民航安全分析与管理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
民用航空作为国民经济和社会发展的重要行业,是一个高技术、高投入、高风险的行业。安全是民航永恒的主题,航空安全管理的能力和水平是影响和制约航空发展的基本要素。探讨符合中国特点的民航安全管理技术与方法,构建民航持续安全框架,对于提高民航安全水平、实现民航持续安全具有重要意义。立足于解决当前民航安全分析与管理中的关键和难点问题,本文的主要研究内容和创新点如下:
     (1)民航安全管理与民航持续安全技术与方法
     民航安全系统是一个复杂巨系统,影响民航安全因素多,逻辑关系复杂,增加了民航安全管理的难度。将系统工程理论和方法引入到民航安全系统研究中,实现风险识别、安全分析与评价、安全预测和控制于一体的系统安全管理,能够发现民航安全系统中存在的潜在危险,提高安全管理的效益和效率。以实现民航长效安全运行机制为目的,构建了民航持续安全管理框架,研究了包括民航系统安全管理、过程安全管理、细节安全管理、信息安全管理和民航安全文化管理于一体的集成安全管理技术与方法。
     (2)民航维修系统差错分析技术
     民航维修工作是当前影响维修安全的重要因素,分析了民航维修系统差错的形成和特点,定量评估了民航维修系统差错对民航安全影响的作用形式和影响效果,进一步地探讨了降低民航维修系统差错的方法,在民航维修系统差错未发生前就采取针对性的措施,对于提高安全水平具有重要意义。考虑到民航维修系统差错分析中数据具有模糊和不确定性的特点,以第二代人的可靠性分析方法—CREAM(认知可靠性和失误分析方法Cognitive Reliability and Error Analysis Method)为基础,结合模糊逻辑方法,首次定量研究了民航维修系统差错分析,为采取相关措施降低民航维修系统差错提供了解决方案;进一步以定量化的民航维修系统差错分析为基础,定量分析了民航维修系统差错对维修系统安全的影响。
     (3)航空机务维修安全指标体系的构建与维修安全评估研究
     针对民航维修系统的特点,综合分析了影响航空安全的影响因素和每个细节,建立了相应的指标体系;由于采集到的信息具有模糊性和不确定性,研究了基于不确定和模糊信息的民航维修系统的安全评估。综合考虑影响民航维修系统安全的各种因素,包括维修工作、维修管理和维修技术与方法等,首次建立了多层次、多维度的民航维修系统安全评估指标体系,为客观评估机务维修安全水平提供支持。在分析当前主要安全评估方法基础上,采用信息融合方法与基于不确定信息的多属性决策方法,并将综合赋权与变权方法相结合,建立了民航维修系统安全评估模型,充分利用数据,避免了权重赋值对评估结果的影响,该方法科学且具有可操作性。通过对比分析,结果表明,本文提出的方法,较传统的安全评估方法更加准确、可信度高。
     (4)民航维修系统安全分析和安全监测研究
     安全分析是发现问题、消除事故隐患的重要手段。本文借鉴人工智能领域的最新研究成果,将Bayes网络方法引入到航空安全分析中,实现了对复杂民航维修系统安全问题的分析。在综合比较当前复杂系统安全分析方法的基础上,建立了基于Bayes网络的民航维修系统安全分析模型,该模型具有动态分析当前安全状态、逆向判断系统危险源的功能,为及时发现安全隐患、采取针对性的预防措施提供了决策支持。结合当前民航维修系统的状态,建立了基于动态Bayes网络的民航维修系统安全监测模型,动态设计与调整监测的内容和环节,实现了民航维修系统安全与效率的有机结合。
     本文提出的方法在国内某航空公司得到具体应用和实践,取得了良好的应用效果,验证了本文提出方法的有效性。
As one of the key industries in the national economic and social development, civil aviation is a high-tech, high-investment, and high-risk industry. Safety is an eternal theme for civil aviation. The ability and level of safety management essentially affects and restraints the development of civil aviation. The research on the civil aviation safety management techniques and methods which are consistent with the characteristics of China and the sustainable safety framework of civil aviation has important significance for increasing the civil aviation safety level and realizing the sustainable civil aviation safety. Aiming at the key and difficult problems of the civil aviation safety analysis and management, the main research contents and innovations of the dissertation are as follows:
     Firstly, the civil aviation management and the sustainable safety techniques and methods for civil aviation have been studied. The civil aviation system is a huge and complex system. Many factors which have complex logic relationship among themselves affect the safety of civil aviation system. To manage the safety of the civil aviation system is very difficult task. If the theories and methods of system engineering are applied into the civil aviation safety system, and the safety management system which consists of risk identification, safety analysis, safety assessment, safety prediction and safety control could be realized, then the latent dangers in the civil aviation safety system can be found, the benefit and efficiency of the civil aviation safety management system can be improved. In order to realize long term safe operation of civil aviation, a sustainable safety management framework is established, some integrated sustainable safety management techniques and methods of system safety management, process safety management, details safety management, information safety management and aviation safety culture management are studied.
