茶树幼根EST文库构建及茶氨酸代谢相关基因表达分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
茶氨酸系茶树中的特征性非蛋白质氨基酸,是构成茶叶品质的主要成分之一,影响茶叶的滋味品质,具有重要的保健功能和药理作用。目前与茶氨酸代谢相关的分子机理还知之甚少。因此,研究茶氨酸代谢途径上相关的基因,特别是茶氨酸合成的关键酶基因及调控因子等,将为进一步明晰茶氨酸代谢途径及利用转基因生产茶氨酸提供基础。基于茶氨酸合成于茶树根部以及推定的前体物为盐酸乙胺和谷氨酸钠,作者先在沙培的龙井43茶苗培养介质中添加茶氨酸合成的前体物激活茶氨酸代谢途径,然后选取茶氨酸合成器官——茶苗幼根作为试材,构建cDNA文库并进行ESTs测序分析;另一方面,筛选出茶氨酸含量差异的材料,通过实时荧光定量PCR初步分析茶氨酸代谢相关基因的差异表达。为今后构建基因芯片或数字化的基因表达谱来获取茶氨酸代谢相关的功能基因、调控因子以及深入了解茶氨酸合成及相关氮代谢机理提供研究基础。具体研究结果如下。
     1.由于采用现有的茶树RNA提取方法提取茶苗幼根中的RNA难以取得良好的效果,作者在提取茶苗幼根RNA的过程中,对几种RNA提取方法进行了比较,结果显示改良的CTAB法提取茶苗幼根等组织中的RNA完整性好、纯度高,可以满足构建cDNA文库的要求。
     2.以茶苗幼根为材料,采用SMART技术构建cDNA文库并对其质量进行了鉴定。结果显示该文库的重组率为92%,库容量为5.0×10~5,平均插入片段长度超过1kb,可以满足后续的大规模测序等要求。从文库中随机挑选克隆并从5’端单向测定5160个克隆,获得4860个有效的ESTs,序列长度从100至1850bp,平均长度为617bp(部分序列已登录GenBank,登录号为GE652554–FE861258)。用Phrap软件进行拼接,共获得1809个unigenes,其中,648个为contigs,1161个为singletons;与NCBI的非冗余核酸数据库进行BlastX比对以及Blast2go注释,将已知或推定的功能基因进行了分类,并通过Kegg分析其中涉及到次生代谢及氨基酸代谢相关的基因。结果显示,1041个unigenes(57.6%)相似于已知或推定功能的蛋白(E-value<1E-5),282个(15.5%)相似于未知功能的蛋白,486个(26.9%)没有比对上任何蛋白,推定为新的表达基因。将比对上的编码已知或推定功能蛋白的基因进一步分类,蛋白质合成类别占13.06%,与防卫相关的为8.84%,转运蛋白占8.65%。与次生代谢相关的功能基因占4.52%,其中测到序列数量最多的为编码细胞色素P450的功能基因,共有7个;此外,还有编码黄酮3-O-葡糖基转移酶、类黄酮3-葡糖基转移酶、p-香豆酰辅酶A三羟化酶、花青素5-O-葡糖基转移酶、松柏醇酰基转移酶及咖啡酰辅酶A-O-甲基转移酶等基因。Kegg pathway分析结果显示,与次生代谢相关的基因主要参与类黄酮、异黄酮、苯丙素、萜类化合物、二萜、花青素、黄酮和黄酮醇的生物合成代谢途径,其中最主要的是涉及黄酮代谢途径。与初级代谢相关的基因为17.39%,其中氨基酸相关的基因中有涉及氮代谢和茶氨酸合成的谷氨酰胺合成酶、S腺苷甲硫氨酸脱羧酶、精氨酸脱羧酶、γ-谷氨酰转肽酶、亚硝酸还原酶及胞质氨肽谷氨酰胺氨基转移酶等,主要参与蛋氨酸、丙氨酸、谷氨酸、精氨酸、脯氨酸、苯丙氨酸和谷胱甘肽等氨基酸的代谢。其他涉及胞内运输、信号转导、蛋白质降解与储存、能量、转录、细胞结构与细胞生长及未知功能基因分别占1.16%、6.63%、4.23%、5.57%、9.70%、7.69%和10.56%。
     3.在茶愈伤组织中添加茶氨酸合成的前体物、代谢中间产物及信号分子等成分,应用高效液相色谱分析愈伤组织生长过程中茶氨酸的变化及其在对照与处理之间的差异。分析了茶苗水培中添加(NH_4)_2SO_4诱导前后的茶氨酸含量变化,同时对遮阴、遮阴与水杨酸或盐酸乙胺组合处理以及不同品种的茶苗嫩叶中茶氨酸含量差异也进行了初步地探讨。试验结果显示,培养基中添加25mM盐酸乙胺后,在茶愈伤组织生长6d和12d时,与对照相比,茶氨酸含量增加最为明显。因此选取对照和盐酸乙胺诱导的茶愈伤组织作为差异表达材料进行后续的候选茶氨酸代谢相关基因的差异表达分析。
     4.为了选取合适的内参基因来分析前体物诱导及对照的茶愈伤组织中茶氨酸代谢相关基因的差异表达,作者利用GenBank上登录的茶树基因序列以及通过构建文库测序所得的基因(具有完整的阅读框)共7个持家基因设计引物,在分析这些引物的扩增效率和特异性后,测定了它们在茶愈伤组织生长过程中(对照和愈伤培养基中添加外源物的情况下)的表达水平。利用geNorm和NormFinder软件分析了这些持家基因的稳定性,确定在该条件下合适的内参基因为β-actin和GAPDH。
     5.选取11个推定的与茶氨酸代谢相关的基因,利用Primer premier5设计引物,利用qRT-PCR定量分析它们在茶氨酸含量差异明显的茶愈伤组织中表达量的差异。试验结果显示:GS1-1、gogat、NIR和GDH2在愈伤组织培养初始3d的表达量在处理组被明显地诱导,表明它们可能在含氮化合物的起始同化中发挥着作用;TS2及GDH2的表达量在处理组愈伤组织培养的3~6d增加明显,与同期茶愈伤组织培养基中添加前体物茶氨酸含量增加相一致。而TS1的表达量在对照和处理组并没有明显的差异,这可能说明该基因与TS2在茶氨酸的合成中发挥着不同的作用。
Theanine, a unique non-protein amino acid found almost exclusively in tea plants, isthe main component responsible for the ‘umami’ taste of ‘green’ tea, and has variousphysiological functions toward animals including humans. At present, the synthesis andmetabolism of theanine is still not fully understood and little is known about the genes inthe biosynthetic pathway. Therefore, research on the functional genes and regulationfactors involved in theanine synthesis would make a foundation for further understandingthe pathway of theanine metabolism and producing theanine through transgenic techology.Based on the conclusion that theanine is synthetized in the young roots of a tea plant,Camellia sinensis (L.) O. Kuntze cv. Longjing43, fed with precursors of ZtNH2·HCl andsodium glutamate to activate the pathway of theanine synthesis, was used as the material toconstruct a cDNA library, and partial clones were sequenced to obtain ESTs. Meanwhile,the effects of nitrogen compounds which were added into the culture media on thesynthesis of theanine were systematically studied. The effects of shading and shadingcombination with chemical agents on the content of theanine were also examined, and theexpressions of the unigenes putatively involved in theanine metabolism in tea callus withobvious difference in theanine contents were further analyzed using qRT-PCR (real timequantitative PCR). This will make a foundation for isolation of functional genes andregulatory factors involved in metabolism of nitrogen and theanine synthesis by usingcDNA microarray or DGE (digital gene expression) in the future. The main results are asfollows.
