混凝-Fenton法预处理中纤板废水的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中密度纤维板生产废水的成分复杂,属难处理的工业废水。本文根据江苏某中纤板公司生产废水水质(COD_(Cr)为6000~30000mg/L;BOD_5/COD_(Cr) (B/C)为0.2~0.3),采用混凝-Fenton氧化法对其进行预处理以利于后续生化处理。
     考虑到混凝效果和后续Fenton反应要求,确定聚合硫酸铁(PFS)作为处理该废水的无机混凝剂,并考察了主要工况条件对废水处理效果的影响,在此基础上研究PFS和有机助凝剂PAM联合投加时各项参数对处理效果的影响,得出混凝最佳工艺参数如下:PFS投加量为1.8g/L(原水COD_(Cr)为10110mg/L),快速搅拌(300r/min)30s,PAM投加量为10mg/L,慢速搅拌(60r/min)90s,沉淀120min。在最优混凝工艺条件下,废水经混凝处理后COD_(Cr)和SS去除率分别为60.8%、87%,出水pH为4.15,Fe~(2+)浓度为130.88mg/L,废水的zeta电位由处理前的-13.3mv上升到了-3.79mv,通过粒径分析,发现混凝处理对粒径为1—100μm的颗粒起到了较好的去除效果。
     为了改善废水的可生化性和进一步降低废水的有机负荷,选择Fenton法对混凝出水进行进一步处理。实验得出Fenton氧化工艺的最佳参数如下:不调节混凝出水的初始pH、利用混凝出水中含有的Fe~(2+)(浓度为120~180 mg/L)、Fe~(2+)与H_2O_2的摩尔比为0.05,反应时间为40min后用NaOH调节废水的pH值至8~8.5,沉淀出水,Fenton氧化阶段的COD_(Cr)去除率达62.5%。
     将混凝和Fenton氧化在最佳工况条件下联合使用, COD_(Cr)去除率达到了80.5%。此外,还考虑了将此工艺运用于工程实践中的可行性,在不影响后续生物处理的前提下将PFS的投加量改为0.75g/L,摩尔比改为0.3,在此条件下研究了混凝—Fenton氧化的连续流实验,COD_(Cr)去除率达到66%,每吨废水的预处理价格仅为3.1元。与此同时,通过GC-MS分析了处理前后的水质,发现混凝处理后水中大部分有机物得以去除,而一些环状有机物仍然残留,而经过Fenton氧化处理后部分环状有机物被转化为直链有机物。由此可见通过这种预处理改变了该废水的水质,使其更易于生物处理。
Medium density fibreboard (MDF) wastewater is one kind of refractory industry wastewater has complicated components.The combined coagulation-Fenton oxidation process was adopted for the pre-treatment of MDF wastewater which was originated from a wood company of Jiangsu (COD_(Cr) about 6000~30000mg/L;BOD_5/COD_(Cr) (B/C) ratio 0.2~0.3).
     In consideration of the coagulation effect and the request of the Fenton oxidation process. Polyferric Sulfate(PFS) was choosen as the best inorganic coagulant compared to the others, so it was chosen as the coagulant for the MDF wastewater. The main condition were investigated, based on it, the research of combination of organic coagulant PAM and inorganic coagulant PFS has been studied, The optimal operation parameters of coagulation were determined as follows: the initial pH value, PFS dosage of 1.8g/L(the COD_(Cr) of MDF effluents is 10110mg/L), high speed agitation of 300 r/min with 30s, PAM dosage of 10mg/L,low speed agitation of 60r/min with 90s and precipitation time of 120min.After coagulation, 60.8% COD_(Cr) and 87% SS removal were achieved;The pH value was 4.15;The Fe~(2+) concentration of the water was 130.88mg/L;The zeta potential increased from -13.3mv to -3.7mv and the suspended particles of 1-100μm were nearly removed.
