SAW传感器膜材料HFIP功能化聚合物PS-b-PMPS的合成与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
声表面波化学传感器(SAW chemical sensor)是一种用于现场实时检测爆炸物的气敏传感器。涂在SAW化学传感器上的敏感膜涂层与被测气体之间能发生可逆吸附作用,当敏感膜与被测气体发生作用时,会引起膜密度和弹性等性质发生变化,从而使在压电晶体表面上传播的瑞利波速度随其表面沉积的质量而变化,导致振荡频率发生变化。通过检测振荡频率的变化,能获知是否存在某种气体和被吸附气体的浓度,具有灵敏度高、方便、快捷等诸多优点。
     本论文以合成敏感膜材料为目的。首先采用无水解缩聚方法合成了环状硅氧烷,进一步合成了聚苯乙烯/聚甲基苯基硅氧烷嵌段共聚物(PS-b-PMPS),并用红外、核磁、凝胶色谱、乌氏粘度计方法进行表征。PS-b-PMPS与六氟丙酮(HFA)在不同条件下进行反应,进行六氟代异丙醇(HFIP)功能化,反应产物用红外、氟元素分析以及羟基分析等方法进行表征。然后采用溶剂蒸发法和旋涂法将聚合物敏感膜材料涂覆在SAW基片表面,通过装配配气系统,用二硝基甲苯(DNT)为爆炸物进行检测,精确测试了在一定气体浓度含量下SAW化学传感器的响应值,考察了羟基含量和嵌段比例对吸附性能的影响。
     本文根据对各种反应条件下产物结构分析和吸附性检测,证实具有优良性能膜材料的最佳合成条件是:以二硫化碳为反应溶剂,反应时间为20小时,反应温度为25℃。此条件下HFIP功能化聚苯乙烯/聚甲基苯基硅氧烷嵌段共聚物具有最佳的氟元素和羟基含量,作为SAW膜材料检测爆炸物具有高的灵敏度和较好的脱附性能。
Surface acoustic wave (SAW) sensor is a kind of vapor sensor which has been utilized to detect and monitor explosive gases. The technology employs polymer coating on SAW sensor to collect and concentrate analyte(s) of interest. When the selective coating contacts analyte, the density and elasticity of film will be changed, so the spreading of Rayleigh wave on piezocrystal will be changed with the variety of sediment mass. The analyte(s) and its concentration can be detected by the change of oscillation frequency. It has high sensitive, convenient, fast, and many other advantages.
     Ring siloxane was prepared by anhydrous concentration, further, synthesis poly(styrene-b-methylphenylsiloxane) (PS-b-PMPS). The PS-b-PMPS was characterized by FT-IR, NMR, GPC and Ubbelohde viscometer. The product was synthesized from PS-b-PMPS and hexafluoroacetone (HFA), then, was functionalized by hexafluoroisopropanol (HFIP), the functionalized product was characterized by FT-IR, ion chromatograph and hydroxyl analysis. The polymer was coated on the piezocrystal by two methods of solvent evaporation and spin coating. In the gas supply system, dinitrotoluene (DNT) was used as explosives, and the responses of SAW sensor were tested at DNT concentration of 750mg/m3. The factors to adsorption were also discussed in this paper.
     The absorption of product will be better when it is prepared by HFA with PS-b-PMPS at 25℃in 20 hours, in carbon disulfide as solvent. It has high sensitivity with the best fluorin and hydroxyl as polymer coating on SAW sensor.
引文
[1] Wohltjen H, Dessy R, Surface acoustic wave probe for chemical analysis. I. Introduction and instrument description, Anal Chem., 1979, 51(9): 1458~1464
    [2] Kannan G K, Nimal A T, Mittal U et al. Adsorption studies of carbowax coated surface acoustic wave (SAW) sensor for 2,4-dinitro toluene (DNT) vapour detection, Sensors and Actuators B, 2004, 101(3): 328~334
    [3]姚守拙,化学与生物传感器,北京:化学工业出版社,2006,179~180
    [4] Bamard S M, Walt D R. Chemical sensors based on controlled-release polymer systems [ J ] . Science, 1991,251(4996):58~61
    [5]陈长伦何建波刘伟等,电化学式气体传感器的研究进展,传感器世界,2004,4:11~15
    [6] Janata J, Chemical sensors, J. Anal. Chem., 1990, 62 (12): 33~44
    [7] Yinon J. Forensic and environmental detection of explosives. Chichester, England: John Wiley & Sons, 1999.