     Secondly, the errors analysis in engineering maintenance of civil aviation is studied. Engineering maintenance is an important factor for civil aviation safety. The causes and characteristics of errors in the engineering maintenance are analyzed and their impact on civil aviation safety is quantitatively assessed. The approaches to reduce maintenance errors and the appropriate measures to prevent maintenance errors from happening are studied in order to improve safety. Appropriate measures that are adopted before errors happen have significance for increasing the safety level of civil aviation. Considering the fuzzy and uncertain characteristics of errors, the second generation of human reliability analytical method– CREAM (Cognitive Reliability and Error Analysis Method) is applied with fuzzy logic method. Errors in engineering maintenance of civil aviation are quantitatively studied for the first time. It provides the solutions for taking proper measures to reduce maintenance errors. On the basis of the quantitative analysis of errors in maintenance of civil aviation, the quantitative effect of errors in engineering maintenance of civil aviation on the safety of maintenance system is studied.
     Thirdly, the aviation engineering maintenance safety performance evaluation system is established and the maintenance safety assessment is studied. Aiming at the characteristics of engineering maintenance system of civil aviation, the factors which influence the civil aviation safety are analyzed and the safety performance evaluation system of engineering maintenance system is built. With the fuzzy and uncertain data, the safety assessment of civil aviation maintenance system is studied. Comprehensively considering all factors which have effects on safety of civil aviation, such as maintenance engineering, maintenance management, and maintenance techniques, a multi-level, multi-dimensional safety assessment performance evaluation system for civil aviation engineering maintenance is established for the first time to provide support for impersonally assessing safety level of civil aviation. On the basis of analyzing the present safety assessment methods, data fusion methods and multiple attributes decision methods based on uncertain information are adopted to build the maintenance safety assessment model of civil aviation. Combining comprehensive weighting method and variable weighting method, the influence of weighting on assessment results is alleviated. The safety assessment method is scientific and feasible. The comparison analysis results show that the proposed method is more accurate and more reliable than the traditional safety assessment methods.
     Fourthly, safety analysis and safety monitoring of civil aviation engineering maintenance are studied. Safety analysis is one important means to find problems and avoid potential accidents. The research results in the field of artificial intelligence, such as Bayes network, are applied to safety analysis of civil aviation. Safety analysis of the complex civil aviation engineering maintenance system is realized. Based on comparisons among the current safety analysis methods of complex system, Bayes network-based safety analysis model of civil aviation engineering maintenance is built. With the help of the model, the present safety status can be analyzed dynamically and the dangerous source can be judged conversely. The model provides support for finding potential safety hazard in time and taking effective preventive measures. Considering the present situation of civil aviation engineering maintenance system, dynamic Bayes network-based safety monitoring model of civil aviation engineering maintenance system is developed. The monitored objects can be designed and adjusted dynamically. Safety and efficiency of the civil aviation engineering maintenance system are improved effectively.