     In order to further improve the biodegradability and reduce the organic load of MDF wastewater, Fenton oxidation process was selected for the sequencing treatment of the effluent. Optimum conditions of Fenton oxidation process for treating the effluent of coagulation were determined as: initial pH of the wastewater treated by coagulation,use the Fe~(2+) contained in the effluent which has been treated by coagulation(the concentration of Fe~(2+) is about 120~180mg/L), the nFe~(2+)/nH_2O_2 is 0.05,reacting for 40mins,pH was then adjusted to 8~8.5. 62.5% COD_(Cr) has been removed during the Fenton oxidation period.
     The combination of coagulation and Fenton oxidation was taken into consideration,and the COD_(Cr) removal was 80.5%,it has achieved a good effection. The cost performance of this process has been considered, the PFS dosage has been changed into 0.75g/L, and change the nFe~(2+)/nH_2O_2 into 0.3, under this condition, the continuos running was evaluate, and the COD_(Cr) removal efficiency was 66%,the price of treat the effluent is 3.1 yuan per ton. A GC-MS research was taken,the result shows that after coagulation,many organics was removed,but some organics which has a annulate structure were reserved and parts of those annulations was turned into linear chain organics after Fenton oxidation.The experiment verified the combined coagulation-Fenton oxidation process was effective for pre-treatment of MDF wastewater.
引文
[1]李雪红,胡广斌.我国中密度纤维板生产能力区域发展现状[M].林业科技情报,2008,(7):4~5.
    [2]李强,张忠东,李振红.ABR-生物接触氧化法处理纤维板生产废水[J].江苏环境科技,2005,18 (4):12~13.
    [3]曹忠荣.我国中密度纤维板生产现状、发展趋势及应用前景[J].人造板通讯,2000,z2:12~13.
    [4]陆继光.浅谈中密度纤维板废水处理[J].林产工业,1995,22(3):27~29.
    [5]张礼果.干法生产中密度纤维板废水处理初探[J].四川林勘设计,1999,(1):39~43.
    [6]徐天勇.中密度纤维板生产废水的处理[J].工业用水与废水,2005,36(4):73~74.
    [7]邹长武.中纤板废水处理工艺改造实例[J].环境工程,2008,26(1):92~94.
    [8]武艳丽,何盛东.Fenton试剂在中密度纤维板废水处理中的试验研究[J].华北水利水电学院学报2007,28(5):68~70.
    [9]姚雪萍,李赐荣,毛炉斌.A/B生化法处理湿法纤维板生产废水[J].环境污染与防治,2001,23(5):243~244.
    [10]周晓彬.混凝-铁炭微电解法用于垃圾渗滤液预处理的实验研究[D].吉林大学硕士论文,2008.
    [11] G.Vidal,M.C.Diez. Methanogenic toxicity and continuous anaerobic treatment of wood processing effluents[J]. Journal of Environmental Management,74 (2005):317~325.
    [12]常青.水处理絮凝学[M].第1版.北京:2003: 50—105.
    [13] La Mer,V.K. Coagulation Symposium introduction[J]. Colloid Science,1964,19:291.
    [14]姚重华.混凝剂与絮凝剂[M].北京:中国环境科学出版社,1991.
    [15]张瑛,阮晓红.水处理混凝剂及其发展方向[J].污染防治技术,2003,16(4):45~49.
    [16]陶涛,卢秀清,冷静.微生物絮凝剂研究与应用进展[J].环境科学进展,1999(7): 21~25.
    [17]楚洁.水处理中混凝剂的研究进展[J].泰安师专学报,2000,22(6):40~42.
    [18]李明玉,唐启红,张顺利.无机高分子混凝剂聚合铁研究开发进展[J].工业水处理,2000,20(6):1~4.
    [19]苏腾,陈中兴,陆柱.混凝剂的研究应用与开发动向(一)[J].净水技术,2000,18(3):7~9.
    [20]胡翔.周定.聚硅酸系列混凝剂的发展与展望[J].化工进展,1998,(6):20~22.
