蝗虫离子型受体和信息素结合蛋白的鉴定及功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过构建蝗虫触角转录组文库,利用生物信息学方法首次鉴定出沙漠蝗的离子型受体(IRs),并对其序列特征、时空表达特征、细胞定位等特征进行了研究;首次鉴定出了飞蝗的求偶相关的信息素及相应的气味分子结合蛋白(LmigOBP4),并且综合利用分子生物学、行为学、电生理学等方法,证明了LmigOBP4参与了飞蝗成虫对飞蝗求偶信息素的感受过程。主要结果如下:
     I.沙漠蝗(Schistocerca gregaria)离子型受体IR8a和IR25a的克隆、时空表达和细胞定位
     通过对沙漠蝗触角转录组文库进行生物信息学分析,组装得到两个可能的离子受体IR8a和IR25a基因的部分片段。首次在沙漠蝗触角中克隆到SgreIR8a ORF的全长序列,和SgreIR25a的部分序列,序列比对显示它们与其他昆虫的IR8a和IR25a有很高的序列同源性。其次,RT-PCR的结果表明,SgreIR8a和SgreIR25a在蝗蝻期和成虫期的触角中均有表达。再次,通过原位杂交实验,证明SgreIR8a和SgreIR25a表达在腔锥形感器下的神经元细胞中。最后,双荧光原位杂交实验表明,SgreIR8a和SgreIR25a在腔锥形感器下的部分细胞中存在共表达现象。另外还发现,SgreIR25a表达在部分刺形感器下的神经元细胞中。但是两个IRs都不表达在锥形感器和毛形感器下的细胞里。这一点,通过与SgreORco探针的双荧光原位杂交得到进一步证明,即表达SgreIR8a和SgreIR25a的细胞,都不表达SgreORco。综上,证明沙漠蝗的触角采用了两类不同的嗅觉感受神经元来感受气味:位于腔锥形感器中表达IR的神经元以及位于锥形感器和毛形感器中表达OR的神经元,为揭示蝗虫的嗅觉机制奠定了基础。
     Ⅱ. LmigOBP4参与了飞蝗(Locusta migratoria)对信息素的感受过程
     前人的研究表明KT(一种化合物,暂时保密)是雄成虫体表的特异挥发物,能引起毛形感器神经元的兴奋或抑制性反应。电生理实验证明其能够引起雌雄成虫的触角电生理反应。行为学实验表明,KT对5龄幼虫没有任何的作用,而在一定剂量下,对雌成虫有吸引作用,对雄成虫有排斥作用,且这种作用模式与一组雄虫(30头)吸引单头雌虫是类似的,推测其可能为求偶相关的信息素。在飞蝗触角cDNA文库中筛选到一个高丰度表达的气味分子结合蛋白(OBP),命名为LmigOBPA,对该蛋白进行原核表达和纯化。利用重组蛋白进行荧光竞争结合实验,结果表明LmigOBPA与KT有很强的结合能力。Western blotting结果表明该蛋白只表达在嗅觉器官---触角上;原位杂交和免疫电镜的结果表明LmigOBP4在三种类型的嗅觉感器(锥形、毛形、腔锥形感器)的淋巴液中都有表达。初步表明LmigOBP4可能参与了KT的识别。通过RNAi的方法显著地降低OBP4的表达量后,发现显著降低了雌雄虫触角对KT的电生理反应。进一步地,行为学测定结果表明,干扰OBP4表达的飞蝗对KT的行为反应发生了显著的改变:OBP4的缺失逆转了KT对雌成虫的吸引反应和对雄成虫的排斥反应,转变为,KT吸引雄成虫而排斥雌成虫,当KT剂量升高时,突变型蝗虫的行为反应并没有恢复到与野生型一致。综上结果表明,LmigOBP4参与了东亚飞蝗对信息素KT的感受过程,且对雌雄虫做出正确的求偶反应起到了关键性作用。
     本文以沙漠蝗为材料,首次对其离子型受体的表达特征进行的深入的研究,这是继果蝇之后,第一次在昆虫中进行如此细致的研究,为完善昆虫的嗅觉机制,以及未来蝗虫的嗅觉机制研究奠定了基础。本文首次对飞蝗的求偶信息素及相应的结合蛋白进行了鉴定,初步明确了其生理功能,为从飞蝗求偶分子机制方向设计控制蝗虫物种特异的分子靶标奠定了基础,这对制定防治蝗虫的绿色防控体系提供了依据。
Two novel ionotropic receptors, IR8a and IR25a were firstly identified in grasshopper, Schistocerca gregaria. Further research was conducted in spatiotemporal expression pattern, cell localization and so on. A putative courtship related pheromone was defined and a possible pheromone binding protein-OBP4may be involved in the process of sensing this pheromone, details are as follows,
     I. Identification and Characterization of IR8a and IR25a in locust, Schistocerca gregaria
     In this study, we have identified the genes of S. gregaria which encode homologues of co-receptors for the variant ionotropic receptors, the subtypes IR8a and IR25a. It was found that both subtypes, SgreIR8a and SgreIR25a, was expressed in the antennae of all five nymphal stages and adults. Attempts to assign the relevant cell types by means of in situ hybridization revealed that SgreIR8a and SgreIR25a are expressed in cells of sensilla coeloconica. Double fluorescence in situ hybridization experiments disclosed that the two IR-subtypes are co-expressed in some cells of the coeloconic sensilla. Expression of SgreIR25a was also found in some of the sensilla chaetica, however, neither SgreIR25a nor SgreIRSa was found to be expressed in basiconic or trichoid sensilla. This observation was substantiated by the results of double FISH experiments demonstrating that cells expressing ISgreIR8a or SgreIB25a do not express SgreORco. These results support the notion that the antenna of the desert locust employs two different populations of OSNs to sense odors:cells which express IRs in sensilla coeloconica and cells which express ORs in sensilla basiconica and sensilla trichodea.