     The proposed methods in the dissertation have been put into practice in a domestic airline company and have obtained some good effects, which show the effectiveness of the methods.
引文
[1].徐柏龄.前车之鉴—新中国民航飞行安全回顾与思考[M].北京:中国民航出版社, 1999.
    [2].梁馨,陈元江.安全:航空公司永恒的主题[J].中国民用航空, 2005, 2: 22~24.
    [3].李小燕,肖雄飞.中国民航发展中的安全问题[J].中国民用航空, 2004, 12: 46~48
    [4].俞力玲.构建中国民航安全管理体系[J].中国民航大学学报. 2008, 26(6): 48~55.
    [5].苏宁.航空安全:只有起点,没有终点[J].中国民用航空. 2004, 38(2): 31~33.
    [6]. ICAO安全管理手册. DOC9859-AN/460[R].国际民航组织,2005.
    [7]. Maintenance Briefing Notes-Human Performance Performance-Human Performance and Limitations [R]. Maint-HUM_PER-SEQ01-REV01-NOV. 2006.
    [8]. Maintenance Briefing Notes-Human Performance-Error Management [R]. Maint-HUM_PER-SEQ02-REV01-July. 2007.
    [9]. Osaki S., Stochastic modules in reliability and maintenance [M]. Springer, Berlin; Heidelberg; New York, 2002.
    [10]. Moore R., Reliability- centered maintenance [J]. Selecting the Right Manufacturing Improvement Tools. 2007: 221~245.
    [11]. Kelly A., Maintenance task selection using reliability-centered maintenance [J]. Plant Maintenance Management Set. 2006, 139~160.
    [12]. Logan T. J., Error prevention as developed in airlines [J]. International Journal of Radiation Oncology Biology Physics. 2008, 71(1): 178~181.
    [13]. Krular, D.C., Human factors in maintenance: impact on aircraft mishap frequency and severity [J]. Aviation, Space, and Environmental Medicine. 2004, 75(5): 429~432.
    [14]. Baysari M. T., McIntosh A. S., J. R. Wilson, Understanding the human factors contribution to railway accidents and incidents in Australia [J].Accident Analysis & Prevention, 2008, 40(5): 1750-1757.
    [15]. Kallen M.J., Noortwijk J.M., Optimal maintenance decisions under imperfect inspection [J]. Reliability Engineering and System Safety. 2005, 90 (2-3): 177~185.
    [16]. Vaurio J. K., Modelling and quantification of dependent repeatable human errors in system analysis and risk assessment [J]. Reliability Engineering and System Safety. 2001, 2: 179~188.
    [17]. Latorella K. A., Prabhu P. V., A review of human error in aviation maintenance and inspection [J]. International Journal of Industrial Ergonomics. 2000, 26 (2): 133~161.
    [18].张亦维,郭斌.国际民航组织安全监督审计计划[J].民航经济与技术. 1998, 10:53~54.
    [19].杨琳. LOSA—航空安全管理的新方法[J].中国民用航空. 2003, 27(3): 59~61.
    [20].孙瑞山.航空安全自愿报告系统[J].中国民用航空. 2002, 8: 42~44.
    [21].张智.驾驶舱资源管理:安全飞行的保障[J].中国民用航空. 2005, 52(4): 60.
    [22]. Pooley, E. Putting air safety management into practice demands a positive corporate safety culture [J]. ICAO Journal. 1999, 54 (1):10~14.
    [23]. Golaszewski, R. The influence of total flight time, recent flight time and age on pilot accident rates [R]. Federal Aviation Administration, Office of Aviation Safety, Final Report No. DTRS57-83-P-80750, 1983.
    [24]. Gellman Research Associate. Safety reports: aviation safety data accessibility study index[R]. Office of System Safety, Federal Aviation Administration, Washington, DC, 1997.
    [25]. FAA. FAA Aerospace Forecasts, Fiscal Year 1999~2010. U.S.Department of Transportation[R], Office of Aviation Policy and Plans, Washington DC FAA-APO-99-1, 1999.