     1. We tried many published protocols for RNA isolation from the young roots of teaplants, including the method used for extraction RNA from tender tea leaves, but failed toyield high-quality RNA. Therefore, a modified CTAB method was developed, and highquality RNA was obtained,which was suitable for cDNA library construction.
     2. Based on SMART technology, a cDNA library was constructed for the tissue ofyoung roots of the tea plant (Camellia sinensis). The results showed: without amplicationof the library, the cloning efficiency was5×105colonies/μg, the recombinant rate was92%,and the average size of inserted cDNA fragment was over1kb. To generate ESTinformation,5160clones were single-pass sequenced and4860valid sequences from100bp to1850bp in length were generated with average size of617bp after vector trimmingand discarding the sequences less than100bp (some nucleotide sequences reported here are available in the GenBank dbEST database under the accession numbersGE652554–FE861258), in which648contigs and1161singlets were obtained after initialassembly with Phrap program. The unigenes were subjected to BlastX against thenon-redundant protein sequence database in NCBI and annotated with Blast2go. Based onthe results of BlastX analysis,1041(57.6%)unigenes were found to significantly match theproteins with known and putative function, and282unigenes (14.65%) matchedsignificantly with those having unknown function in the non-redundant protein database.The remaining486unigenes (26.9%) showed no significant homology to any protein in thepublic databases, indicated that they might be new genes. The1041unigenes of known andputative functions were further classified into13categories described by the EUArabidopsis Genome Project. Among them,136known and putative functional unigenes(13.06%) were grouped into the ‘protein synthesis’ category;92unigenes (8.84%) wererelated to the ‘defense’ category and90unigenes (8.65%) were classified into the‘transporter’ category. The secondary metabolism-related category was one of the mostdiverse categories, corresponding to4.52%of the functional genes in the study. In thiscategory, the most abundant sequences were the functional genes encoding cytochromeP450, with a total of seven unigenes. In addition, unigenes encoding flavonol3-O-glucosyltransferase, flavonoid3-glucosyltransferase, p-coumaryl-CoA3'-hydroxylase,anthocyanin5-O-glucosyltransferase, coniferyl alcohol acyltransferase andcaffeoyl-CoA-O-methyltransferase were also found. These are new genes by BlastXanalysis with the dataset of Camellia sinensis in the GenBank. Kegg pathway analysisshowed that many putative functional genes are involved in the metabolic pathway offlavonoid, isoflavone, phenylpropanoid, terpenoid, anthocyanin and flavonol biosynthesis,and the number of unigenes related to flavones is the most. The unigenes involved in primarymetabolism were the most abundant (17.39%), among them, a large number of unigeneswere found to be related with amino acid metabolism. The homologues of GS, SAMDC(S-adenosylmethionine decarboxylase), ADC (arginine decarboxylase), GGT (gamma-glutamyltranspeptidase) and nitrite reductase, cytosol aminopeptidase glutamine amidotransferaseclass-Ⅰwere also found. The unigenes related to amino acid metabolism are maininvolved in the pathways of methonine, alanine, glutamate, arginine, proline, phenylalanineand glutathione. The unigenes involved in intracellular transport, signal transduction,protein degradation and store, energy, transcription, cell structure and growth, andunknown function occupied1.16%,6.63%,4.23%,5.57%,9.70%,7.69%and10.56%,respectively.
     3. The effects of nitrogen compounds such as theanine precursors, metabolicintermediate in theanine synthesis and NO(nitric oxide) donor SNP(sodium nitroprusside)on the synthesis of theanine in tea callus were investigated by using HPLC (highperformance liquid chromatography) to detect theanine contents; the accumulation oftheanine in the roots of tea plants with different growing periods after addition of(NH_4)_2SO_4into liquid medium was analyzed; the difference of theanine content in roots ofthe tea plant (Longmenkang cultivar) with shading, shading combination with SA (salicylicacid) or ZtNH2·HCl (ethylamine hydrochloride) and that in tender leaves of differentcultivars of tea plants were also preliminary discussed. Our data indicated that25mMZtNH2·HCl could increase the content of theanine in tea callus significantly, especially inthe tea callus grown from the6thday to the12thday. Therefore, tea calli of the control andtreatment groups could be used as materials for studying the genes correlated with theaninemetabolism for qRT-PCR, cDNA microarray or digital gene expression profile analysis.
     4. In order to obtain a suitable reference genes for analysis of the related geneexpression in calli of the control and treatment groups,7housekeeping genes from theGenBank and ESTs of cDNA library of the young roots(with complete open readingframe)were chosen for primer design. After analysis the amplification efficiency andprimers specificity, the expression levels of the7housekeeping genes in tea calli of thecontrol and treatment groups at different growth stages were determined, and theirstabilities of expressions were analyzed using geNorm and NormFinder softwares. As aresult, β-actin and GAPDH are suitable reference genes under this condition.