     II. A dual-role male pheromone sensed by odorant-binding protein in locust
     Here for the first time, we identified KT as one courtship related pheromoene, a component of male adult body volatiles of locust, Locusta migratoria. KT has been reported by Cui et al., that can excite or inhibit neurons in a portion of sensilla trichodea. This compound elicited high electrophysiological responses of male and female antenna. Behavioural assays showed that KT evoked sexually dimorphic behaviours at certain dosage, attracting females and repelling males but5instar nymphs did not show any response to KT. Together these results suggested that this compound is likely to be one courtship related pheromone of L. migratoria. Consequently, this pheromone was demonstrated to have binding affinity to a novel odorant binding protein which was identified from locust, named as LmigOBP4, highly expressed in olfactory sensilla observed in in situ hybridyzation and immunocytochemistry localization experiments. Furthermore, the defect of LmigOBP4by RNAi technique diminished significantly electroantennogram responses of both male and female locusts to KT. Consistently, behavioural tendencies in the selection of KT at certain doses by both sexes were reversed with that of the comparison of wild types. Additionally, behavioural impairment of KT by RNA interference of Lmigobp4could not be restored and compensated by increasing doses. Therefore, we have characterized a dual-role locust male-specific pheromone, KT which can elicit courtship behaviour, attracting females and repelling males, and the pheromone is sensed by a novel odorant binding protein, LmigOBP4. Our findings support that odorant binding protein plays key roles in the process of pheromone detection, and locust has highly efficient courtship communication system which is more similar to fly, other than moth. This provides the evidence to understand the molecular evolution of animal courtship, as well as to develop new methods for controling locust plagues based on functions of molecules in locust courtship behavior.
引文
Abuin, L., Bargeton, B., Ulbrich, M. H., et al. Functional architecture of olfactory ionotropic glutamate receptors [J]. Neuron,2011,69(1):44-60.
    Ai, M., Blais, S., Park, J. Y., et al. Ionotropic glutamate receptors IR64a and IR8a form a functional odorant receptor complex in vivo in Drosophila [J]. J Neurosci,2013,33(26):10741-10749.
    Ai, M., Min, S., Grosjean, Y., et al. Acid sensing by the Drosophila olfactory system [J]. Nature,2010, 468(7324):691-695.
    Ban, L., Napolitano, E., Serra, A., et al. Identification of pheromone-like compounds in male reproductive organs of the oriental locust, Locusta migratoria [J]. Biochemical and biophysical research communications, 2013,437(4):620-624.
    Ban, L., Scaloni, A., D'ambrosio, C., et al. Biochemical characterization and bacterial expression of an odorant-binding protein from Locusta migratoria [J]. Cellular and Molecular Life Sciences CMLS,2003, 60(2):390-400.
    Bengtsson, J. M., Trona, F., Montagne, N., et al. Putative chemosensory receptors of the codling moth, Cydia pomonella, identified by antennal transcriptome analysis [J]. PloS one,2012,7(2):e31620.
    Benton, R., Sachse, S., Michnick, S. W., et al. Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo [J]. PLoS biology,2006,4(2):e20.
    Benton, R., Vannice, K. S., Gomez-Diaz, C., et al. Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila [J]. Cell,2009,136(1):149-162.
    Benton, R., Vannice, K. S.,Vosshall, L. B. An essential role for a CD36-related receptor in pheromone detection in Drosophila [J]. Nature,2007,450(7167):289-293.
    Bhandawat, V., Olsen, S. R., Gouwens, N. W., et al. Sensory processing in the Drosophila antennal lobe increases reliability and separability of ensemble odor representations [J]. Nature neuroscience,2007,10(11): 1474-1482.
    Biessmann, H., Andronopoulou, E., Biessmann, M. R., et al. The Anopheles gambiae Odorant Binding Protein 1 (AgamOBP1) mediates indole recognition in the antennae of female mosquitoes [J]. Plos One,2010, 5(3):e9471.
    Blaney, W.,Chapman, R. The fine structure of the terminal sensilla on the maxillary palps of Schistocerca gregaria (Forskal)(Orthoptera, Acrididae) [J]. Zeitschrift fur Zellforschung und mikroskopische Anatomie, 1969.99(1):74-97.
    Blomquist, G. J. Biosynthesis and ecdysteroid regulation of housefly sex pheromone production [J]. Insect Pheromone Biochemistry and Molecular Biology. The Biosynthesis and Detection of Pheromones and Plan Volatiles,2003,231-252.
    Blomquist, G. J., Tillman, J. A., Mpuru, S., et al. Cuticle and cuticular hydrocarbons of insects:structure, function, and biochemistry [M]. Pheromone communication in social insects:ants, wasps, bees, and termites, 1998,3-33.
    Bray, S.,Amrein, H. A putative Drosophila pheromone receptor expressed in male-specific taste neurons is required for efficient courtship [J]. Neuron,2003,39(6):1019-1029.
    Brockie, P. J., Madsen, D. M., Zheng, Y., et al. Differential expression of glutamate receptor subunits in the nervous system of Caenorhabditis elegans and their regulation by the homeodomain protein UNC-42 [J]. The Journal of Neuroscience,2001,21(5):1510-1522.
    Butenandt, A., Groschel, U., Karlson, P., et al. N-aceryl tyramine, its isolation from Bombyx cocoons& its chemical & biological properties [J]. Archives of biochemistry and biophysics,1959,83(1):76-83.
    Butterworth, F. Lipids of Drosophila:a newly detected lipid in the male [J]. Science,1969,163(3873): 1356-1357.
    Campanacci, V., Krieger, J., Bette, S., et al. Revisiting the specificity of Mamestra brassicae and Antheraea polyphemus pheromone-binding proteins with a fluorescence Binding Assay [J]. Journal of Biological Chemistry,2001,276(23):20078-20084.
    Carey, A. F.,Carlson, J. R. Insect olfaction from model systems to disease control [J]. Proceedings of the National Academy of Sciences,2011,108(32):12987-12995.