    [26].《全球安全战略的民航局长会议》讨论摘要[R].蒙特利尔, 2006.03.20~2006.03.22
    [27].朱济杰.全球采取措施保障航空安全[J].民航经济与技术,1997, (11) .
    [28].崔传明,吕浩.管理与飞行安全[J].中国民航飞行学院学报. 2002, 13(3):19~20.
    [29]. Chang, Y.-H. The status and perspective of Taiwan’s Civil Aviation Safety [J]. Civil Aviation Journal. 1999, Quarterly 1, 1~24.
    [30]. Braithwaite, G.R., Caves, R.E. and Faulkner, J.P.E. Australian aviation safety-observations from the‘lucky’country [J]. Journal of Air Transport Management. 1998, 4 (1), 55~62.
    [31].张恒俊.世纪蓝天—民航安全管理体系和管理模式探索之二[J].中外企业家. 2003, 10: 70~72.
    [32]. Barnett, A., Higgins, M. K. Airline safety: The Last Decade [J]. Management Science. 1989, 35 (1): 1~21.
    [33].罗帆,平芸,郭仕平,刘海.民航飞行品质监控及预警管理探索[J].交通运输工程学报. 2002, 2(3):107~110.
    [34].张杰.飞行品质监控与飞行安全[J].中国民航飞行学院学报.2002,13(3):48.
    [35].李革.基于飞行品质监控模型,构建管制工作品质监控机制[J].2009, 97(1): 39~41.
    [36]. Earl, L., Murray, P. S., Bates P. R., Line Operations Safety Audits (LOSA) for the management of safety in single pilot operations (LOSA:SP) in Australia and New Zealand, Aeronautica, 2011, No.1: 1-7.
    [37].章明. IATA运行安全审计及在我国的实践[J].中国民用航空. 2006, 6: 59~62.
    [38].张叔农,张坚,程晋萍.美国航空运输监察系统研究[J].国际航空,2002: 24~26.
    [39].陈国焉.航空运输监察系统技术研究[D].天津:中国民航大学,2008.
    [40].林斐.浅谈美国FAA的航空运输监控系统[J].江苏航空,2007(1):2~5.
    [41]. Rankin W., Krichbaum L. Human factors in aircraft maintenance [C], Integration of Recent HRA Development with Applications to Maintenance in Aircraft and Nuclear Settings. Seattle, USA, 1998.
    [42]. Phillips, E.H., Focus on accident prevention key to future airline safety [J]. Aviation Week and Space Technology. 1994, 52~53.
    [43]. Uth H. J. Trends in major industrial accidents in Germany [J]. Journal of Loss Prevention in the Process Industries. 1999, 12(1): 69~73.
    [44]. Hwang SL, Liang GF, Lin JT, Yan YJ. A real-time warning model for teamwork performance and system safety in nuclear power plants [J]. Safety Science, 2009, 47(3): 425~435.
    [45]. Proctor R. W., Zandt T. V., Human factors in simple and complex systems [M], Second Edition, Ohio State University, Columbus, USA, 2008
    [46]. Yang G., Lin, Y., Bhattacharya, P. Multimodality inferring of human cognitive states based on integration of neuron-fuzzy network and information fusion techniques [J]. EURASIP Journal on Advances in Signal Processing. 2008
    [47]. Cacciabue, P.C. Human factors impact on risk analysis of complex systems [J]. Journal of Hazardous Materials.2000, 71(1-3), 101~116.
    [48]. Grabowski M., Roberts K. H., Human and organizational error in large scale systems [J]. IEEE Transactions on Systems, Man, and Cynernetics, Part A: Systems and Humans, 1996, 26(1): 2-16.
    [49]. Pierre L. B., Human reliability data, human error and accident models—illustration through the Three Mile Island accident analysis [J]. Reliability Engineering and System Safety. 2004, 83(2): 153~167.