    [8] Yinon J,Zitrin S.Modern methods and applications in analysis of explosives. Chichester, England: John Wiley & Sons, 1993.
    [9] Fisher M, Cumming C. Investigation of an area reduction method for suspectedminefields using an ultrasensitive chemical vapor detector. In: Proceedings of the 3rd International Aviation Security Technology Symposium, Atlantic City, NJ, 2001: 597
    [10] Yang J S, Swager T M. Design of novel iptycene-containing fluorescent polymers for the detection of TNT. J. Am. Chem. Soc, 1998, 120: 5321~5322.
    [11] Cumming C J, et al. Using novel fluorescent polymers as sensory materials for above-ground sensing of chemical signature compounds emanating from buried landmines. IEEE Trans. Geoscience and Remote Sensing 2001, 39: 1119~1128
    [12] Rose A, Lugmair C G, Shane-Yang J, et al. Excited-state lifetime modulation in triphenylene-based conjugated polymers. In: Proceedings of the 3rd International Aviation Security Technology Symposium. Atlantic City , NJ. 2001: 589~596
    [13] Fisher M, Cumming C. Using novel fluorescent polymers as sensory materials for above-ground sensing of chemical signature compounds emanating from buried landmines. In: Proceedings of the 3rd International Aviation Security Technology Symposium. Atlantic City, NJ. 2001: 288
    [14] Swager T M, Wosnick J H. Self-amplifying semiconducting polymers for chemical sensors. MRS Bull, 2002, 27: 446~450
    [15] Sohn H, Calhoun R M. Detection of TNT and picric acid on surfaces and sea water by using photoluminescent polysiloles. Angewandte Chemie, 2001, 40:2104~2105
    [16]许峰,王海龙,关亚风,离子迁移谱研究进展,化学进展,2005,17(3): 514~522
    [17] Ewing R G, Miller C J,Detection of Volatile Vapors Emitted from Explosives with a Handheld Ion Mobility Spectrometer,Field Analytical Chemistry and Technology, 2001, 5(5): 215~221
    [18] Vautz W, Zimmermann D, Hartmann M et al. Ion mobility spectrometry for food quality and safety, Food Additives and Contaminants, 2006, 23(11): 1064~1073
    [19] Albert K J, Walt D R. High-speed fluorescence detection of explosives-like vapors. Anal. Chem. 2000, 72: 1947~1955
    [20] Albert K J, Myrick M L, Brown S B. Field deployable sniffer for 2,4-dinitro- toluene detection. Environ Sci. Technol. 2001, 35: 3193~3200
    [21] Caron J J, Haske11 R B, Benoit P, A surface acoustic wave mercury vapor sensor [J]. IEEE Tmnsactions on Ultrasonics, Ferroelectrlcs and Frequency Control, 1998, 45(5): 1393~1398
    [22] Anisimkin V I, Verona E, New capabilities for optimizing SAW gas sesnsos[J], IEEE Transactions on Ultrasonics,Ferroelectrlc and Frequency Control,2001,48(5):1413~1418
    [23]陈显萼,姚海伦,声表面波传感器SAWS的进展,电子瞭望,1992, (8): 23~26
    [24]李晖,潘峰,声表面波器件的研究进展,真空科学与技术,2001,21(5):376~380
    [25]钱峰,声表面波传感器及其应用,自动化仪表,1992,13(2): 5~7
    [26]纪军,黄启斌,丁学全,国外化学毒剂检测器技术与评价,北京:国防工业出版社,2006,58~62
    [27] Watson G, Horton W, Staples E. Gas chromatography utilizing SAW sensors. In: Proceedings of the 1st International Symposium on Explosive Detection Technology. Atlantic City, NJ. 1991: 589~603.
    [28] Staples E J, Watson G W. Temperature programmed desorption characteristics of SAW resonators. In: Presented at Pittsburgh Conference on: Analytical Chemistry and Applied Spectroscopy. New Orleans LA. 1998: 317~320.
    [29] Houser E J, Mlsna T E, et al. Rational materials design of sorbent coatings for explosives. Applications with chemical sensors, Talanta, 2001, 54: 469~485.
    [30] Kannan G K. Nimal A T. Adsorbtion studies of carbowax coatedsurface acoustic wave ( SAW ) sensor for 2,4-2, dinitro toluene(DNT) vapour detection . Sensors and Actuators B, 2004, 101: 328~334.