    Carey, A. F., Wang, G., Su, C.-Y., et al. Odorant reception in the malaria mosquito Anopheles gambiae [J]. Nature,2010,464(7285):66-71.
    Chen, G.-Q., Cui, C., Mayer, M. L., et al. Functional characterization of a potassium-selective prokaryotic glutamate receptor [J]. Nature,1999,402(6763):817-821.
    Chin, J., DeSalle, R., Lam, H.-M., et al. Molecular evolution of glutamate receptors:a primitive signaling mechanism that existed before plants and animals diverged [J]. Molecular Biology and Evolution,1999, 16(6):826-838.
    Chou, Y.-H., Spletter, M. L., Yaksi, E., et al. Diversity and wiring variability of olfactory local interneurons in the Drosophila antennal lobe [J]. Nature neuroscience,2010,13(4):439-449.
    Clyne, P., Grant, A., O'Connell, R., et al. Odorant response of individual sensilla on the Drosophila antenna [J]. Invertebrate Neuroscience,1997,3(2-3):127-135.
    Clyne, P. J., Warr, C. G., Freeman, M. R., et al. A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila [J]. Neuron,1999,22(2):327-338. Corey, E. A., Bobkov, Y., Ukhanov, K., et al. Ionotropic crustacean olfactory receptors [J]. PloS one,2013, 8(4):e60551.
    Couto, A., Alenius, M.,Dickson, B. J. Molecular, anatomical, and functional organization of the Drosophila olfactory system [J]. Current Biology,2005,15(17):1535-1547.
    Croset, V., Rytz, R., Cummins, S. F., et al. Ancient protostome origin of chemosensory ionotropic glutamate receptors and the evolution of insect taste and olfaction [J]. PLoS genetics,2010,6(8):el001064.
    Cui, X., Wu, C.,Zhang, L. Electrophysiological response patterns of 16 olfactory neurons from the trichoid sensilla to odorant from fecal volatiles in the locust, Locusta migratoria manilensis [J]. Archives of insect biochemistry and physiology,2011,77(2):45-57.
    DasGupta, S.,Waddell, S. Learned odor discrimination in drosophila without combinatorial odor maps in the antennal lobe [J]. Current Biology,2008,18(21):1668-1674.
    Datta, S. R., Vasconcelos, M. L., Ruta, V., et al. The Drosophila pheromone cVA activates a sexually dimorphic neural circuit [J]. Nature,2008,452(7186):473-477.
    de Brito Sanchez, M. G..Kaissling, K.-E. The antennal benzoic acid receptor cell of the female silk moth Bombyx mori L.:structure-activity relationship studies with halogen substitutes [J]. Journal of Comparative Physiology A,2005,191(2):189-196.
    De Bruyne, M.,Baker, T. Odor detection in insects:volatile codes [J]. Journal of chemical ecology,2008, 34(7):882-897.
    de Bruyne, M., Foster, K.,Carlson, J. R. Odor Coding in the Drosophila Antenna [J]. Neuron,2001,30(2): 537-552.
    Dickson, B. J. Wired for sex:the neurobiology of Drosophila mating decisions [J]. Science,2008,322(5903): 904-909.
    Du, G.,Prestwich, G. D. Protein structure encodes the ligand binding specificity in pheromone binding proteins [J]. Biochemistry,1995,34(27):8726-8732.
    Durand, N., Carot-Sans, G., Bozzolan, F., et al. Degradation of pheromone and plant volatile components by a same odorant-degrading enzyme in the cotton leafworm, Spodoptera littoralis [J]. Plos One,2011,6(12): e29147.
    Ejima, A., Smith, B. P., Lucas, C., et al. Generalization of courtship learning in Drosophila is mediated by cis-Vaccenyl Acetate [J]. Current biology,2007,17(7):599-605.
    Engsontia, P., Sanderson, A. P., Cobb, M., et al. The red flour beetle's large nose:An expanded odorant receptor gene family in Tribolium castaneum [J]. Insect biochemistry and molecular biology,2008,38(4): 387-397.
    Enserink, M. Can the war on locusts be won? [J]. Science,2004,306(5703):1880-1882.
    Fan, J., Francis, F., Liu, Y., et al. An overview of odorant-binding protein functions in insect peripheral olfactory reception [J]. Genet Mol Res,2011,10(4):3056-3069.
    Ferenz, H. J.,Seidelmann, K. Pheromones in relation to aggregation and reproduction in desert locusts [J]. Physiological entomology,2003,28(1):11-18.
    Fishilevich, E.,Vosshall, L. B. Genetic and functional subdivision of the Drosophila antennal lobe [J]. Current Biology,2005,15(17):1548-1553.
    Foelix, R., Stocker, R.,Steinbrecht, R. Fine structure of a sensory organ in the arista of Drosophila melanogaster and some other dipterans [J]. Cell and tissue research,1989,258(2):277-287.
    Foret, S.,Maleszka, R. Function and evolution of a gene family encoding odorant binding-like proteins in a social insect, the honey bee (Apis mellifera) [J]. Genome research,2006,16(11):1404-1413.
    Fuss, S. H.,Ray, A. Mechanisms of odorant receptor gene choice in Drosophila and vertebrates [J]. Molecular and Cellular Neuroscience,2009,41 (2):101-112.
    Galindo, K.,Smith, D. P. A large family of divergent Drosophila odorant-binding proteins expressed in gustatory and olfactory sensilla [J]. Genetics.2001,159(3):1059-1072.
    Galizia, C. G.,Rossler, W. Parallel olfactory systems in insects:anatomy and function [J]. Annu Rev Entomol,2010,55:399-420.
    Gallio, M., Ofstad, T. A., Macpherson, L. J., et al. The coding of temperature in the Drosophila brain [J]. Cell,2011,144(4):614-624.
    Gao, Q.,Chess, A. Identification of candidate Drosophila olfactory receptors from genomic DNA sequence [J]. Genomics,1999,60(1):31-39.
