彩色棉再生体系影响因子及抗病基因NP-1转化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
享有“绿色产品”、“生态珍品”的天然彩色棉因其独特的优势和特性,成为目前研究的热点之一。运用转基因技术提高植物抗性,为植物遗传育种提供了一条新的途径。作者在实验中对彩色棉再生体系建立中的一些影响因子作了探讨,并对利用农杆菌介导法将抗病基因兔防御素NP-1导入彩色棉的前期工作进行了初步研究。
     选用彩色棉优良品种(棕色):新彩1号、新彩2号。以下胚轴和子叶作为外植体,确立了5~6日苗龄的彩色棉下胚轴是较好的愈伤组织诱导外植体。不同激素组合及浓度对愈伤组织的诱导有重要作用,2,4-D是愈伤组织诱导中重要的激素,在附加有0.1mol/L 2,4-D+0.1mol/L KT的MSB培养基上,诱导形成的愈伤组织质地疏松、生长旺盛,有利于分化为胚性愈伤。比较了不同糖源在愈伤组织诱导中的效应,在蔗糖和葡萄糖为糖源的培养基中,愈伤组织诱导率均为100%,但葡萄糖更有利于愈伤组织的形成和生长,蔗糖的诱导效果次之;麦芽糖和乳糖对愈伤组织的诱导效应不及蔗糖和葡萄糖;甘露醇作为糖源则抑制了愈伤组织的诱导和生长。在胚性愈伤组织的诱导培养中,KNO_3加倍和NH_4NO_3减半的组合利于胚性愈伤组织的发生。
     实验中,利用石蜡切片法和扫描电镜技术对愈伤组织的发生及细胞整体形貌进行了观察。结果表明,存在不同的两类愈伤组织,第一类愈伤组织多呈淡黄色、黄绿色或灰色,质地疏松,生长旺盛,易于分化为胚性愈伤,且该类愈伤组织来源于皮层细胞;第二类愈伤多呈深绿色或白色致密状,生长缓慢,不利于分化为胚性愈伤。
     在根癌农杆菌介导的转化过程中,对选择性抗生素Kan的最适浓度、外植体与农杆菌的感染时间、共培养时间以及乙酰丁香酮的效应等进行了初步研究。外植体经农杆菌浸染10min,共培养48h较为合适,在添加头孢霉素500mg/L、卡那霉素50mg/L的培养基中筛选抗性愈伤组织。
Naturally colored cotton, is considered as a "green product" and "ecological treasure". Because of its unique advantage and characteristic, colored cotton becomes one of the fields of research at present. The use of transgenic technology to raise the disease-resistance of the plant, has offered a new way for breeding of plant. We discussed some factors influencing the callus induction and growth in a regeneration system. Preliminary studies on gene transformation of colored cotton via Agrobacterium tumefaciens carrying NP-1 was done, in order to enhance the disease-resistance.
    Explants derived from hypocotyls and cotyledons segments of 5-6 day seedlings , and hypocotyls were superior to cotyledons in the induction of callus. Different hormones and concentrations play an important role in the callus induction and growth. 2,4-D was an important hormone of induced callus. State of the callus growth was better on basic medium MSB medium containing 0.1mol/L2,4-D and 0.1mol/L KT. The effects of various sugar sources were different on the formation and growth of cotton callus. The results indicated that glucose was advantageous to the induction and proliferation of cotton callus, sucrose came second. Maltose and lactose were not advantageous to the induction and growth of callus. The addition of mannitol restrained the induction of callus. The medium MSB containing twice of KNO3 and NH4NO3 reduced by half could induce a number of embryogenic callus.
    At the same time, the callus occurrence and cell configuration of the callus were observed via paraffin slice method and scanning electron microscope technology. Two kinds of callus formed in cultures. One was light yellow or grey and loose, while the other was hard and white or dark green. The former grew rapidly and eventually developed into embryogenic callus. On the contrary, the latter grew slowly. And the former was derived from the cortex tissue.