     5. The expression levels of11selected genes with potential role in theaninemetabolism in tea calli of the control and treatment groups (with addition of ZtNH2·HCl incalli medium) at different growth stages were analyzed using qRT-PCR with gene specificprimers designed with primer premier software (version5), and the results are as follows.The expression levels of GS1-1, gogat, NIR and GDH2were obviously induced in tea callusof the treatment group at the first3days of the callus growth, indicating that theseunigenes might play a role in assimilation of nitrogen compound in the beginning; thetranscript levels of TS2and GDH2were much higher in the treatment group than in thecontrol group from the3rdday to the6thday of callus growth, which is consistent with theincrease of theanine content in the treatment group at the same growth stage. There was noobvious difference in expression abundance of TS1between the control and the treatmentgroups, indicating TS1and TS2might play different roles in theanine synthesis.
引文
[1] Sakato Y. The chemical constituents of tea: III. A new amide theanine[J]. Nippon Nogeikagaku Kaishi,1949,23:262-267.
    [2] Casimir J., Jadot J., Renard M. Separation and characterisation of N-ethyl--Glutamine in Xerocomus badius (Boletusladius)[J]. Biochem Biophys Acta,1960,39:462-468.
    [3] Tsushida T., Doi Y. Caffeine, theanine and catechin content in calluses of tea stem and anther [J]. Nippon NogeiKagaku Kaishi,1984,58(11):1131-1133.
    [4] Li J., Li P., Liu F. Production of theanine by Xerocomus badius (mushroom) using submerged fermentation[J].Lwt-Food Science and Technology,2008,41(5):883-889.
    [5]宛晓春.茶叶生物化学[M].3版.北京:中国农业出版社.2003.
    [6] Ekborg-Ott K.H., Taylor A., Armstrong D.W. Varietal differences in the total and enantiomeric composition oftheanine in tea [J]. Journal of Agricultural and Food Chemistry,1997,45(2):353-363.
    [7] Nakagawa M. Chemical components and taste of green tea [J]. Japan Agricultural Research Quarterly,1975,9(3):156-160.
    [8] Narukawa M., Morita K., Hayashi Y. L-theanine elicits an umami taste with inosine5'-monophosphate [J]. Bioscience,Biotechnology, and Biochemistry,2008,72(11):3015-3017.
    [9] Juneja L.R., Chu D.C., Okubo T., et al. L-Theanine--a unique amino acid of green tea and its relaxation effect inhumans [J]. Trends in Food Science&Technology,1999,10(6-7):199-204.
    [10] Yokogoshi H., Kobayashi M., Mochizuki M.. et al. Effect of theanine, γ-glutamylethylamide, on brain monoaminesand striatal dopamine release in conscious rats [J]. Neurochemical Research,1998,23(5):667-673.
    [11] Yamada T., Terashima T., Okubo T., et al. Effects of theanine, γ-glutamylethylamide on neurotransmitter release andits relationship with glutamic acid neurotransmission[J]. Nutritional Neuroscience,2005,8(4):219-226.
    [12] Kimura K., Ozeki M., Juneja L.R., et al. L-Theanine reduces psychological and physiological stress responses [J].Biological Psychology,2007,74(1):39-45.
    [13] Kakuda T., Matsuura T., Sagesaka Y. et al. Product and method for inhibiting caffeine stimulationwith theanine [P]. JP5501866,1996
    [14]张莹,杜晓,王孝仕.茶叶中茶氨酸研究进展及利用前景[J].食品研究与开发,2007,28(011):170-174.
    [15]凌关庭.可供开发食品添加剂(Ⅷ): L-茶氨酸及其生理功能[J].粮食与油脂,2003,5:47-50.
    [16] Lichtenstein N., Gertner S. Preparation of gamma-alkylamides of glutamic acid [J]. Journal of the AmericanChemical Society,1942,64:1021-1022.
    [17] Sakato Y., Hashizume, T., Kishimoto, Y. The chemical constituents of tea. V. Synthesis of theanine [J]. Nippon NogeiKagaku Kaishi,1950,23:269-271.
    [18] Hashizume T. Amino acids in tea I. Synthesis of theanine from pyrrolidonecarboxylic acid[J]. Nippon Nogei KagakuKaishi,1952,25:25-26.
    [19] Yamada Y., Sakurai, M., Tsuchiya, Y. Synthesis of gamma-alkylamides of L-glutamic acid. Reactionsof metallic salts of L-pyrrolidonecarboxylic acid with primary alkylamines [J]. Bulletin of the Chemical Society of Japan,1966,39(9):1999-2000.
    [20]王三永李晓光,李春荣,等. L-茶氨酸的合成研究[J].精细化工,2001,18(4):223-224.
    [21] Yan S.H., Dufour J.P. Meurens M. Synthesis and characterization of highly pure theanine [J]. Journal of Tea Science,2003,23:99-104.
    [22]钱绍松,陈然,刘毅,等.中试规模制备L-茶氨酸及其衍生物[J].精细化工,2005,22(11):845-847.
    [23] Sasaoka K., Kito M. Synthesis of theanine by tea seedling homogenate [J]. Agricultural and Biological Chemistry,1964,28(5):313-317.
    [24] Sasaoka K., Kito M., Inagaki H. Studies on the biosynthesis of theanine in tea seedlings: synthesis of theanine by thehomogenate of tea seedlings [J]. Agricultural and Biological Chemistry,1963,27(6):467-468.
    [25] Sasaoka K., Kito M., Onishi Y. Some properties of the theanine synthesizing enzyme in tea seedlings [J].Agricultural and Biological Chemistry,1965,29(11):984-988.
    [26] Suzuki H., Izuka S., Miyakawa N, et al. Enzymatic production of theanine, an "umami" component of tea, fromglutamine and ethylamine with bacterial gamma-glutamyltranspeptidase [J]. Enzyme and Microbial Technology,2002,31(6):884-889.
    [27] Suzuki H., Izuka S., Minami H., et al. Use of bacterial gamma-glutamyltranspeptidase for enzymatic synthesis ofgamma-D-glutamyl compounds [J]. Applied and Environmental Microbiology,2003,69(11):6399-6404.
    [28] Suzuki H., Kumagai H. Application of bacterial gamma-glutamyl-transpeptidase to improve the tasteof food [J]. Challenges in Taste Chemistry and Biology,2004,867:223-237.
    [29] Suzuki H., Yamada C., Kato K. Gamma-glutamyl compounds and their enzymatic production using bacterialgamma-glutamyltranspeptidase [J]. Amino Acids,2007,32(3):333-340.