    Getahun, M. N., Wicher, D., Hansson, B. S., et al. Temporal response dynamics of Drosophila olfactory sensory neurons depends on receptor type and response polarity [J]. Front Cell Neurosci,2012,6(54
    Gohl, T.,Krieger, J. Immunolocalization of a candidate pheromone receptor in the antenna of the male moth, Heliothis virescens [J]. Invertebrate Neuroscience,2006,6(1):13-21.
    Gomez-Diaz, C., Reina, J. H., Cambillau, C., et al. Ligands for pheromone-sensing neurons are not conformationally activated odorant binding proteins [J]. PLoS biology,2013,11(4):e1001546.
    Gong, D. P., Zhang, H. J., Zhao, P., et al. The odorant binding protein gene family from the genome of silkworm, Bombyx mori [J]. BMC genomics,2009,10(1):332.
    Greenwood, M.,Chapman, R. Differences in numbers of sensilla on the antenriae of solitarious and gregarious Locusta migratoria.(Orthoptera:Acrididae) [J]. International Journal of Insect Morphology and Embryology,1984,13(4):295-301.
    GroBe-Wilde, E., Gohl, T., Bouche, E., et al. Candidate pheromone receptors provide the basis for the response of distinct antennal neurons to pheromonal compounds [J]. European Journal of Neuroscience,2007, 25(8):2364-2373.
    Grosjean, Y., Rytz, R., Farine, J.-P., et al. An olfactory receptor for food-derived odours promotes male courtship in Drosophila [J]. Nature,2011,478(7368):236-240.
    Grosse-Wilde, E., Gohl, T., Bouche, E., et al. Candidate pheromone receptors provide the basis for the response of distinct antennal neurons to pheromonal compounds [J]. European Journal of Neuroscience,2007, 25(8):2364-2373.
    Grosse-Wilde, E., Kuebler, L. S., Bucks, S., et al. Antennal transcriptome of Manduca sexta [J]. Proceedings of the National Academy of Sciences,2011,108(18):7449-7454.
    Guo, M., Krieger, J., Grosse-Wilde, E., et al. Variant ionotropic receptors are expressed in olfactory sensory neurons of coeloconic sensilla on the antenna of the desert locust(Schistocerca gregarid) [J]. Int J Biol Sci,2013,10(1):1-14.
    Ha, T. S.,Smith, D. P. A pheromone receptor mediates 11-cis-vaccenyl acetate-induced responses in Drosophila [J]. The Journal of neuroscience,2006,26(34):8727-8733.
    Hallem, E. A.,CarIson, J. R. Coding of odors by a receptor repertoire [J]. Cell,2006,125(1):143-160.
    Hallem, E. A., Fox, A. N., Zwiebel, L. J., et al. Olfaction:mosquito receptor for human-sweat odorant [J]. Nature,2004,427(6971):212-213.
    Hallem, E. A., Ho, M. G.,CarIson, J. R. The molecular basis of odor coding in the Drosophila antenna [J]. Cell,2004,117(7):965-979.
    Hansson, B. Responses of olfactory receptor neurones to behaviourally important odours in gregarious and solitarious desert locust, Schistocerca gregaria [J]. Physiological entomology,1999,24(1):28-36.
    Hansson, B. S.,Anton, S. Function and morphology of the antennal lobe:new developments [J]. Annual review of entomology,2000,45(1):203-231.
    Hansson, B. S.,Stensmyr, M. C. Evolution of insect olfaction [J]. "Neuron,2011,72(5):698-711.
    Hassanali, A., Njagi, P. G.,Bashir, M. O. Chemical ecology of locusts and related acridids [J]. Annu. Rev. Entomol.,2005,50:223-245.
    Heisenberg, M. Mushroom body memoir:from maps to models [J]. Nature Reviews Neuroscience,2003, 4(4):266-275.
    Hekmat-Scafe, D. S., Scafe, C. R., McKinney, A. J., et al. Genome-wide analysis of the odorant-binding protein gene family in Drosophila melanogaster [J]. Genome Res,2002,12(9):1357-1369.
    Hekmat-Scafe, D. S., Steinbrecht, R. A.,Carlson, J. R. Coexpression of two odorant-binding protein homologs in Drosophila:implications for olfactory coding [J]. J Neurosci,1997,17(5):1616-1624.
    Hill, C. A., Fox, A. N., Pitts, R. J., et al. G protein-coupled receptors in Anopheles gambiae [J]. Science, 2002,298(5591):176-178.
    Hollins, B., Hardin, D., Gimelbrant, A. A., et al. Olfactory enriched transcripts are cell specific markers in the lobster olfactory organ [J]. Journal of Comparative Neurology,2003,455(1):125-138.
    Horst, R., Damberger, F., Luginbuhl, P., et al. NMR structure reveals intramolecular regulation mechanism for pheromone binding and release [J]. Proceedings of the National Academy of Sciences of the United States of America,2001,98(25):14374-14379.
    Hughes, D. T., Pelletier, J., Luetje, C. W., et al. Odorant receptor from the southern house mosquito narrowly tuned to the oviposition attractant skatole [J]. Journal of Chemical Ecology,2010,36(8):797-800.
    Ishida, Y.,Leal, W. S. Rapid inactivation of a moth pheromone [J]. Proceedings of the National Academy of Sciences of the United States of America,2005,102(39):14075-14079.
    Ishida, Y.,Leal, W. S. Chiral discrimination of the Japanese beetle sex pheromone and a behavioral antagonist by a pheromone-degrading enzyme [J]. Proceedings of the National Academy of Sciences of the United States of America,2008,105(26):9076-9080.
    Jacquin-Joly, E.,Merlin, C. Insect olfactory receptors:contributions of molecular biology to chemical ecology [J]. Journal of chemical ecology,2004,30(12):2359-2397.
    Janovjak, H., Szobota, S., Wyart, C., et al. A light-gated, potassium-selective glutamate receptor for the optical inhibition of neuronal firing [J]. Nature neuroscience,2010,13(8):1027-1032.