    [50]. Shyur H. J., A quantitative model for aviation safety risk assessment [J], Computers and Industrial Engineering, 2008, 54(1): 34-44.
    [51].杨家忠,张侃.民航维修系统差错分析及其管理[J].中国安全科学学报. 2004, 14(2): 46~49.
    [52]. Dhillon B. S., Human error in aircraft maintenance [M], In: Human Reliability and Error in Transportation Systems (Chapter 4), London: Springer, 2007: 131-144.
    [53]. Krokos K. J., Baker D. P., Preface to the special section on classifying and understanding human factors [J]. Journal of the Human Factors and Ergonomics Society. 2007, 49(2): 175~176.
    [54]. Ward, M., Contributions to human factors from three case studies in aircraft maintenance [D]. Doctoral Thesis, Trinity College Dublin, 2005.
    [55]. Shappell S.A., Detwiler C., Holcomb K., Hackworth C., Boquet A., Wiegmann D. A., Human error and commercial aviation accidents: an analysis using the human factors analysis and classification system[J]. Journal of the Human Factors and Ergonomics Society. 2007, 49 (2): 227~242.
    [56].刘强.基于SHEL的航空维修人为差错分析[J].西北大学学报自然科学版,2004,卷期号: 47~49.
    [57].李克武,郭建胜,周长飞.航空维修人为因素事故分析系统研究[J].航空维修与工程. 2005, 6: 42-43.
    [58]. FAA. Human Factors in Aviation Maintenance-phase one progress report [R], DOT/FAA/AM-91/16. Office of Aviation Medicine, Washington, DC. 1991.
    [59]. Dhillon, B.S. Human Reliability: With Human Factors [M]. New York: Pergamon Press, 1986.
    [60].焦猛.基于模糊综合评判的民航维修系统差错控制能力定量评估[J].空军工程大学学报(自然科学版).2007, 8(1): 24~26.
    [61]. Jo Young-Do, Park Kyo-Shik. Dynamic management of human error to reduce total risk [J].Journal of Loss Prevention in the Process Industries. 2003, 16(4): 313~321.
    [62]. Rankin W., Hibit R., Allen J., R. Sargent. Development and evaluation of the Maintenance Error Decision Aid (MEDA) process [J].International Journal of Industrial Ergonomics. 2000, 26(2): 261-276.
    [63]. Shappell, S.A., Wiegmann, D.A., The human factors analysis and classification system HFACS [R]. Office of Aviation Medicine Technical Report No, DOT/FAA/AM-00/7, Civil Aeromedical Institute, Oklahoma City, OK, 2000
    [64].高佳,沈祖,黄祥瑞.人的可靠性分析:历史、需求和进展.中国安全科学学报[J]. 2003, 13(12): 44~47.
    [65]. Reason J., Human error [M]. New York, NY: Cambridge University Press, 1990
    [66]. Patankar M. S., Taylor J. C., Applied human factors in aviation maintenance: a practical guide to improving safety [M], London: Ashgate Publishing, 2004.
    [67].於秋风,王大海.基于物元分析法的民航系统安全评价[J].中国民航飞行学院学报. 2008, 19(6): 20~23.
    [68].马国忠,米文勇.民航系统安全的多层次模糊评估方法[J].西南交通大学学报.2007, 42(1):105~109.
    [69].王衍洋,李敬,曹义华.中国民航安全评价方法研究[J].中国安全生产科学技术. 2008, 4(5): 111~113.
    [70].王生凤,郭昊,徐宗昌.几种维修质量评估方法的探讨[J].中国标准化. 2002, 9: 41~42.
    [71]. Kumar U., Parida A., Maintenance Performance Measurement (MPM) System. In: K. A.H. Kobbacy and D. N. Prabhakar Murthy editors. Complex System Maintenance Handbook [M].London, 2008: 459~478.
    [72]. Tsang, A.H.C., A strategic approach to managing maintenance performance [J].Journal of Quality in Maintenance Engineering. 1998, 4(2): 87~94.