    [31] Yinon J. Field detection and monitoring of explosives. TRAC-Trends in Analytical Chemistry. 2002, 21: 292~301.
    [32] Edmonson P J, Campbell C K, Selectable reflector arrays for SAW sensors and identification devices, United States Patent, 6967428, 2005-11-22
    [33]刘雪梅,邢婉丽,聚合物在化学传感器的应用,化学传感器, 1999, 19(3): 1~10
    [34]邹小红,郭成海,史瑞雪,声表面波气体传感器的设计,化学传感器, 2000, 20(3): 6~11
    [35] Thompson C H, Hu J, Kaganove S N, etal. Hydrogen-bond acidic hyperbranched polymers for Surface Acoustic Wave (SAW) sensors, Chem. Mater., 2004, 16(25): 5357~5364
    [36]刘卫卫,于建华,潘勇等,SAW聚环氧氯丙烷传感器检测芥子气的研究,化学传感器,2005,25(1):57~60
    [37] Grate J W, Patrash S J. Selective vapor sorption by polymers and cavitands on acoustic wave sensors: Is this molecular recognition. Anal. Chem. 1996, 68(5): 913~917
    [38] Zimmermann C, Mazein P, Rebière D, et al. Detection of GB and DMMP vapors by love wave acoustic sensors using strong acidic fluoride polymers, IEEE Sensors J, 2004, 4(4): 479~488
    [39] Grate J W, Klusty M, McGill R A, et al. Predominant role of swelling-induced modulus changes of the sorbent phase in determining the responses of polymer-coated surface acoustic wave vapor sensors, J. Anal. Chem. 1992, 64(6): 610~624
    [40] Grate J W, Zellers E T. The fractional free volume of the sorbed vapor in modeling the viscoelastic contribution to polymer-coated surface acoustic wave vapor sensor responses. Anal. Chem. 2000, 72(13): 2861~2868
    [41] Abraham M H. Scales of solute hydrogen-bonding: Their construction and application to physicochemical and biochemical processes. Chem. Soc. Rev. 1993, 22(2): 73~83
    [42] McGill R A, Mlsna T E, Chung R, et al. Design of functionalized silicone polymers for chemical sensor detection of nitroaromatic compounds, Sensors and Actuators B, 2000, 65(1): 5~9
    [43] Houser E J, McGill R. A, et al. Sorbent coatings for detection of explosives vapor: Applications with chemical sensor, Proceedings of SPIE-The International Society for Optical Engineering, 1999, 3710: 394~401
    [44] Abraham M H, Andonian-Haftvan J, Du C M, et al. Hydrogen bonding. Part 29. Characterization of 14 sorbent coatings for chemical microsensors using a new solvation equation. J. Chem. Soc, Perkin Trans. 2, 1995, (2): 369~378
    [45] Houser E J, Mlsna T E, Nguyen V K et al. Rational materials design of sorbent coatings for explosives: Applications with chemical sensors Talanta, 2001, 54: 469~485
    [46] Grate J W, Acoustic wave microsensor arrays for vapor sensing, Chem. Rev., 2000, 100(7): 2627~2648.
    [47] Abraham M H, Andonian-Haftvan J, Du C M et al. Hydrogen bonding. Part 29. Characterization of 14 sorbent coatings for chemical microsensors using a new solvation equation, J. Chem. Soc., Perkin Trans. 2, 1995, (2): 369~378
    [48] McGill R A, Mlsna T E, Chung R et al. Sorbent Coatings for Nitroaromatic Vapors: Applications with Chemical Sensors, SPIE, 1998, 3392: 384~389.