    [30]郭亮,沈微,王正祥,等.生物转化法生产茶氨酸的重组大肠杆菌的构建[J].食品与生物技术学报,2005,24(2):41-45
    [31]王贤波.催化合成茶氨酸的菌株筛选与重组菌的构建[D].杭州:中国农业科学院茶叶研究所2006.
    [32]朱文娴,王丽鸳,成浩,等.催化合成茶氨酸的基因工程菌的构建及重组基因的表达[J].江苏农业学报,2008,24(003):257-262.
    [33]贾晓鹤,陈莉,赵宁伟,等.生物转化法应用重组谷氨酰转肽酶合成L-茶氨酸[J].食品工业科技,2008(002):166-169.
    [34] Hung C.P., Lo H.F., Hsu W.H., et al. Immobilization of Escherichia coli novablue-glutamyltranspeptidase inCa-alginate-k-carrageenan beads [J]. Applied Biochemistry and Biotechnology,2008,150(2):157-170.
    [35] Zhang F., Zheng Q.Z., Jiao Q.C., et al. Enzymatic synthesis of theanine from glutamic acid γ-methyl ester andethylamine by immobilized Escherichia coli cells withγ-glutamyltranspeptidase activity [J]. Amino Acids,2010:1-6.
    [36]Tachiki T., Yamada T., Mizuno K., et al. γ-Glutamyl transfer reactions by glutaminase from Pseudomonasnitroreducens IFO12694and their application for the syntheses of theanine and γ-glutamylmethylamide [J]. Bioscience,Biotechnology, and Biochemistry,1998,62(7):1279-1283
    [37] Yamada T., Naemura Y., Shiode T., Manufacture of theanine with glutaminase [P]. JP05068578,1993.
    [38] Abelian V. H., Okubo, T., Shamtsian, M. M. A novel method of production of theanine by immobilized Pseudomonasnitroreducens cells [J]. Bioscience, Biotechnology, and Biochemistry,1993,57:481-483.
    [39] Tachiki T., Suzuki H, Wakisaka S., et al. Production of glutamylmethylamide and γ-glutamylethylamide by couplingof baker’s yeast preparations and bacterial glutamine synthetase[J]. Journal of General and Applied Microbiology,1986,32:545-548.
    [40] Yamamoto S., Uchimura K., Wakayama M., et al. Purification and characterization of glutamine synthetase ofPseudomonas taetrolens Y-30: an enzyme usable for production of theanine by coupling with the alcoholic fermentationsystem of baker's yeast [J]. Bioscience, Biotechnology, and Biochemistry,2004,68(9):1888-1897.
    [41] Yamamoto S., Wakayama M., Tachiki T. Theanine production by coupled fermentation with energy transferemploying Pseudomonas taetrolens Y-30glutamine synthetase and baker's yeast cells [J]. Bioscience, Biotechnology, andBiochemistry,2005,69(4):784-789.
    [42] Yamamoto S., Wakayama M., Tachiki T. Cloning and expression of Pseudomonas taetrolens Y-30gene encodingglutamine synthetase: an enzyme available for theanine production by coupled fermentation with energy transfer [J].Bioscience, Biotechnology, and Biochemistry,2006,70(2):500-507.
    [43] Yamamoto S., Wakayama M., Tachiki T. Characterization of theanine-forming enzyme from Methylovorus mays No.9in respect to utilization of theanine production [J]. Bioscience, Biotechnology, and Biochemistry,2007,71(2):545-552
    [44] Yamamoto S., Wakayama M., Tachiki T. Cloning and expression of Methylovorus mays No.9gene encodingγ-glutamylmethylamide synthetase: an enzyme usable in theanine formation by coupling with the alcoholic fermentationsystem of baker's yeast [J]. Bioscience, Biotechnology, and Biochemistry,2008,72(1):101-109.
    [45] Yamamoto S., Morihara Y., Wakayama M., et al.. Theanine production by coupled fermentation with energy transferusing gamma-glutamylmethylamide synthetase of Methylovorus mays No.9[J]. Bioscience, Biotechnology, andBiochemistry,2008,72(5):1206-1211.
    [46] Kimura T., Sugahara I., Hanai K. Purification and characterization of gamma-glutamylmethylamide synthetase fromMethylophaga sp. AA-30[J]. Bioscience, Biotechnology, and Biochemistry,1992,56(5):708-711.
    [47] Yamamoto S., Morihara Y., Wakayama M., et al. Repeated batch production of theanine by coupled fermentationwith energy transfer using membrane-enclosed-glutamylmethylamide synthetase and dried yeast cells [J]. Bioscience,Biotechnology, and Biochemistry,2009,73(12):2800-2802.
    [48]朱文娴,黎星辉,王丽鸳,等.利用GS基因构建茶氨酸生物合成工程菌的研究[J].茶叶科学,2008,28(004):242-248.
    [49] Zhou X., Zhang Z., Jia X., et al. Mn2+enhances theanine-forming activity of recombinant glutamine synthetase fromBacillus subtilis in Escherichia coli [J]. World Journal of Microbiology and Biotechnology,2008,24(8):1267-1272.
    [50] Miyake K., Kakita S. A novel catalytic ability of gamma-glutamylcysteine synthetase of Escherichia coli and itsapplication in theanine production[J]. Bioscience, Biotechnology, and Biochemistry,2009,73(12):2677-2683.
    [51] Suzuki H. Izuka S., Miyakawa N., et al. Enzymatic production of theanine, an “umami” component of tea, fromglutamine and ethylamine with bacterial γ-glutamyltranspeptidase[J]. Enzyme and Microbial Technology,2002,31(6):884-889.
    [52] Matsuura T., Kakuda T. Effects of precursor, temperature, and illumination on theanine accumulation in tea callus(Biological Chemistry)[J]. Agricultural and Biological Chemistry,1990,54(9):2283-2286.
    [53] Orihara Y., Furuya T. Production of theanine and other gamma-glutamyl derivatives by Camellia sinensis culturedcells [J]. Plant Cell Reports,1990,9(2):65-68.
    [54]陈瑛,钟俊辉.茶细胞悬浮培养生产茶氨酸的工艺条件研究[J].绍兴文理学院学报,1998,18(5):71-75.