    Jhaveri, D.,Rodrigues, V. Sensory neurons of the Atonal lineage pioneer the formation of glomeruli within the adult Drosophila olfactory lobe [J]. Development,2002,129(5):1251-1260.
    Jiang, Q. Y., Wang, W. X., Zhang, Z., et al. Binding specificity of locust odorant binding protein and its key binding site for initial recognition of alcohols [J]. Insect Biochem Mol Biol.2009,39(7):440-447.
    Jin, X., Brandazza, A., Navarrini, A., et al. Expression and immunolocalisation of odorant-binding and chemosensory proteins in locusts [J]. Cell Mol Life Sci,2005,62(10):1156-1166.
    Jin, X., Ha, T. S.,Smith, D. P. SNMP is a signaling component required for pheromone sensitivity in Drosophila [J]. Proceedings of the National Academy of Sciences of the United States of America,2008, 105(31):10996-11001.
    Jones, W. D., Cayirlioglu, P., Kadow, I. G, et al. Two chemosensory receptors together mediate carbon dioxide detection in Drosophila [J]. Nature,2007,445(7123):86-90.
    Jones, W. D., Nguyen, T.-A. T., Kloss, B., et al. Functional conservation of an insect odorant receptor gene across 250 million years of evolution [J]. Current Biology,2005,15(4):R119-R121.
    Kain, P., Boyle, S.M, Tharadra S.K., Odour receptors and neurons for DEET and new insect repellents [J]. Nature,2013,502(7472):507-512.
    Kaissling, K., Kasang, G., Bestmann, H., et al. A new pheromone of the silkworm moth Bombyx mori [J]. Naturwissenschaften,1978,65(7):382-384.
    Kaissling, K. E. Olfactory perireceptor and receptor events in moths:A kinetic model [J]. Chemical Senses, 2001,26(2):125-150.
    Kanzaki, R., Soo, K., Seki, Y., et al. Projections to higher olfactory centers from subdivisions of the antennal lobe macroglomerular complex of the male silkmoth [J]. Chemical Senses,2003,28(2):113-130.
    Karlson, P.,Luscher, M. "Pheromones":a new term for a class of biologically active substances [J]. Nature, 1959,183:55-56.
    Kazama, H.,Wilson, R. I. Homeostatic matching and nonlinear amplification at identified central synapses [J]. Neuron,2008,58(3):401-413.
    Kim, M.-S., Repp, A.,Smith, D. P. LUSH odorant-binding protein mediates chemosensory responses to alcohols in Drosophila melcmogaster [J]. Genetics,1998,150(2):711-721.
    Kim, M.-S.,Smith, D. P. The invertebrate odorant-binding protein LUSH is required for normal olfactory behavior in Drosophila [J]. Chemical senses,2001,26(2):195-199.
    Kirkness, E. F., Haas, B. J., Sun, W., et al. Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle [J]. Proceedings of the National Academy of Sciences,2010,107(27):12168-12173.
    Kreher, S. A., Mathew, D., Kim, J., et al. Translation of sensory input into behavioral output via an olfactory system [J]. Neuron,2008,59(1):110-124.
    Kruse, S. W., Zhao, R., Smith, D. P., et al. Structure of a specific alcohol-binding site defined by the odorant binding protein LUSH from Drosophila melcmogaster [J]. Nature Structural & Molecular Biology, 2003,10(9):694-700.
    Kurtovic, A., Widmer, A.,Dickson, B. J. A single class of olfactory neurons mediates behavioural responses to a Drosophila sex pheromone [J]. Nature,2007,446(7135):542-546.
    Kwon, J. Y., Dahanukar, A., Weiss, L. A., et al. The molecular basis of CO2 reception in Drosophila [J]. Proceedings of the National Academy of Sciences,2007,104(9):3574-3578.
    Lagarde, A., Spinelli, S., Tegoni, M., et al. The crystal structure of odorant binding protein 7 from Anopheles gambiae exhibits an outstanding adaptability of its binding site [J]. Journal of Molecular Biology, 2011,414(3):401-412.
    Laissue, P., Reiter, C., Hiesinger, P., et al. Three-dimensional reconstruction of the antennal lobe in Drosophila melanogaster [J]. Journal of Comparative Neurology,1999,405(4):543-552.
    Lam, H.-M., Chiu, J., Hsieh, M.-H., et al. Glutamate-receptor genes in plants [J]. Nature,1998,396(6707): 125-126.
    Larsson, M. C., Domingos, A. I., Jones, W. D., et al. Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction [J]. Neuron,2004,43(5):703-714.
    Lartigue, A., Gruez, A., Spinelli, S., et al. The crystal structure of a cockroach pheromone-binding protein suggests a new ligand binding and release mechanism [J]. Journal of Biological Chemistry,2003,278(32): 30213-30218.
    Laue, M.,Steinbrecht, R. A. Topochemistry of moth olfactory sensilla [J]. International Journal of Insect Morphology and Embryology,1997,26(3):217-228.
    Laughlin, J. D., Ha, T. S., Jones, D. N., et al. Activation of pheromone-sensitive neurons is mediated by conformational activation of pheromone-binding protein [J]. Cell,2008,133(7):1255-65.
    Leal, W. S. Odorant reception in insects:roles of receptors, binding proteins, and degrading enzymes [J]. Annual review of entomology,2013,58:373-391.
    Leal, W. S., Chen, A. M.,Erickson, M. L. Selective and pH-dependent binding of a moth pheromone to a pheromone-binding protein [J]. Journal of Chemical Ecology,2005,31(10):2493-2499.
    Leal, W. S., Chen, A. M., Ishida, Y., et al. Kinetics and molecular properties of pheromone binding and release [J]. Proceedings of the National Academy of Sciences of the United States of America,2005,102(15): 5386-5391.