    [49] Grate J W, Patrash S J, Method for estimating polymer-coated acoustic wave vapor sensor responses, Anal. Chem., 1995, 67(13): 2162~2169
    [50] McGill R A, Abraham M H, Grate J W, Choosing polymer coatings for chemical sensors, Chemtech., 1994, 24(9): 27~37
    [51] Houser E J, McGill R A, et al. Recent Developments in Sorbent Coatings and Chemical Detectors at the Naval Research Laboratory for Explosives and Chemical Agents. Proceeding of SPIE, 2000, 4038: 504~510
    [52] McGill R A, Mlsna T E, et al. The design of functionalized silicone polymers for chemical sensor detection of nitroaromatic compounds. Proceedings of the Annual IEEE International Frequency Control Symposium, 1998: 630~633
    [53] Chang Y, Noriyan J, et al. Ploymer Sorbents for Phosphorus Esters: I. Selection of Ploymers by Analog Calorimetry. Ploymer Engineering and Science, 1987, 5, 27(10): 693~702
    [54] Barlow J W, Cassidy P E, et al. Ploymer Sorbents for Phosphorus Esters:Ⅱ. Hydrogen Bond Driven Sorption in Fluoro-Carbinol Substituted Polystyrene. Polymer Engineering and Science, 1987, 5, 27(10): 703~715
    [55]周宁琳,有机硅聚合物导论,北京:科学出版社,2000,55~56
    [56]李光亮,有机硅高分子化学,北京:科学出版社,1998,2~3
    [57]冯圣玉,张洁,李美江,有机硅高分子及其应用,北京:化学工业出版社,2004,16~19
    [58] Speier J L, Zimmerman R, Webster J, The addition of silicon hydrides to olefinic double bonds. Part I. The use of phenylsilane, diphenylsilane, Phenylmethyl- silane, Amylsilane and Tribromosilane, Am. Chem. Soc., 1956, 78(10): 2278 ~2281
    [59]聂王焰,周艺峰,石刻保护有机硅涂料的研究,涂料工业,2005,35(8): 16~18
    [60] Beltzung M, Picot C, Rempp P, et al.Investigation of the conformation of elastic chains in poly(dimethylsiloxane) networks by small-angle neutron scattering, Macromolecules, 1982, 15(6): 1594~1600
    [61] Takiguchi T, Notes. Reactions of some organochlorosilanes in acetone, J. Org. Ch., 1958, 23(8): 1216~1217
    [62] Takiguchi T, Sakurai M, Kishi T, et al. Notes-Preparation of hexaphenyl -cyclotrisiloxane by the reaction of hexaphenyldichlorosilane with zinc oxide, J. Org. Chem., 1960, 25(2): 310~311
    [63] Chrisey D B, PiquéA, et al. Laser deposition of polymer and biomaterial films. Chem. Rev. 2003, 103: 553~576
    [64]叶云霞,王大承,张永康,脉冲激光沉积制备薄膜的研究动态,江苏理工大学学报,2001,3:56~59
    [65]李美成,杨建平等,脉冲激光薄膜制备技术,真空与低温,2000,6:63~70
    [66]敖育红,胡少六等,脉冲激光沉积薄膜技术研究新进展,激光技术,2003,27(5):454~459
    [67]陈传忠,包全等.脉冲激光沉积技术及其应用激,激光技术,2003,27(5):443~446
    [68]陈立峰,张人佶,基于光压原理的微堆积制造技术,物理学和高新技术,2003,12:816~819
    [69] PiquéA, Auyeung R C Y, et al. Laser processing of polymer thin films for chemical sensor applications. Surface and Coatings Technology, 2003, 163–164: 293~299
    [70] Bruins A P, Mechanistic Aspects of Electrospay Ionization. Chromatogr A,1998,794: 345~357
    [71] Kebarle P, Peschke M, On the mechanisms by which the charged droplets produced by electrospray lead to gas phase ions, Anal. Chim. Acta. 2000, 406: 11~35
    [72] Bender F, W?chter L, et al. Deposition of High Quality Coatings on SAW Sensors Using Electrospray. Proceedings of IEEE Sensors, 2003, 2(1):115~119
    [73]张正奇,分析化学,北京:科学出版社,2002,336~337
    [74]郑昌仁,高聚物分子量及其分布,北京:化学工业出版社,1986,377~386
    [75]虞志光,高聚物分子量及其分布的测定,上海:上海科学技术出版社, 1984, 1~9
    [76] Momper B, Wagner T, Maschke U et al, Preparation and characterization of narrowly distributed poly(methylphenylsiloxane) by anionic polymerization of the cyclic trimers, Polymer communications, 1990, 31(5): 186~189
    [77]方信凡,杨静,聚苯乙烯粘均分子量的测定,南京化工,2000,30~34
    [78]潘祖仁等,高分子化学,北京:化学工业出版社,2002,135~136
    [79]张志贤,张瑞镐,有机官能团分析,北京:化学工业出版社,1990,56~57
    [80]魏荣卿,汪海萍,沈斌等,硝基苯对傅克酰基化反应制备羧基化聚苯乙烯的影响,化工学报,2005,56(7): 1230~1235
    [81]葛鹏举,卜对氯苯基一卜苯基丙酮合成反应机理研究,辽宁化工,1992,(2): 54~57