    Furthermore, we discussed Agrobacterium-mediated transformation and
    
    
    
    some factors affecting the transformation frequency. For example, the optimum concentration of selective antibiotic kanamycin, infection time, coculture time of explants and Agrobaclerium, and effect of AS. It were appropriate for Agrobacterium infecting explants 10min and coculturing 48h, then transferred into the medium supplemented with 500mg/L Cefotaxime and 50mg/L kanamycin to select resistant callus.
引文
1. Bals R, Goldman MJ, Wilson JM. Mouse β-defensinl is a salt sensitive antimicrobial peptide present in epithelia of the lung and urogenital tract.Infect Immun,1998,66(4):1225-1232
    2. Bijapur RI, B Khadi, Correlation studies among fiber quality traits in naturally coloured cotton. J Cotton Res, 1998,12(2):223-235
    3. Bohlmann H. The role of thionins in plant protection.Crit Rev Plant Sci,1994,13:1-16
    4. Broekaert WF, Terras FRG, Cammune BPA, et al. Plant defensins:novel antimicrobial peptides as components of the hoet defence system [J]. Plant Physil,1995,108:1353-1358
    5. Bruix M, Jimenez MA, Santoro J, et al. Solution structure of gammal-H and gamma 1-p thionins from barley and wheat endosperm determined by H-NMR:a structural motif common to toxic arthropod proteins.Biochemistry,1993,132:715-724
    6. Cheng M, Fry J, Pany S, et al. Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol,1997,115:971-980
    7. Colilla FJ, Rocher A, Mendeze. Gamma-purothionins: amino acid sequence of two polypeptides of a new family of thionins from wheat endosperm, FEBS Lett,1990,270:191-194
    8. Davidonis G H, Hamilton R H. Plant regeneration from callus tissues of G. hirsutum L. Plant Sci Lett, 1983,32:89-93
    9. Diamond G, Zasliff M, Eck H, et al. Tracheal antimicrobial peptide,a novel cysteine-rich peptide from mammalian tracheal nucosa:Peptide isolation and cloning of cDNA.Pro Natl Acad Sci USA,1991,88:3952-3956
    10. Fexsy, Bio-priacy: the story of natural colored cottons of the Americas RAFL-Commmmqique. 1993:1-7
    11. Fu R-2H et al. Expression of rabbit defensin NP-1 gene in transgenic tobacco plants and its activity against bacterial wilt. Chinese Science Bulletin,1998,43(18):1544-1550
    12. Gabay, JE, Scott RW, Campanelli D, et al. Antibiotic proteins of human poly morphonuclear leuknocytes.Proc Natl Acad Sci USA,1989,86:5610-5614
    13. Ganz T, Selsted ME, Szklarek D, et al. Defensins,Natural peptide antibiotics of human neutrobhils.J Clin Invest,1985,76:1427-1435
    14. Ganz T Lehrer RI. Defensins.Curr Opin Immunol,1994,(6):584-589
    15. Guo D-J et al. Rabbit defensin(NP-1) gene transformation of wheat and in vitro
    