    Leal, W. S., Ishida, Y., Pelletier, J., et al. Olfactory proteins mediating chemical communication in the navel orangewonn moth, Amyelois transitella [J]. Plos One,2009,4(9):e7235.
    Leal, W. S., Nikonova, L.,Peng, G. H. Disulfide structure of the pheromone binding protein from the silkworm moth, Bombyx mori [J]. Febs Letters,1999,464(1-2):85-90.
    Legeai, F., Malpel, S., Montagne, N., et al. An expressed sequence tag collection from the male antennae of the Noctuid moth Spodoptera littoralis:a resource for olfactory and pheromone detection research [J]. BMC genomics,2011,12(1):86.
    Lescop, E., Briand, L., Pernollet, J.-C., et al. Structural basis of the broad specificity of a general odorant-binding protein from honeybee [J]. Biochemistry,2009,48(11):2431-2441.
    Li, J.,Zhang, L. Indication of bioactive candidates among body volatiles of gregarious adult locusts Locusta migratoria manilensis by electroantennography (EAG) test [J]. African Journal of Biotechnology,2013, 10(45):9170-9176.
    Li, Z. X., Pickett, J. A., Field, L. M., et al. Identification and expression of odorant-binding proteins of the malaria carrying mosquitoes Anopheles gambiae and Anopheles arabiensis [J]. Archives of insect biochemistry and physiology,2005,58(3):175-189.
    Lin, H.-H., Lai, J. S.-Y., Chin, A.-L., et al. A map of olfactory representation in the Drosophila mushroom body [J]. Cell,2007,128(6):1205-1217.
    Liu, C., Pitts, R. J., Bohbot, J. D., et al. Distinct olfactory signaling mechanisms in the malaria vector mosquito Anopheles gambiae [J]. PLoS biology,2010,8(8):e1000467.
    Liu, S. J.,Zukin, R. S. Ca 2+permeable AMPA receptors in synaptic plasticity and neuronal death [J]. Trends in neurosciences,2007,30(3):126-134.
    Liu, W., Liang, X., Gong, J., et al. Social regulation of aggression by pheromonal activation of Or65a olfactory neurons in Drosophila [J]. Nature neuroscience,2011,14(7):896-902.
    Lovejoy, N., Mullen, S., Sword, G, et al. Ancient trans-Atlantic flight explains locust biogeography: molecular phylogenetics of Schistocerca [J]. Proceedings of the Royal Society B:Biological Sciences,2006, 273(1588):767-774.
    Lu, T., Qiu, Y. T., Wang, G, et al. Odor coding in the maxillary palp of the malaria vector mosquito Anopheles gambiae [J]. Current Biology,2007,17(18):1533-1544.
    Maida, R., Krieger, J., Gebauer, T., et al. Three pheromone-binding proteins in olfactory sensilla of the two silkmoth species Antheraea polyphemus and Antheraea pernyi [J]. European Journal of Biochemistry,2000, 267(10):2899-2908.
    Maida, R., Ziegelberger, G,Kaissling, K.-E. Ligand binding to six recombinant pheromone-binding proteins of Antheraea polyphemus and Antheraea pernyi [J]. Journal of Comparative Physiology B,2003, 173(7):565-573.
    Malnic, B., Hirono, J., Sato, T., et al. Combinatorial receptor codes for odors [J]. Cell,1999,96(5): 713-723.
    Maresh, A., Gil, D. R., Whitman, M. C., et al. Principles of glomerular organization in the human olfactory bulb-implications for odor processing [J]. PLoS One,2008,3(7):e2640.
    Matsuo, T., Sugaya, S., Yasukawa, J., et al. Odorant-binding proteins OBP57d and OBP57e affect taste perception and host-plant preference in Drosophila sechellia [J]. PLoS Biol,2007,5(5):e118.
    Mayer, M. L. Emerging models of glutamate receptor ion channel structure and function [J]. Structure,2011, 19(10):1370-1380. Michard, E., Lima, P. T., Borges, F., et al. Glutamate receptor-like genes form Ca2+channels in pollen tubes and are regulated by pistil D-serine [J]. Science,2011,332(6028):434-437.
    Min, S., Ai, M., Shin, S.A., et al. Dedicated olfactory neurons mediating attraction behavior to ammonia and amines in Drosophila [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013,110:E1321-1329.
    Mitsuno, H., Sakurai, T., Murai, M., et al. Identification of receptors of main sex-pheromone components of three Lepidopteran species [J]. European Journal of Neuroscience,2008,28(5):893-902.
    Miura, N., Nakagawa, T., Touhara, K., et al. Broadly and narrowly tuned odorant receptors are involved in female sex pheromone reception in Ostrinia moths [J]. Insect Biochemistry and Molecular Biology,2010, 40(1):64-73.
    Montell, C. A taste of the Drosophila gustatory receptors [J]. Curr Opin Neurobiol,2009,19(4):345-353.
    Nakagawa, T., Pellegrino, M., Sato, K., et al. Amino acid residues contributing to function of the heteromeric insect olfactory receptor complex [J]. Plos One,2012,7(3):e32372.
    Nakagawa, T., Sakurai, T., Nishioka, T., et al. Insect sex-pheromone signals mediated by specific combinations of olfactory receptors [J]. Science,2005,307(5715):1638-1642.
    Nakagawa, T.,Vosshall, L. B. Controversy and consensus:noncanonical signaling mechanisms in the insect olfactory system [J]. Current opinion in neurobiology,2009,19(3):284-292.
    Neuhaus, E. M., Gisselmann, G., Zhang, W. Y., et al. Odorant receptor heterodimerization in the olfactory system of Drosophila melanogaster [J]. Nature Neuroscience,2005,8(1):15-17.
    Njagi, P. G.,Torto, B. Evidence for a compound in Comstock-Kellog glands modulating premating behavior in male desert locust, Schistocerca gregaria [J]. Journal of chemical ecology,2002,28(5):1065-1074.