    [55]高秀清.茶氨酸生物合成研究[D].杭州:中国农业科学院茶叶研究所,2002.
    [56]吕虎,华萍,孔庆友,等.茶叶细胞悬浮培养中茶氨酸生物合成工艺研究[J].广西农业生物科学,2005,24(002):136-139.
    [57]吕虎,华萍,余继红,等.大规模茶叶细胞悬浮培养茶氨酸合成工艺优化研究[J].广西植物,2007,27(3):457-461.
    [58]朱松.茶叶茶氨酸的分离纯化研究[D].无锡:江南大学,2005.
    [59]林智,杨勇,谭俊峰,等.茶氨酸提取纯化工艺研究[J].天然产物研究与开发,2004,16(005):442-447.
    [60]萧力争,肖文军,龚志华,等.膜技术富集儿茶素渣中茶氨酸效应研究[J].茶叶科学,2006,26(001):37-41.
    [61]李布青,胡海明.用氨基酸分析仪测定茶氨酸[J].生物化学与生物物理进展,1988,6:74
    [62]郭升平.高效液相色谱法测定茶叶中茶氨酸的研究[J].色谱,1996,14(6):464-465.
    [63]朱旗,童京汉. HPLC检测分析速溶绿茶游离氨基酸[J].茶叶科学,2001,21(002):134-136.
    [64] Peng L., Song X.H., Shi X.G., et al. An improved HPLC method for simultaneous determinationof phenolic compounds, purine alkaloids and theanine in Camellia species [J]. Journal of Food Composition and Analysis,2008,21(7):559-563.
    [65] Thippeswamy R., Gouda K.G. M., Rao D.H., et al. Determination of theanine in commercial tea by liquidchromatography with fluorescence and diode array ultraviolet detection [J]. Journal of Agricultural and Food Chemistry,2006,54(19):7014-7019.
    [66] Kvasnicka F., Kratka J. Isotachophoretic determination of theanine [J]. Central European Journal of Chemistry,2006,4(2):216-222.
    [67]施倩,陈林,张正竹,等.茶叶中L-茶氨酸HPLC-PDAD分析方法的建立[J].安徽农业大学学报,2006,33(003):347-350.
    [68] Ying Y., Ho J.W., Chen Z.Y., et al. Analysis of theanine in tea leaves by HPLC with fluorescence detection [J].Journal of Liquid Chromatography&Related Technologies,2005,28(5):727-737.
    [69] Li P., Wan X.C., Zhang Z.Z., et al. A novel assay method for theanine synthetase activity by capillary electrophoresis[J]. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences,2005,819(1):81-84.
    [70]张峻萍,方从兵,宛晓春,等.茶叶中茶氨酸的胶束电动毛细管电泳定量方法初步研究[J].茶业通报,2006,28(003):108-110.
    [71]龚雨顺,黄建安,崔湘兴,等.离子对色谱法测定茶叶中的茶氨酸[J].茶叶科学,2008,28(002):89-92.
    [72] Le Gall G., Colquhoun I.J.,. Defernez M. Metabolite profiling using1HNMR spectroscopy for quality assessment ofgreen tea, Camellia sinensis (L.)[J]. Journal of Agricultural and Food Chemistry,2004,52(4):692-700.
    [73]张佳,王川丕,阮建云. GC-MS及GC测定茶叶中主要游离氨基酸的方法研究[J].茶叶科学,2010,30(006):445-452
    [74] Ding Y., Yu H., Mou S. Direct determination of free amino acids and sugars in green teaby anion-exchange chromatography with integrated pulsed amperometric detection [J]. Journal of Chromatography A,2002,982(2):237-244.
    [75]朱小兰,陈波,罗旭彪,等.高效液相色谱法测定茶叶中的茶氨酸[J].色谱,2003,21(4):400-402.
    [76] Horie H., Mukai T., Kohata K.. Simultaneous determination of qualitatively important componentsin green tea infusions using capillary electrophoresis [J]. Journal of Chromatography A,1997,758(2):332-335.
    [77] Horie H., Kohata K.. Application of capillary electrophoresis to tea quality estimation [J]. Journal ofChromatography A,1998,802(1):219-223.
    [78] Aucamp JP, Hara Y., Apostolides Z.. Simultaneous analysis of tea catechins, caffeine, gallic acid, theanine andascorbic acid by micellar electrokinetic capillary chromatography [J]. Journal of Chromatography A,2000,876(1-2):235-242.
    [79]李平,宛晓春,李健,等.茶氨酸的衍生化及毛细管电泳定量技术[J].茶叶科学,2004,24(002):119-123.
    [80] Konishi S., Matsuda T., Takahashi E.. Synthesis of theanine and l-glutamic acid γ-methylamidein Thea sinensis, Camellia sasanqua, and Oryza sativa. V. Metabolism and regulation of theanine and related compoundsin the tea plant [J]. Nippon Dojo-Hiryogaku Zasshi,1969,40(3):107-112.
    [81] Takeo T. Formation of amino acids induced by ammonia application and seasonal level fluctuation of amino acidscontents in tea plant [J]. Chagyo Gijutsu Kenkyu,,1979,56:70-77.
    [82] Konishi S., Yamaji R. Metabolism of theanine, glutamine, and asparagine in tea shoots [J]. Japanese Journal of SoilScience and Plant Nutrition (Japan),1982,53(3):241-246.
    [83] Konishi S., Kasai Z. Metabolism and regulation of theanine and related compounds in tea plants. II. Synthesis oftheanine from carbondioxide-14C in tea plants and sites of thesynthesis [J]. Nippon Dojo-Hiryogaku Zasshi,,1968,39(9):439-443.
    [84] Konishi S., Takahashi E. Metabolism of theanine-N-ethyl-14C and its metabolic redistributionin the tea plant. VI. Metabolism and regulation of theanine and related compounds in the tea plant [J]. NipponDojo-Hiryogaku Zasshi,1969,40(11):479-484.
    [85] Mori A., Hoshina T. An application of a radio-amino acid analyzer to studying the metabolismof glutamate analogues in tea plant (Camellia sinensis)[J]. Japanese Journal of Soil Science and Plant Nutrition (Japan),1983,54(2):109-116
    [86] Oh K., Kato T., Xu H. L.. Transport of nitrogen assimilation in xylem vessels of green tea plants fed with NH4-N andNO3-N [J]. Pedosphere,2008,18(2):222-226.