    microbicidical activity assay of transgenic plants. High Technology Letters,1999,5(1):90-95
    16. Haynes R J, Tighe P J, Dua H S. Antimicrobiol peptides of the human ocular surface. Br J Ophtalomo,1999,183(6):731-741
    17. Hoffmann JA, Hetru c. Insect defensins: inducible antibacterial peptide. Immunology Today,1992,13:411-415
    18. Hooykaas P J J, Schilperoort R A. Agrobacterium and plant genetic engineering. Plant Mol Biol,1992,19:15-38
    19. Huttner KM, Kozak CA, Bevins CL, et al. The mouse genome encodes a single homology of the antimicrobial peptide human β -defensin 1.FEBS Lett,1997,413(1):45-49
    20. Jongedijk E, Tigelaar H, Roekel JSC van, et al. Synergistic activity of chitinase and β-1,3-glucanases enchances fungal resistance in transgenic tomato plants. Euphytica 1995,85:173-180
    21. Kohel RJ. Genetic analysis of fiber color variants in cotton. Crop Science, 1985,25:793-797
    22. Lambert J, Keppi E, Dimarcg JL, et al. Insect immunity: isolation from immune blood of the dipteran phormia teranovae of two insect antibacterial peptides with sequence homology to rabbit lung macrophage bactericidal peptides. Proc Natl Acad Sci USA,1989,86:262-266
    23. Lehrer RI, Granz T, Selsted E. Defenses: endogenous antibiotic peptides of animal cells [J].Cell,1991,64:229-230
    24. Liu L,Zhao C,Heng HH,et al.The human β-defensin-1 and α-defensins are encoded by adjiacent genes:Two peptide families with differing disulfide topology share a common ancestry.Genomics,1997,43:316-320
    25. MACK RAY. Naturally colored-Crackpot crop or cash cow. Cotton Farming,1995(3):6-10
    26. Mendez E, Moreno A, Collila F, et al. Primary structure and inhibition of protein synthesis in eukaryotic cell-free system of a novel thionin, gamma-horclothionin, from barley endosperm. Eur J Biothem,1990,194:533-539
    27. Miyasaki KT, Lehrer RI. β-sheet antibiotic peptides as potential dental therapeutics. Inter J Anti Agents,1998,9:269-280
    28. Morison GM, Davidson DJ, Kilanowski FM, et al. Mouse β-defensin-1. Mamm
    
    Genome,1998,(9):453-457
    29. Osborn RW, Desamblanx GW,Thevissenk, et al. Isolation and characterization of plant defensins from seeds of asteraceae, Fabaceae, Hippocastanceae and Saxifragaceae. FEBS Lett,1995,358:257-262
    30. Piers KL, Brown MH, Hancock REW. Recombinant DNA procedures for producing sonall antimicrobial cationic peptides in bacteria.Gene,1993,134:7-13
    31. Price H J, Smith R H. Somatic embryo genesis in suspension cultures of G.klotzschianum. Planta,1979,(145):305-307
    32. Richmond T R. Inheritance of green and brown lint in upland cotton. J.Am.Soc.Agron, 1943,35:967-975
    33. Ryan LK, Rhodes J, Bhat M, et al. Expression of β-defense genes in bovine alveolar macrophages. Infect Immun,1998,66(3):878-881