    [21]高亮.无机混凝剂和高分子有机絮凝剂配合投加净化矿井水[J].煤矿环境保护,1995,10(2):23~26.
    [22]周勤,肖锦.给水原水处理中的混凝技术[J].工业水处理,1999,19(2):3~5.
    [23]邓南圣,吴峰.环境光化学[M].北京:化学工业出版社,2003:274~284.
    [24]王喜全,胡筱敏,刘学文.Fenton法处理垃圾渗滤液的研究[J].环保科技,2008,24(1):11~13.
    [25]范拴喜,江元汝.Fenton法的研究现状与进展[J].现代化工,2007,27(1):104~107.
    [26]张萍,顾国维,杨海真.Fenton试剂处理垃圾渗滤液技术进展的研究[J].环境卫生工程,2004,12(1):28~31.
    [27]郭劲松,陈鹏,方芳等.Fenton试剂对垃圾渗滤液中有机物的去除特性研究[J].中国给水排水,24(3):88~91.
    [28]李荣喜.Fenton试剂处理三唑磷农药废水的研究[D].湖南大学硕士论文.2007.
    [29]丁真真.Fenton试剂氧化苯酚废水和橡胶工业废水的研究[D].西北师范大学硕士论文.2007.
    [30]吴高明.焦化废水(液)物化处理技术研究[D].华中科技大学博士论文.2006.
    [31]杨运平,唐金晶,方芳等.UV/TiO2/Fenton光催化氧化垃圾渗滤液的研究[J].中国给水排水,2006,22(7):34~37.
    [32]邹长伟,万金保,彭希珑等.Fenton试剂和UV-Fenton试剂深度处理垃圾渗滤液[J].江西科学,2004,22(4):246~249.
    [33]汤茜,高永慧.超声-Fenton法降解模拟染料废水的实验研究[J].吉林师范大学学报(自然科学版),2008(4):102~104.
    [34]田法,彭绍琴.EDTA改性电-Fenton反应降解DMP[J].水处理技术,2008,34(9):71~74.
    [35]徐明芳,毛雪慧,曾乐等.光反应器中UV/Fenton光降解湖水中微囊藻毒素的研究[J].环境工程学报,2008,7(2):932~937.
    [36] Y.W.Kang,K.Y.Wang.Effect of Reaction Conditions on the Oxidation Efficiency in the Fenton Process[J].Water Research.2000,34:2786~2790.
    [37]刘勇弟,徐寿昌.几种Fenton试剂的氧化特性及在工业废水处理中的应用[J].上海环境科学,1994,13(3):26~28.
    [38]杜发国.两种高级氧化技术在脱墨废水处理中的应用[D].南京林业大学硕士论文.2007.
    [39] Chen R, Pignatello J J. Role of quinone intermediates as electron shuttle in Fenton and Photoassisted Fenton ox idations of aromatic compounds[J].Environ.Set Technol,1997,31(8):2399~2406.
    [40] Zepp R G.Hydroxyl radical formation in aqueous reactions(pH3~8)of Iron(II)with hydrogen peroxide:the Photo-Fenton Reaction[J].Environ.Set Technol,1992,26(3):313~319.
    [41] Kang C,Sobkowiak A,Sawyer D T.Iron(II)induced generation of hydrogen peroxide from dioxygen: induction of Fenton chemistry and ketonization of hydrocar-Sons[J].Inore.Chem,1994,33(l):79~82.
    [42]沙娜,铁炭微电解-Fenton试剂-混凝组合工艺预处理糠醛废水[D].吉林大学硕士论文,2007.
    [43]于庆满,颜家保,褚华宁.混凝-Fenton试剂氧化联合处理焦化废水的试验研究[J].工业水处理,2007,27(3):40~43.
    [44]周少奇,钟红春,胡永.聚铁混凝-Fenton法-SBR工艺对成熟垃圾场渗滤液深度处理的研究[J].环境科学,2008,29(8):2201~2205.
    [45]叶杰旭.混凝-Fenton法预处理高浓度制药废水的研究[D].哈尔滨工业大学硕士论文,2007.