    [73]. Murthy, D.N.P., Atrens, A. & Eccleston, J.A. Strategic maintenance management [J]. Journal of Quality in Maintenance Engineering. 2002, 8(4): 287~305
    [74]. Parida A., Kumar, U. Maintenance performance measurement (MPM): issues and challenges [J], Journal of Quality in Maintenance Engineering. 2006, 12(3): 1355~2511.
    [75].陈玉科.关联分析理论在航空维修工程中的应用[J].运筹与管理. 1999, 8(1): 80~82.
    [76].李廷军,徐永汉,栾春光,李玉光.神经网络应用于航空维修质量评估专家系统[J].现代电子技术. 2001, 3: 41~45.
    [77].杨懿,刘涵,武昌,齐胜利.维修保障系统的分形评估算法研究[J].系统仿真学报.2006, 18(10): 2925~2928
    [78].张建宁,王瑞林,李天洪.航空维修系统效能评估的灰靶模型[J].武器装备自动化. 2007, 26(6): 17~18.
    [79].齐飞.武器装备维修质量评估方法研究[D].长沙:国防科技大学研究生院, 2003.
    [80].张军,贺利.民航维修系统安全质量综合评估与预测[J].中国民航大学学报. 2007, 25(6): 5~8.
    [81]. Sun Hongyi, Yam R., and Ng Wai-Keung. The implementation and evaluation of Total Productive Maintenance (TPM) --- an action case study in a Hong Kong manufacturing company [J]. International Journal of Advanced Manufacturing Technology, 2003, 22(3-4): 224~228.
    [82]. ?berg T., Bergb?ck B., A review of probabilistic risk assessment of contaminated land [J]. Journal of Soils and Sediments. 2005, 5(4): 213~224.
    [83]. Bari R. A., Handbook of Reliability Engineering [M]. London: Springer, 2003: 543~557.
    [84]. Kelly D. L., Smith C. L., Bayesian inference in probabilistic risk assessment– the current state of the art [J]. Reliability Engineering and System Safety. 2008, 6: 1~69.
    [85]. Cavallini G., Lazzeri R., A probabilistic approach to fatigue risk assessment in aerospace components [J]. Engineering Fracture Mechanics. 2007, 74(18): 2964~2970.
    [86].易红樱,陈玉科,陈祖义.分布式航空维修质量综合评价系统设计与实现[J].计算机工程与设计. 2002, 23(5): 30~32.
    [87]. Bocciolone M., Caprioli A., Cigada A., Collina A., A measurement system for quick rail inspection and effective track maintenance strategy [J]. Mechanical Systems and Signal Processing. 2007, 21(3): 1242~1254.
    [88].国防科工委军用标准化中心.故障模式、影响及危害性分析程序实施指南[S],北京:国防工业出版社, 1994.
    [89].国防科工委军用标准化中心.故障树分析实施指南[S],北京:国防工业出版社, 1994.
    [90].国防科工委军用标准化中心.系统安全性通用大纲实施指南[S],北京:国防工业出版社, 1993.
    [91].秦彦磊,陆愈实,王娟.系统安全分析方法的比较研究[J].中国安全生产科学技术. 2006, 2(3): 62~67.
    [92]. http://www.faa.gov/library/manuals/aviation/risk_management/ss_handbook/ FAA. System Safety Handbook
    [93]. Ellims M. P., Safety analysis: thoughts on methods and experience [M], In Redmill F., and Anderson T. (Eds), Improvements in System Safety, In Proceedings of the sixteenth Safety-critical Systems Symposium, Bristol, UK. 2008, 225~238.
    [94].李果,高建民,高智勇.基于小世界拓扑模型的复杂系统安全分析[J].机械工程学报. 2008, 44(5): 87~91.
    [95].章健,王新刚,艾芊等.电力系统安全分析的网格化计算[J].华东电力. 2008, 36(5): 26~29.