    [87]竹尾忠一.茶の滋味に関与するテアニンを中心とした茶樹の窒素代謝[J].茶業試験場研究報告,1981,17:1-68.
    [88] Takeo T. Ammonium-type nitrogen assimilation in tea plants [J]. Agricultural and Biological Chemistry,1980,44(9):2007-2012.
    [89] Kito M., Kokura H., Izaki J., et al. Theanine, a precursor of the phloroglucinol nucleus of catechins in tea plants [J].Phytochemistry,1968,7(4):599-603.
    [90]Takeo T. L-Alanine as a precursor of ethylamine in Camellia sinensis [J]. Phytochemistry,1974,13(8):1401-1406.
    [91] Takeo T. L-Alanine decarboxylase in Camellia sinensis [J]. Phytochemistry,1978,12(2):313-314.
    [92] Lam H.M., Coschigano K.T., Oliveira IC, et al. The molecular-genetics of nitrogen assimilation into amino acids inhigher plants[J]. Annual Review of Plant Biology,1996,47(1):569-593.
    [93] Bernard S.M., Habash D.Z.. The importance of cytosolic glutamine synthetase in nitrogen assimilation andrecycling[J]. New Phytologist,2009,182(3):608-620.
    [94] Hirel B., Bouet C., King B., et al. Glutamine synthetase genes are regulated by ammonia provided externally or bysymbiotic nitrogen fixation [J]. The EMBO Journal,1987,6(5):1167-1171
    [95] Rana N., Mohanpuria P., Yadav S.. Cloning and characterization of a cytosolic glutamine synthetase from Camelliasinensis (L.) O. Kuntze that is upregulated by ABA, SA, and H2O2[J]. Molecular Biotechnology,2008,39(1):49-56.
    [96] Rana N.K., Mohanpuria P., Yadav S.K.. Expression of tea cytosolic glutamine synthetase is tissue specific andinduced by cadmium and salt stress [J]. Biologia Plantarum,2008,52(2):361-364.
    [97] Takeo T. Nitorogen metabolism pertaining to biosynthesis of theanine in tea plants [J]. Japan Agricultural ResearchQuarterly,1981,15(2):110-116
    [98]王新超杨亚军,陈亮.茶树谷氨酸合酶的提取与活性测定[J].中国茶叶,2004(5):10-11.
    [99] Srivastava H.S., Singh R.P.. Role and regulation of L-glutamate dehydrogenase activity in higher plants[J].Phytochemistry,1987,26(3):597-610.
    [100] Stewart G..R., Rhodes D.. Nitrogen metabolism of halophytes. III. Enzymes of ammonia assimilation [J]. NewPhytologist,1978,80(2):307-316.
    [101] Lea P.J., Thurman D.A.. Intracellular location and properties of plant L-glutamate dehydrogenases [J]. Journal ofExperimental Botany,1972,23(2):440-449
    [102] Washitani I., Sato S. Studies on the function of proplastids in the metabolism of in vitro cultured tobacco cells I.Localization of nitrite reductase and NADP-dependent glutamate dehydrogenase [J]. Plant and Cell Physiology,1977,18(1):117-125
    [103] Li P., Wan X.C., Zhang Z.Z, et al. A novel assay method for theanine synthetase activity by capillaryelectrophoresis [J]. Journal of Chromatography B,2005,819(1):81-84.
    [104]李平,李健,李娟,等.茶籽培育及茶氨酸合成酶活力测定条件的研究[J].安徽农业大学学报,2005,32(002):158-161.
    [105] Okada Y., Ozeki M., Aoi N, Enzymic manufacture of theanine[P]. WO2006001296,2006
    [106] Tsushida T. Metabolism of L-theanine in tea leave[J]. Japan Agricultural Research Quarterly,1987,21:42-46.
    [107] Tsushida T., Takeo T.. An enzyme hydrolyzing L-theanine in tea leaves [J]. Agricultural and Biological Chemistry(Japan),1985,49(10):2913-2917
    [108]潘根生,高人俊.茶树遮荫生理生化变化[J].茶叶科学,1986,6(2):12-14.
    [109]陈席卿.覆盖遮荫对茶树生理生化和茶叶品质的影响[J].茶叶,1989(003):1-3.
    [110]舒庆岭赵和寿.氨基酸在茶叶中的分布、变化及其提高途径[J].氨基酸和生物资源,1988(4):13-16.
    [111]张文锦,梁月荣,张方舟,等.覆盖遮荫对乌龙茶产量,品质的影响[J].茶叶科学,2004,24(004):276-282.
    [112] Li J. The effect of plant mineral nutrition on yield and quality of green tea (Camellia sinensis L.) under fieldconditions[D]. S.l.2004.
    [113] Ruan J., Haerdter R.H., GerendáS J.. Impact of nitrogen supply on carbon/nitrogen allocation: a case study onamino acids and catechins in green tea [Camellia sinensis (L.) O. Kuntze] plants [J]. Plant Biology,2010,12(5):724-734.
    [114] Selvendran R.R., Selvendran S.. Chemical changes in young tea plant (Camellia sinensis L.) tissues followingapplication of fertilizer nitrogen [J]. Annals of Botany,1973,37(3):453-461
    [115]潘根生,小西茂毅.供铝条件下氮对茶苗生长发育的影响[J].浙江农业大学学报,1995,21(005):461-464.
    [116] Ruan J., GerendáS J., Rdter R. H., et al. Effect of root zone pH and form and concentration of nitrogen onaccumulation of quality related components in green tea [J]. Journal of the Science of Food and Agriculture,2007,87(8):1505-1516.
    [117]陈宗懋.日本百项茶叶科研成果(续)[J].中国茶叶,2005,27(001):28-30.
    [118]林智,吴洵.茶树钾营养与品质,产量的关系[J].福建茶叶,1990(001):23-30.
    [119]何孝延陈泉宾.优质高效的茶叶施肥原理与应用[J].茶叶科学技术,2005(2):1-3.
    [120]叶勇.硫影响茶树氮代谢内在机理的探讨[J].福建茶叶,1993(001):14-16.
    [121] Kato M., Mizuno K., Crozier A.,et al. Plant biotechnology: Caffeine synthase gene from tea leaves [J]. Nature,2000,406(6799):956-957.