    [46] Ayrton F. Martins , Tibiric?′a G. Vasconcelos, Marcelo L. Wilde.Influence of variables of the combined coagulation–Fenton-sedimentation process in the treatment of trifluraline effluent[J] .Journal of Hazardous Materials,2005, B127:111~119.
    [47] Panizza M, Cerisola G. Removal of organic of pollutants from industrial waster by electrogenerated Fenton’s reagent[J].Wat.Res.,2001,35(16):3987~3992.
    [48]陈忠林,朱洪平,邹洪波等.Fenton试剂处理水中有机物的特性及其应用[J].黑龙江大学自然科学学报,2005,22(2):204~207.
    [49]高廷耀.水污染控制工程[M].北京:高等教育出版社,1998.
    [50]水质化学需氧量的测定:快速消解分光光度法.中华人民共和国环境保护行业标准,2007.
    [51]国家环境保护总局和《水和废水监测分析方法》编委会.水和废水监测分析方法.第四版.中国环境科学出版社,2002.
    [52]刘华.中密度纤维板废水处理工艺的改进[J].工业用水与废水,2002,33(4):64~66.
    [53] K.Sudarshan,P.K.Pujari,A.Goswami.Positron annihilation studies on Amberlite XAD-4 adsorbed with nitrobenzene[J].Chemical Physics,2006,330:338~342.
    [54]张开仕,曾凤春.聚合硫酸铁铝的制备及混凝效果研究.无机盐工业.2005,37(10):44~46,55.
    [55] Azema N. Wastewater suspended solids study by optical meth-ods [M].colloids and suifac;es A: physic;oc;hemic;al and engineering aspects, 2002.
    [56]莫蓓红,钱钊.粒径分析法研究含乳果汁的稳定性[J].《乳业科学与技术》2003,3:106~111.
    [57]肖本益,刘俊新.不同预处理方法对剩余污泥性质的影响研究[J].环境科学,2008,29(2):327~331.
    [58]刘启贞.长江口细颗粒泥沙絮凝主要影响因子及其环境效应研究[D].华东师范大学博士论文,2007.
    [59]王岸娜,王璋,许时婴.壳聚糖澄清猕猴桃果汁的研究[J].食品研究与开发,2007,28(2):78~82.
    [60] M.Rodriguez, V.Sarria,C.Esplugarin,et al.Photo-Fenton Treatment of a Biarecalcitrant Wastewater Generated in Textile Activities:Biodegradability of the Photo-treated Solution[J].Journal of photochemistry and Photobiology A:Chemistry.2002,151:129~135.
    [61]杨文忠,陈戈,王海峻.Fenion试剂和紫外光-Fenton试剂联合作用处理硝基苯废水[J].南京化工大学学报,1998,20(1):24~26.
    [62]杨敏,高迎新等.Fe(III,II)/H_2O_2体系中Fe(III)水解特征的对比[J].环境科学学报,2003,23(2):174~177.
    [63] G.V.Buxton,C.L.Greenstock,W.P.Helman,et al.Critical Review of Rate Constants for Reaction of Hydrated Electrons,Hydrogen Atoms and Hydroxyl Radicals(?OH/?O-)in Aqueous Solutions[J].Journal of Physical and Chemistry Reference Data.1988,17(2):513~886.
    [64]A.F.Martins,T.G.Vasconcelos,M.L.Wilde.Influence of Variables of the Combined Coagulation-Fenton-Sedimentation Process in the Treatment of Trifluraline Effluent[J]. Journal of Hazardous Materials.2005,127(1-3):111~119.
    [65]N.S.S.Martínez, J.F.Fernández,X.F.Segura, et al.Pre-oxidation of an Extremely Polluted Industrial Wastewater by the Fenton’s Reagent[J].Journal of Hazardous Materials.2003,101(3):315~322.
    [66]高锡珍.H2O2同Fe2+反应的新研究[J].湿法冶金,1997(1):17~20.