    Ochieng, S. A., Hallberg, E.,Hansson, B. Fine structure and distribution of antennal sensilla of the desert locust, Schistocerca gregaria (Orthoptera:Acrididae) [J]. Cell and tissue research,1998,291(3):525-536.
    Oka, Y., Omura, M., Kataoka, H., et al. Olfactory receptor antagonism between odorants [J]. The EMBO journal,2004,23(1):120-126.
    Olivier, V., Monsempes, C., Francois, M. C., et al. Candidate chemosensory ionotropic receptors in a Lepidoptera [J]. Insect Mol Biol,2011,20(2):189-99. Olsen, S. R., Bhandawat, V.,Wilson, R. I. Excitatory interactions between olfactory processing channels in the Drosophila antennal lobe [J]. Neuron,2007,54(1):89-103.
    Park, S. K., Shanbhag, S. R., Wang, Q., et al. Expression patterns of two putative odorant-binding proteins in the olfactory organs of Drosophila melanogaster have different implications for their functions [J]. Cell and Tissue Research,2000,300(1):181-192.
    Pelletier, J., Guidolin, A., Syed, Z., et al. Knockdown of a mosquito odorant-binding protein involved in the sensitive detection of oviposition attractants [J]. J Chem Ecol,2010,36(3):245-248.
    Pelletier, J., Hughes, D. T., Luetje, C. W., et al. An odorant receptor from the southern house Mosquito Culex pipiens quinquefasciatus sensitive to oviposition attractants [J]. Plos One,2010,5(4):e10090.
    Pelletier, J.,Leal, W. S. Genome analysis and expression patterns of odorant-binding proteins from the Southern House mosquito Culex pipiens quinquefasciatus [J]. PloS one,2009,4(7):e6237.
    Pelosi, P. Odorant-binding proteins [J]. Critical reviews in biochemistry and molecular biology,1994,29(3): 199-228.
    Pelosi, P., Zhou, J. J., Ban, L. P., et al. Soluble proteins in insect chemical communication [J]. Cell Mol Life Sci,2006,63(14):1658-1676.
    Petzold, G.C., Hagiwara, A.,Murthy, V. N. Serotonergic modulation of odor input to the mammalian olfactory bulb [J]. Nature neuroscience,2009,12(6):784-791.
    Pitts, R. J., Fox, A. N.,Zwiebel, L. J. A highly conserved candidate chemoreceptor expressed in both olfactory and gustatory tissues in the malaria vector Anopheles gambiae [J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101(14):5058-5063.
    Pitts, R. J., Rinker, D. C., Jones, P. L., et al. Transcriptome profiling of chemosensory appendages in the malaria vector Anopheles gambiae reveals tissue-and sex-specific signatures of odor coding [J]. BMC genomics,2011,12(1):271.
    Qiu, Y. T., van Loon, J. J., Takken, W., et al. Olfactory coding in antennal neurons of the malaria mosquito, Anopheles gambiae [J]. Chemical senses,2006,31(9):845-863.
    Reisert, J.,Restrepo, D. Molecular tuning of odorant receptors and its implication for odor signal processing [J]. Chemical senses,2009,34(7):535-545.
    Robertson, H. M., Warr, C. G.,Carlson, J. R. Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster [J]. Proceedings of the National Academy of Sciences,2003, 100(suppl2):14537-14542.
    Rono, E., Njagi, P. G., Bashir, M. O., et al. Concentration-dependent parsimonious releaser roles of gregarious male pheromone of the desert locust, Schistocerca gregaria [J]. Journal of insect physiology,2008, 54(1):162-168.
    Root, C. M., Semmelhack, J. L., Wong, A. M., et al. Propagation of olfactory information in Drosophila [J]. Proceedings of the National Academy of Sciences,2007,104(28):11826-11831.
    Rytz, R., Croset, V.,Benton, R. Ionotropic Receptors (IRs):Chemosensory ionotropic glutamate receptors in Drosophila and beyond [J]. bisect Biochemistry and Molecular Biology,2013,43(9):888-897.
    Saito, H., Chi, Q., Zhuang, H., et al. Odor coding by a mammalian receptor repertoire [J]. Science signaling, 2009,2(60):ra9.
    Sakurai, T., Nakagawa, T., Mitsuno, H., et al. Identification and functional characterization of a sex pheromone receptor in the silkmoth Bombyx mori [J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101(47):16653-16658.
    Sanchez-Gracia, A., Vieira, F.,Rozas, J. Molecular evolution of the major chemosensory gene families in insects [J]. Heredity,2009,103(3):208-216.
    Sandier, B. H., Nikonova, L., Leal, W. S., et al. Sexual attraction in the silkworm moth:structure of the pheromone-binding-protein-bombykol complex [J]. Chemistry & biology,2000,7(2):143-151.
    Sato, K., Pellegrino, M., Nakagawa, T., et al. Insect olfactory receptors are heteromeric ligand-gated ion channels [J]. Nature,2008,452(7190):1002-1006.
    Scaloni, A., Monti, M., Angeli, S., et al. Structural analysis and disulfide-bridge pairing of two odorant-binding proteins from Bombyx mori [J]. Biochemical and biophysical research communications, 1999,266(2):386-391.
    Schlief, M. L.,Wilson, R. I. Olfactory processing and behavior downstream from highly selective receptor neurons [J]. Nature neuroscience,2007,10(5):623-630.
    Schultze, A., Pregitzer, P., Walter, M. E, et al. The co-expression pattern of odorant binding proteins and olfactory receptors identify distinct trichoid sensilla on the antenna of the malaria mosquito Anopheles gambiae [J]. PloS one,2013,8(7):e69412.
    Seidelmann, K.,Ferenz, H.-J. Courtship inhibition pheromone in desert locusts, Schistocerca gregaria [J]. Journal of insect physiology,2002,48(11):991-996.
    Shanbhag, S., Muller, B.,Steinbrecht, R. Atlas of olfactory organs of Drosophila melanogaster. Internal organization and cellular architecture of olfactory sensilla [J]. Arthropod structure & development,2000, 29(3):211-229.
