespora cassiicola isolates resistant to boscalid. Plant Pathology,59:873-881.
    125. Morejohn L C,Bureau T,Mole-Bajer J,et al.1987.Oryzalin,a dinitroaniline herbicides.weed science,172:
    126. Mu J H, Bollon A P, Sidhu R S,1999. Analysis of beta-tubulin cDNAs from taxol-resistant Pestalotiopsis microspora and taxol-sensitive Pythium ultimum and comparison of the taxol-binding properties of their products,262:857-868.
    127. Nakanishi T, Oku H.1969. Mechanism of selective toxicity of fungicide:Metabolism of pentachloronitrobenzene by phytopathogenic fungi. Japanese Journal of Phytopathology,35:339-346. A.,& Napis, S. (2008).
    128.Nghia N A,Kadir J,Sunderasan E.2008. Morphological and Inter Simple Sequence Repeat (ISSR) markers analyses of Corynespora cassiicola isolates from rubber plantations in Malaysia-Mycopathologia, 166:189-201.
    129.Nogales E, Wolf S G, Downing KH.1998. Structure of the aptubulin dimmer by electron crystallography, nature,391(6663):199.
    130. Onesirosan P T,Arny D C, Durbin R D.1974. Host specificity of Nigerian and North American isolates of Corynespora cassiicola,64:1364-1367.
    131. Orbach M J, Porro E B, Yanofsky C.1986.Cloning and characterization of the gene forp-tubulin from a benomyl-resistant mutant of Neurospora crassa and its use as a dominant selectable marker. Molecular and Cell Biololgy,6:2452-2461.
    132. Pernezny K, Datnoff L E, Mueller T, et al.1996. Losses in fresh-market tomato production in Florida due to target spot and bacterial spot and the benefits of protectant fungicides. Plant Disease,80:559-563.
    133. PU J J, ZHANG X, QI Y X, et al.2007. First Record of Corynespora Leaf Fall Disease of Hevea Rubber Tree in China.Australasian,Plant Disease Notes,2:35-36.
    134. Qi Y X,Xie Y X, Zhang X.2009. Molecular and pathogenic variation identified among isolates of Corynespora cassiicola. Molecular Biotechnology,41:145-151.
    135. Qi Y X,Zhang X,Pu J J, et al.2011. Morphological and molecular analysis of genetic variability within isolates of Corynespora cassiicola from different hosts, European journal of plant pathology, 130:83-95.
    136. Ramakrishnan T S, Pillay P N R.1961 Leaf spot of rubber by Corynespora cassiicola(Berk & Curt)Wei. Rubber Board Belletin,5(1):32-35.
    137. Robinson M W, McFerran N, Trudgett A.2004. A possible model of benzimidazole binding to β-tubulin disclosed by invoking an inter-domain movement. Journal of Molecular Graphics and Modelling, 23(3):275-284.
    138. Ruaan N M,Fagerstorm C J,Yvon A M,et al.2001.Cell cycle-dependent changes in microtubule dynamics in living cells expressing green fluorescent protein-alpha tubulin.molecular Biology of the cell,12(4):971-980.
    139. Ruiz F,Dupuis-Williams P,Klotz C,et al.2004.Genetic evidence for interaction between η and β-tubulin.Eukaryot cell,3:212-220.
    140. Sanglard D,Ischer F,Koymans L, et al.1998.Amino Acid Substitutions in the Cytochrome P-450 Lanosterol 14a-Demethylase (CYP51A1) from Azole-Resistant Candida albicans Clinical Isolates Contribute to Resistance to Azole Antifungal Agents. Antimicrobial Agents Chemotherapy,42(2):241-253
    141. Schiebel E.2000. γ-tubulin complexes:binding to the centrosome,rugulation and microtubule nucleation. Current Opinion in Cell Biology,12(1):113-118.
    142. Schmitt I, Partida-Martinez L P, Winkler R, et al.2008. Evolution of host resistance in a toxin producing bacterial fungal alliance. International Society for Microbial Ecology,2:632-641.
    143. Schroeder W T, Provvidenti R.1969. Resistance to benomyl in powdery mildew of cucurbits. Plant Disease Reporter,53:271-275.
    144. Sehroeder W T. Prowidenti R.1969.Resistance to benomyl in powdery mildew of cucubits. Plant Disease Reporter,53:271-275.
    145. Shattock R C.1988. Studies on the inheritance of resistance to metalaxyl in Phytophthora infestans, plant pathology,37(1):4-11.
    146. Shaw S L,Kamyar R,Ehrhardt.2003.Sustained microtubule treadmiling in Arabidopsis cortical arrays.Science,300(5626):1715-1718.
    147. Shaw D S and R.C. Shattock,1991. Genetics of Phytophthora Infestans:The Mendelian Approach.In: Lucas, J.A., R.C. Shattock, D.S. Shaw and L.R. Cooke (Eds.), Phytophthora. Cambridge, UK,pp:218-230.
    148. Sierotzki H, Parisi S, Steinfeld U, et al.2000. Mode of resistance to respiration inhibitors at the cytochrome bc1 enzyme complex of Mycosphaerella fijiensis field isolates, pest management science, 56:833-841.
    149. Silva W P K, Wijesundera R L C, Karunanayake E H, et al.2000.New hosts of Corynespora cassiicola in Sri Lanka.Plant Disease,84 (2):202.
    150. Silva W P K,Multani D S.Deverall,et al.1995.RFLP and RAPD analyses in the identification and differentiation of isolates of the leaf spot fungus Corynespora cassiicola.Australian journal of botany,43: 609-618.
    151.Tate K G, Eales R F.1982. Clubroot control in cabbage and cauliflower using mechanised transplanting drenches. New Zealand Journal of Experimental Agriculture,10:409-412.
    152. Toshiko F,Kinjim U,Kunihei K.2008.Corynespora leaf spot of scarlet sage caused by Corynespora cassiicola.Journal of General Plant Pathology,74:117-119.
    153. Weerakoon N D, Roberts J K, Lehnen L P, et al.1998.Isolation and characterization of the MBCHR
    154. Wiese C, Zheng Y.1999. y-tubulin complexes and their interaction with microtubule-organizing centers. Current Opinion Structural Biology,9(2):250-259.
    155. Yarden O, Katan T.1993. Mutations leading to substitutions at amino acids 198 and 200 on beta-tubulin that correlate with benomyl resistance phenotypes of field strains of Botrytis cinerea. Phytopathology,83:1478-1483.
    156. Young D H, Spiewak S L, Slawecki R A.2001. Laboratory studies to assess the risk of development of resistance to zoxamide, Pest Management Science,57:1081-1087.
    157. Young D H.2007. Zoxamide, an antitubulin fungicide for control of oomycete pathogens, in:W. Kramer, U. Schirmer (Eds.), Modern Crop Protection Compounds, Wiley-VCH Verlag GmbH & Co.KGaA, Weinheim,581-590.
    158. Zheng L,Lv R J,Huang J B,et al.2010. Integrated control of garlic leaf blight caused by Stemphylium solani in China. Canadian Journal of Plant Pathology,32(2):135-145