    [96]. Liu, J., Yang, J. B., Wang, J., Si, H. S., & Wang, Y. M. Fuzzy rule-based evidential reasoning approach for safety analysis [J]. International Journal of General Systems.2004, 33(2–3): 183~204.
    [97]. Liu Jun, Yang Jian-Bo, Ruan Da, Martinez L., and Wang Jin, Self-tuning of fuzzy belief bases for engineering system safety analysis [J], Annals of Operations Research,163(1): 143-168.
    [98]. Dugan J. B. and Venkataraman B., DIFtree: A software package for the analysis of Dynamic Fault Tree Models [C]. In Proceedings of Annual Reliability and Maintainability Symposium. Philadelphia, USA, 1997: 64~70.
    [99]. DiCiccio T. J. and Glynn P. W., Note: on the value of function evaluation location information in Monte Carlo Simulation [J]. Management Science. 1995, 41(4): 733~737.
    [100]. Son H. S. and Seong P. H., A safety analysis method using fuzzy Petri nets [C]. In Proceedings of Annual Meeting of the North American Fuzzy Information Processing Society, New York, USA, 1997: 412~417.
    [101]. Cepin M., Optimization of safety equipment outages improves safety [J]. Reliability Engineering and System Safety. 2002, 77(1): 71~80.
    [102]. Clarotti, C.A., Lannoy, A., and Procaccia H., Probabilistic risk analysis of aging components which fail on demand: A Bayesian model: Application to maintenance optimization of diesel engine linings [C]. In Proceedings of Ageing of Materials and Methods for the Assessment of Lifetimes of Engineering Plant. Cape Town. 1997, 85~94.
    [103].何旭洪,童节娟,薛大知.应用PSA方法进行核电站维修风险管理[J].清华大学学报(自然科学版).2006, 46(3): 441~443.
    [104]. He Xuhong, Tong Jiejuan, and Chen Jiefei. Maintenance risk management in Daya Bay nuclear power plant: PSA model, tools and applications [J]. Progress in Nuclear Energy. 2007, 49(1): 103~112.
    [105].钱永柏,童节娟,张作义.基于风险指引安全分级的维修规则实施方案[J].核动力工程. 2007, 28(5): 75~78.
    [106]. Shalev D. M., and Tiran J., Condition-based fault tree analysis: A new method for improve fault tree analysis (FTA), reliability and safety calculations [J]. Reliability Engineering and System Safety. 2007, 92(9): 1231~1241.
    [107].杨国庆.中国民航发展展望[J].交通运输工程学报. 2001, 1(4): 1~8.
    [108].陈宝智.危险源辨识控制及评价[M].成都:四川科学技术出版社,1996. 1~50.
    [109]. Baberg T. W., Man-machine-interface in modern transport systems from an aviation safety perspective [J]. Aerospace Science and Technology, 2001, 5(8): 495~504.
    [110]. Brown R. L., Holmes H., The use of factor analytic procedure for assessing the validity of an employee safety climate model [J].Accident Analysis and Prevention, 1986, 18 (16): 455~470.
    [111]. http://www.caa.co.uk Aviation Maintenance Human Factors
    [112].徐亨成,陈璞,冯春晓.航空维修人因失误分析与控制[J].航空维修与工程. 2005, 3: 24~26.
    [113].张均勇,李金瑞,孙颖等.民航维修系统差错的研究[J].飞机设计. 2006, 3: 78~80.
    [114].龙涛,张执国.人的可靠性与民航维修系统差错[J].江苏航空. 2007, 1: 34~35.
    [115].王军辉.浅析人为因素与维修安全[J].中国民用航空. 2008, 86: 44~45.
    [116]. Hollnagel E., Cognitive reliability and error analysis method (CREAM) [M]. Amsterdam: Elsevier Science Ltd, 1998
    [117]. Cooper S. et al., Technical basis and implementation guidelines for a technique for human error analysis (ATHEANA) [R]. NUREG-1624, Rev 1. US Nuclear Regulatory Commission, 2000.