    [122] Mizutani M., Nakanishi H., Ema J., et al. Cloning of β-primeverosidase from tea leaves, a key enzyme in tea aromaformation [J]. Plant physiology,2002,130(4):2164-2176
    [123] Dittrich H., Kutchan T. M. Molecular cloning, expression, and induction of berberine bridge enzyme, an enzymeessential to the formation of benzophenanthridine alkaloids in the response of plants to pathogenic attack [J]. Proceedingsof the National Academy of Sciences,1991,88(22):9969-9973
    [124]李远华,江昌俊,杨顺利,等.茶树β-葡萄糖苷酶cDNA克隆和原核表达[J].农业生物技术学报,2004,12(006):625-629.
    [125]赵东,刘祖生.茶树多酚氧化酶基因的克隆及其序列比较[J].茶叶科学,2001,21(002):94-98.
    [126] Borevitz J.O., Xia Y., Blount J., et al. Activation tagging identifies a conserved MYB regulator of phenylpropanoidbiosynthesis [J]. Plant Cell,2000,12(12):2383-2394
    [127] O’connor S. Methods for molecularidentification of biosynthetic enzymes in plants [J]. Plant-derived NaturalProducts,2009:165-179.
    [128]栾维江,孙宗修. Ac/Ds标签系统与水稻功能基因组学[J].植物生理与分子生物学学报,2005,31(5):441-450.
    [129]胡英考.转座子标签法克隆分离植物基因的研究进展[J].生物技术通报,2003,2:18-21.
    [130] Jones D.A., Thomas C.M., Hammond-Kosack K.E., et al. Isolation of the tomato Cf-9gene for resistance toCladosporium fulvum by transposon tagging [J]. Science,1994,266(5186):789-793
    [131] Sive H.L., St John T.. A simple subtractive hybridization technique employing photoactivatable biotin and phenolextraction [J]. Nucleic Acids Research,1988,16(22):10937.
    [132] Liang P., Pardee A.B.. Differential display of eukaryotic messenger RNA by means of the polymerase chainreaction [J]. Science,1992,257(5072):967-971
    [133] Derisi J., Penland L., Brown P.O., et al. Use of a cDNA microarray to analyse gene expression patterns in humancancer [J]. Nature genetics,1996,14(4):457-460.
    [134] Kurian K.M., Watson C.J., Wyllie A.H. DNA chip technolgy [J]. The Journal of Pathology,1999,187(3):267-271.
    [135] Velculescu V.E., Zhang L., Vogelstein B., et al. Serial analysis of gene expression [J]. Science,1995,270(5235):484-487
    [136] Adams M.D., Kelley J.M., Gocayne J.D.,et al. Complementary DNA sequencing: expressed sequence tags andhuman genome project [J]. Science,1991,252(5013):1651-1656
    [137] Adams M.D., Soares M.B.,. Kerlavage A.R,et al. Rapid cDNA sequencing (expressed sequence tags) from adirectionally cloned human infant brain cDNA library [J]. Nature genetics,1993,4(4):373-380.
    [138]韦朝领,高香凤,叶爱华,等.基于DDRT-PCR研究茶树对茶尺蠖取食诱导的基因表达谱差异[J].茶叶科学,2007,27(002):133-140.
    [139]余涛,易平,支立峰,等.利用改进的差异显示技术分离烟草中受乙烯利诱导的新基因[J].作物学报,2005,31(001):24-28.
    [140] Bachem C.W.B., Hoeven R.S.,. Bruijn S.M, et al. Visualization of differential gene expression using a novelmethod of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development [J]. ThePlant Journal,1996,9(5):745-753.
    [141] Goossens A., H kkinen S.T., Laakso I., et al. A functional genomics approach toward the understanding ofsecondary metabolism in plant cells [J]. Proceedings of the National Academy of Sciences of the United States ofAmerica,2003,100(14):8595-8600
    [142] Habu Y., Fukada-Tanaka S., Hisatomi Y.,et al. Amplified restriction fragment length polymorphism-based mRNAfingerprinting using a single restriction enzyme that recognizes a4-bp sequence [J]. Biochemical and biophysicalresearch communications,1997,234(2):516-521.
    [143] Diatchenko L., Lau Y. F,. Campbell A.P, et al. Suppression subtractive hybridization: a method for generatingdifferentially regulated or tissue-specific cDNA probes and libraries [J]. Proceedings of the National Academy ofSciences,1996,93(12):6025-6030
    [144] Park J.S.,. Kim J.B, Hahn B.S., et al. EST analysis of genes involved in secondary metabolism in Camellia sinensis(tea), using suppression subtractive hybridization [J]. Plant Science,2004,166(4):953-961.
    [145] Lisitsyn N., Wigler M.. Cloning the differences between two complex genomes [J]. Science,1993,259(5097):946-951
    [146] Hubank M., Schatz D.G.. Identifying differences in mRNA expression by representational difference analysis ofcDNA [J]. Nucleic Acids Research,1994,22(25):5640-5648
    [147] Schena M., Shalon D., Davis R.W.,et al. Quantitative monitoring of gene expression patterns with a complementaryDNA microarray [J]. Science,1995,270(5235):467-470
    [148]滕晓坤,肖华胜.基因芯片与高通量DNA测序技术前景分析[J].中国科学C辑,2008,38(10):891-899.
    [149] Aharoni A., Keizer L.C.P.,. Bouwmeester H.J, et al. Identification of the SAAT gene involved in strawberry flavorbiogenesis by use of DNA microarrays [J]. Plant Cell,2000,12(5):647-662
    [150]胡松年,基因表达序列标签(EST)数据分析手册.2005,杭州:浙江大学出版社.
    [151] Kantety R.V., La Rota M., Matthews D.E, et al. Data mining for simple sequence repeats in expressed sequence tagsfrom barley, maize, rice, sorghum and wheat [J]. Plant Molecular Biology,2002,8(5):501-510.
    [152] Rudd S. Expressed sequence tags: alternative or complement to whole genome sequences?[J]. Trends in PlantScience,2003,8(7):321-329.
    [153] Cairney J., Zheng L., Cowels A., et al. Expressed sequence tags from loblolly pine embryos reveal similarities withangiosperm embryogenesis [J]. Plant Molecular Biology,2006,62(4):485-501.