    34. Sally Fox. Naturally coloured cotton. SPIN OFF. December,p.48-50
    35. Schonwetter BS, Stolzeberg ED, Zasloff MA. Epithelial antibiotics induced at sites of inflammation [J]. Science,1995,267:1645-1648
    36. Selsted ME, Tang YQ, Morris WL, et al. Purification,primary structures,and antibacterial activities of β-defensins, a new family of antimicrobial peptides from bovine neutrophils [J]. Biol Chem,1993,268:6641-6648
    37. Terras FRG, Schools HME, De Bolle Mfc, et al. Analysis of two novel classes of anti-fungal proteins from radish seeds. J Biol Chem,1992,267:15301-15309
    38. Terras FRG, Eggermonl K, Kovaleva V, et al, Small cysleine-rich antifungal proteins from radish: their role in host defence [J]. Plant Cell,1995,(7):573-588
    39. Valore EV, Park CH, Quayle AJ, et al. Human β-defensin-1: An antimicrobial peptide of urogenital tissues. J Clin Invest,1998,101(5):1633-1642
    40. V.V.Satyavathi, V.Prasad, et al. High efficiency transformation protocol for three India cotton varieties via Agrobacterium tumefaciens. Plant Science,2002,162:215-223
    41. Waghmare V N, Koranne K D. Coloured cotton: present status, problems and future potentials. Indian J. Genetics and Plant Breeding,1998,58(1):1-15
    42. Wilde GC, Griffith JE, Marra MN, et al. Purification and characterization of human neutrophil peptide 4, a new number of the defensin family. J Biol Chem,1989,264:11200-11203
    43. Yatsu L Y, Espelie Karl E, Kolattukudy PE. Ultrastructural and chemical evidence that the cell wall of green cotton fiber is suberized. Plant Physioal,1983,73:521-524
    
    
    44. Yatsu L Y, Mod RR, Kolattukudy PE. Cytochemical studies of green-colored cotton fibers. Plant Physioal,1983:72-73
    45. Zeya HISpitznagel K. ntibacterial and enzymic basic proteinsfrom leukocyte lysosomes separation and identification.Sciences,1963,142:1085-1087
    46. Zeya HI,Spitznagel JK.Arginine-rich proteins of polymorphonudear leukocyte lysosomes antimicrobial specificity and biochemical heterogeneity.J ExpMed,1968,127:927-941
    47. Zhao C, Wang I, Lehver RI, et al. Widespread expression of β-defensin hBP-1 in human secretory cells and epithelial cell. FEBS Lett,1996,396(2):319-322
    48. Zhu Q, Maher EA, Masoud S, et al. Enchanced protection against fungal attack by constitive co-expression of chitinase and glucanase genes in transgenic tobacco. Biotechnology,1994,12:807-812
    49. Zimmermann GR,Legault P,Selsted ME,et al.Solution structure of bovine neutrophil β-defensin-12:The peptide fold of the β-defensins is identical to that of classical defensins.Biochemistry,1995,34:13663-13671