    [118]. Vaurio J. K., Fault tree analysis of phased mission system with repairable and non-repairable components [J]. Reliability Engineering and System Safety. 2001, 74(2): 169~180.
    [119]. Zadeh L. A., Outline of a new approach to the analysis of complex systems and decision processes [J]. IEEE Transactions on Systems. Man, and Cybernetics, 1973, 23(1): 28-44.
    [120].陈守煜.工程模糊集理论与应用[M].北京:国防工业出版社, 1998.
    [121]. Etienne E. Kerre,黄崇福,阮达.模糊集理论与近似推理[M].武汉:武汉大学出版社, 2004.
    [122].王国俊.非经典数理逻辑与近似推理[M].北京:科学出版社, 2000.
    [123].王士同.模糊推理理论与模糊专家系统[M].上海:上海科学技术文献出版社, 1995.
    [124]. Khan F. I., Amyotte P. R., Integrated inherent safety index: A tool for inherent safety evaluation [J]. Process Safety Progress. 2004, 23(2): 136~148.
    [125]. Zhong M., Liu T. and Wei X., Strategy for development of work safety science and technology in China [J], Asian-Pacific Newsletter on Occupational Health and Safety. 2003, 70~71.
    [126]. Chang Y. H., Yeh C. H., A new airline safety index [J]. Transportation Research Part B: Methodological [J]. 2004, 38: 369~383..
    [127]. Jalil M. A., Probabilistic Decision Support System for Evaluating the Impact of Technology Insertion on Aviation Safety Risk [D], Department of Industrial and Systems Engineering, Rutgers University, 2003.
    [128]. Luxh?j J.T., Choopavang A., and Arendt D. N., Risk Assessment of Organizational Factors in Aviation Systems [J]. Air Traffic Control Quarterly. 2001, 9 (3): 135~174.
    [129]. Luxh?j J. T., Probabilistic causal analysis for safety risk assessments in commercial air transport [R], Workshop on Investigating and Reporting of Incidents and Accidents (IRIA), 2003.
    [130].苏铁军,孙琳玲,赵廷弟.基于RSMTL-CAD框架的FMECA软件设计[J].航空学报. 2002, 23(3): 206~210.
    [131]. Galván B., Winter G., Greiner D., Salazar D., New evolutionary methodologies for integrated safety system design and maintenance optimization [J]. Computational Intelligence in Reliability Engineering. 2007, 39: 151~190.
    [132]. Berger J. O.,贾乃光译.吴喜之校译.统计决策论及贝叶斯分析[M].北京:中国统计出版社. 1998.
    [133].张金槐.可靠性鉴定中Bayes方法的运用[J].国防科技大学学报. 1993, 15(3):121~132.
    [134].武小悦,陈忠贵.柔性制造系统的可靠性技术[M].北京:兵器工业出版社, 1999.
    [135]. Chang Rui, W. Brauer and Stetter M., Modeling semantics of inconsistent qualitative knowledge for quantitative Bayesian network inference [J]. Neural Networks. 2008, 21: 182~192.
    [136].叶跃祥,糜仲春,王宏宇等.基于贝叶斯网络的不确定环境下多属性决策方法[J].系统工程理论与实践. 2007, 4:107~113.
    [137]. Lee Chang-Ju, Lee Kun Jai. Application of Bayesian network to the probabilistic risk assessment of nuclear waste disposal [J]. Reliability Engineering and System Safety.2006, 91: 515~532.
    [138]. Ferrari S., Vaghi A., Demining sensor modeling and feature-level fusion by Bayesian networks [J]. IEEE Transactions on Sensors, 2006, 6(2): 471-483.
    [139]. Rijmen F., Bayesian networks with a logistic regression model for the conditional probabilities [J]. International Journal of Approximate Reasoning. 2008, 48: 659~666.
    [140]. Kim J. H., Pearl J., A computational model for causal and diagnostic reasoning in Inference engines [C]. In Proceedings of the 8th International Joint Conference on Artificial Intelligence, Karlsrube, West Germany, 1983, 190~193.