    [154] Chen Y.A.,. Mckillen D.J, Wu S., et al. Optimal cDNA microarray design using expressed sequence tags fororganisms with limited genomic information [J]. BMC Bioinformatics,2004,5(1):191.
    [155] Polichuk D.R., Zhang Y.,. Reed D.W, et al. A glandular trichome-specific monoterpene alcohol dehydrogenase fromArtemisia annua [J]. Phytochemistry,2010,71(11-12):1264-1269.
    [156] Van De Loo F.J., Broun P., Turner S., et al. An oleate12-hydroxylase from Ricinus communis L. is a fatty acyldesaturase homolog [J]. Proceedings of the National Academy of Sciences of the United States of America,1995,92(15):6743-6747
    [157] Cahoon E.B., Carlson T.J.,. Ripp K.G., et al. Biosynthetic origin of conjugated double bonds: production of fattyacid components of high-value drying oils in transgenic soybean embryos [J]. Proceedings of the National Academy ofSciences of the United States of America,1999,96(22):12935-12940
    [158] Deng W.W., Ogitab S., Ashihara H. Ethylamine content and theanine biosynthesis in different organs of Camelliasinensis seedlings [J]. Z. Naturforsch,2009,64:387-390.
    [159] Sasaoka K., Kito M., Onishi Y.. Synthesis of theanine by pea seed acetone powder extract [J]. Agricultural andBiological Chemistry,1964,28(5):318-324.
    [160] Sasaoka K., Kito M., Onishi Y.. Synthesis of theanine by pigeon liver acetone powder extract [J]. Agricultural andBiological Chemistry,1964,28(5):325-330.
    [161] Vidal E.A., Gutiérrez R.A. A systems view of nitrogen nutrient and metabolite responses in Arabidopsis [J]. CurrentOpinion in Plant Biology,2008,11(5):521-529.
    [162] Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroformextraction [J]. Analytical Biochemistry,1987,162(1):156-159.
    [163] Wan C.Y., Wilkins T.A. A modified hot borate method significantly enhances the yield of high-quality RNA fromcotton (Gossypium hirsutum L.)[J]. Analytical Biochemistry,1994,223(1):7-12.
    [164] Azevedo H., Lino-Neto T., Tavares R.M.. An improved method for high-quality RNA isolation from needles ofadult maritime pine trees [J]. Plant Molecular Biology Reporter,2003,21(4):333-338.
    [165]李德葆,基因工程操作技术[M].1996,上海:上海科学出版社.
    [166]江昌俊,王朝霞.茶树中提纯总RNA的研究[J].茶叶科学,2000,20(001):27-29.
    [167]邹盛勤.茶叶的药用成分,药理作用及应用研究进展[J].中国茶叶加工,2004,3:35-37.
    [168]陆建良,林晨,骆颖颖,等.茶树重要功能基因克隆研究进展[J].茶叶科学,2007,27(2):95-103.
    [169] Takeuchi A., Matsumoto S., Hayatsu M.. Chalcone synthase from Camellia sinensis: isolation of the cDNAs andthe organ-specific and sugar-responsive expression of the genes [J]. Plant and Cell Physiology,1994,35(7):1011.
    [170] Matsumoto S., Takeuchi A., Hayatsu M., et al. Molecular cloning of phenylalanine ammonia-lyase cDNA andclassification of cultivars and cultivars of tea plants (Camellia sinensis) using the tea PAL cDNA probe [J]. Theoreticaland Applied Genetics,1994,89(6):671-675.
    [171] Chen L., Zhao L., Gao Q. Generation and analysis of expressed sequence tags from the tender shoots cDNA libraryof tea plant (Camellia sinensis)[J]. Plant Science,2005,168(2):359-363.
    [172]史成颖,宛晓春,江昌俊,等.提取高质量茶树总RNA的方法研究[J].安徽农业大学学报,2007,34(003):360-363.
    [173] Bevan M., Bancroft I., Bent E., et al. Analysis of1.9Mb of contiguous sequence from chromosome4of Arabidopsis thaliana [J]. Nature,1998,391(6666):485-488.
    [174]李娟.安吉白茶高氨基酸相关基因分离及鉴定[D].长沙:湖南农业大学,2007.
    [175]成浩,高秀清.茶树悬浮细胞茶氨酸生物合成动态研究[J].茶叶科学,2004,24(002):115-118.
    [176] Bosch L., Alegria A., Farré R. Application of the6-aminoquinolyl-N-hydroxysccinimidyl carbamate (AQC) reagent tothe RP-HPLC determination of amino acids in infant foods [J]. Journal of Chromatography B,2006,831(1-2):176-183.
    [177]徐茂军.一氧化氮:植物细胞次生代谢信号转导网络可能的关键节点[J].自然科学进展,2007,17(12):1622-1630
    [178] Okano K., Chutani K., Matsuo K.. Suitable level of nitrogen fertilizer for tea (Camellia sinensis L.) plants inrelation to growth, photosynthesis, nitrogen uptake and accumulation of free amino acids [J]. Japanese Journal of CropScience,1997,66(2):279-287.
    [179]欧阳松应,杨冬,欧阳红生,等.实时荧光定量PCR技术及其应用[J].生命的化学,2004,24(1):74-76.
    [180] Huggett J., Dheda K., Bustin S., et al. Real-time RT-PCR normalisation; strategies and considerations [J]. Genesand Immunity,2005,6(4):279-284.
    [181] Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the2-[Delta][Delta] CT method [J]. Methods,2001,25(4):402-408.
    [182] Vandesompele J., De Preter K., Pattyn F., et al. Accurate normalization of real-time quantitative RT-PCR data bygeometric averaging of multiple internal control genes [J]. Genome Biology,2002,3(7): research0034.
    [183] Andersen C.L., Jensen J.L., Rntoft T.F.. Normalization of real-time quantitative reverse transcription-PCR data: amodel-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancerdata sets [J]. Cancer Research,2004,64(15):5245-5250
    [184]胡瑞波,范成明,傅永福.植物实时荧光定量PCR内参基因的选择[J].中国农业科技导报,2009,11(6):30-36
    [185] Kimura K., Ozeki M., Juneja L. R., et al. L-theanine reduces psychological and physiological stress responses [J].Biological Psychology,2007,74(1):39-45.
    [186]史成颖,宛晓春,江昌俊,等.茶苗嫩根cDNA文库的构建和EST分析[J].南京农业大学学报,2009,32(001):126-130.