    50. Zupan J R, Zambryski P C. Transfer of T-DNAfrom Agrobacterium to the plant cell. Plant Physiol, 1995,107:1041-1047
    51.陈颖,葛毅强,张利明等,哺乳动物防御素的研究进展及其应用前景.生物化学与生物物理进展,2001,28(1):17-21
    52.蔡小宁,吴敬音,佘建明.陆地棉胚性愈伤组织诱导和植株再生.江苏农业学报,1997,13(4):225-230
    53.丁世萍,严菊强,季道藩.糖类在植物组织培养中的效应.植物学通报,1998,15(6):42-46
    54.杜雄明,张天真,袁有禄.有色棉的研究利用现状及展望.中国农学通报,1997,13(3):30-32
    55.董合忠,焦改丽,陈志贤.2,4-D、KT对棉花愈伤组织的诱导和体细胞胚胎发生的影响.华北农学报,1993,8(3):87-91
    56.E.W.Nester.根癌农杆菌转化植物的细胞学及分子生物学概论.遗传,1989,11(5):40-42
    57.傅荣昭,李文彬,孙勇如.防御素的研究进展.农业生物技术学报,1996,4(4):348-352
    58.傅荣昭,曹光诚,李文彬等.防御素及其在基因工程上的应用前景.高技术通讯,1996,(3):61-62
    59.傅荣昭,彭于发,曹光诚等.兔防御素NP-1基因在转基因烟草中的表达及其对烟草青枯病的抗性研究.科学通报,1998,43(14):1519-1522
    60.耿军义等.陆地棉有色纤维基因遗传及其对产量和品质的影响.棉花学报,1998,10(6):307-311
    
    
    61.黄骏麒等.中国棉作学.北京:中国农业科学出版社,1998
    62.贾士荣,郭三堆.转基因棉花.科学出版社,2001
    63.李永山.彩色棉纤维色泽遗传规律研究.山西农业科学,2002,30(1):44-46
    64.林昕.世界主要产棉国家对彩色棉的研究与开发.江西棉花,2000,22(1):3-10
    65.林昕.国外彩色棉的研究与开发.世界农业,2000,(8):14-17
    66.李洪军,胡宗利,魏泓.防御素研究进展.生物工程进展,2001,21(3):34-36
    67.李宝平,赵俊侠等.关键因子对棉花利用农杆菌介导法导入外源基因的影响.作物学报,2001,27(1):80-84
    68.李克勤,王喆之,张大力等.陆地棉组织细胞培养的研究.西北植物学报,1991,11(2):144-153
    69.李洪清,李美茹.影响农杆菌介导植物基因转化的因素问题.植物生理学通讯,1999,35(2):145-151
    70.李付广,周勇等,影响陆地棉遗传转化的外部因子研究.西北植物学报,1999,19(3):387-392
    71.李俊兰,张寒霜等.卡那霉素对棉花下胚轴愈伤组织生长的影响.棉花学报,1997,9(4):209-212
    72.李燕娥,吴霞等.棉花无菌苗最佳生长条件的探讨.棉花学报,
    73.李卫,郑国錩,郭光沁.根癌农杆菌介导遗传转化研究的若干新进展.科学通报,2000,45(8):798-805
    74.刘春明,姚敦义.陆地棉体细胞胚发生及其细胞组织学研究.植物学报,1991,33(5):378-384
    75.刘方,张宝红等.卡那霉素对棉花胚性愈伤组织生长和发育的影响.棉花学报,1999,11(2):70-72
    76.马永根,邱新棉,毛建生.天然彩色棉灰色新品系—彩选4号.江西棉花,2001,23(4):36-37
    77.孟庆玉,孙严,李仁敬,新疆陆地棉体细胞胚状体的发生和植株再生.新疆农业科学,1995,(3):109-111
    78.王关林,方宏筠等.植物基因工程原理与技术.北京:科学出版社,1998
    79.王淑民.彩色棉溯源与研究.世界农业,2000,257(9):19-21
    80.王琼,何清君.植物抗菌肽研究进展.四川师范学院学报(自然科学版),2000,21(2):141-145
    81.王喆之,张大力,郭德志等.陆地棉愈伤组织产生及胚胎发生的细胞学研究.西北植物学报,1990,10(2):77-83
    
    
    82.吴霞,焦改丽,吴家和等.棉花农杆菌介导法转化机理及研究进展.山西农业科学,2001,29(1):27-30
    83.吴霞,上官小霞等.诸因素对转基因棉花愈伤组织的影响.中国棉花,2001,28(4):20-21
    84.西蒙古良.陆地棉纤维色泽的遗传.国外农学—棉花,1984,(3):17-19
    85.杨进,李晓玲.彩色棉研究现状与应用前景.荆门职业技术学院学报,2000,15(3):29-32
    86.岳建雄,石跃进等,农杆菌介导的棉花转基因过程中影响出愈率的因素.棉花学报,1998,10(5):276-277
    87.张满朝,郑国锠.人防御素-1转基因烟草的获得及其抗TMV的初步观察.植物学报,1997,39(6):574-576
    88.张秀海,郭殿京,孙勇如等.兔防御素NP-1基因在转基因番茄中表达的初步研究.遗传学报,2000,27(11):953-958
    89.张振南.新疆开发彩色棉花产业之我见.新疆农业科学,2000,(1):18-20
    90.张秉贤,王国祥.试论我国彩色棉的发展.中国棉花,2000,27(12):6-7
    91.张镁,吴红霞等.彩棉纤维的形态结构、超微结构和主要化学组成,印染,2002,(6):1-5
    92.张宝红,刘方等.棉花组织培养体细胞胚胎发生的扫描电镜观察.作物学报,2000,26(1):124-126
    93.张宝红,刘方等.外源激素对棉花体细胞胚胎发生及发育的调控作用.棉花学报,2000,12(1):17-21
    94.张寒霜,李俊兰等.低酚陆地棉的体细胞胚胎发生和植株再生.河北农业大学学报,1999,22(1):9-12
    95.张文胜,张宝红等.糖源在棉花愈伤组织诱导、胚胎发生与发育中的作用.江西农业大学学报,1997,19(3):34-39
    96.赵世民,祖国诚,孙勇如等.通过根癌农杆菌介导法将兔防御素-1基因导入毛白杨(P.Tomentosa).遗传学报,1999,26(6):711-714