    Shang, Y., Claridge-Chang, A., Sjulson, L., et al. Excitatory local circuits and their implications for olfactory processing in the fly antennal lobe [J]. Cell,2007,128(3):601-612.
    Shi, W. P., Sun, H. L., Edward, N., et al. Fecal volatile components elicit aggregation in the oriental migratory locust, Locusta migratoria manilensis (Orthoptera:Acrididae) [J]. Insect Science,2011,18(2): 166-174.
    Silbering, A. F., Rytz, R., Grosjean, Y., et al. Complementary function and integrated wiring of the evolutionarily distinct Drosophila olfactory subsystems [J]. The Journal of Neuroscience,2011,31(38): 13357-13375.
    Skaf, R., Popov, G., Roffey, J., et al. The desert locust:an international challenge [and discussion] [J]. Philosophical Transactions of the Royal Society of London. B, Biological Sciences,1990,328(1251): 525-538.
    Smart, R., Kiely, A., Beale, M., et al. Drosophila odorant receptors are novel seven transmembrane domain proteins that can signal independently of heterotrimeric G proteins [J]. Insect biochemistry and molecular biology,2008,38(8):770-780.
    Sobolevsky, A. I., Rosconi, M. P.,Gouaux, E. X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor [J]. Nature,2009,462(7274):745-756.
    Spinelli, S., Lagarde, A., lovinella, I., et al. Crystal structure of Apis mellifera OBP14, a C-minus odorant-binding protein, and its complexes with odorant molecules [J]. Insect Biochemistry and Molecular Biology,2012,42(1):41-50.
    Steinbrecht, R., Laue, M.,Ziegelberger, G. Immunolocalization of pheromone-binding protein and general odorant-binding protein in olfactory sensilla of the silk moths Antheraea and Bombyx [J]. Cell and Tissue Research,1995,282(2):203-217.
    Steinbrecht, R. A. Are odorant-binding proteins involved in odorant discrimination? [J]. Chemical senses, 1996,21(6):719-727.
    Stepanyan, R., Hollins, B., Brock, S. E., et al. Primary culture of lobster (Homarus americanus) olfactory sensory neurons [J]. Chemical senses,2004,29(3):179-187.
    Su, C.-Y., Menuz, K..Carlson, J. R. Olfactory perception:receptors, cells, and circuits [J]. Cell,2009, 139(1):45-59.
    Suh, G. S., Wong, A. M., Hergarden, A. C., et al. A single population of olfactory sensory neurons mediates an innate avoidance behaviour in Drosophila [J]. Nature,2004,431(7010):854-859.
    Swarup, S., Williams, T. I.,Anholt, R. R. Functional dissection of odorant binding protein genes in Drosophila melanogaster [J]. Genes Brain Behav.2011,10(6):648-657.
    Tamura, K., Peterson, D., Peterson, N., et al. MEGA5:molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods [J]. Molecular biology and evolution,2011,28(10):2731-2739.
    Tanaka, N. K., Awasaki, T., Shimada, T., et al. Integration of chemosensory pathways in the Drosophila second-order olfactory centers [J]. Current biology,2004,14(6):449-457
    Tegoni, M., Campanacci, V., Cambillau, C. Structural aspects of sexual attraction and chemical communlication in insects [J]. Trends in Biochemical Sciences,2004,29(5):257-264.
    Thompson, J. D., Higgins, D. G.,Gibson, T. J. CLUSTAL W:improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice [J]. Nucleic acids research,1994,22(22):4673-4680.
    Turner, G C., Bazhenov, M.,Laurent, G. Olfactory representations by Drosophila mushroom body neurons [J]. Journal of neurophysiology,2008,99(2):734-746
    Turner, S. L.,Ray, A. Modification of CO2 avoidance behaviour in Drosophila by inhibitory odorants [J]. Nature,2009,461(7261):277-81.
    Ulbrich, M. H.,Isacoff, E. Y. Subunit counting in membrane-bound proteins [J]. Nature methods,2007,4(4): 319-321.
    Van den Berg, M.,Ziegelberger, G. On the function of the pheromone binding protein in the olfactory hairs of Antheraea polyphemus [J]. Journal of insect physiology,1991,37(1):79-85.
    van der Goes van Naters, W.,Carlson, J. R. Receptors and Neurons for Fly Odors in Drosophila [J]. Current biology,2007,17(7):606-612.
    Van Naters, W. v. d. G.,Carlson, J. R. Insects as chemosensors of humans and crops [J]. Nature,2006, 444(7117):302-307.
    Vogt, R. G Molecular basis of pheromone detection in insects [J]. Comprehensive insect physiology, biochemistry, pharmacology and molecular biology,2005,3:753-804.
    Vogt, R. G.,Riddiford, L. M. Pheromone binding and inactivation by moth antennae [J].1981,293(5828): 161-163.
    Vosshall, L. B., Amrein, H., Morozov, P. S., et al. A spatial map of olfactory receptor expression in the Drosophila antenna [J]. Cell,1999,96(5):725-736.
    Vosshall, L. B., Stocker, R. F. Molecular architecture of smell and taste in Drosophila [J]. Annu. Rev. Neurosci.,2007,30:505-533.
    Wang, G, Carey, A. F., Carlson, J. R., et al. Molecular basis of odor coding in the malaria vector mosquito Anopheles gambiae [J]. Proceedings of the National Academy of Sciences,2010,107(9):4418-4423.
    Wang, L.,Anderson, D. J. Identification of an aggression-promoting pheromone and its receptor neurons in Drosophila [J]. Nature,2010,463(7278):227-231.
    Wang, P., Lyman, R. F., Mackay, T. F., et al. Natural variation in odorant recognition among odorant-binding proteins in Drosophila melanogaster [J]. Genetics,2010,184(3):759-767.
    Wang, P., Lyman, R. F., Shabalina, S. A., et al. Association of polymorphisms in odorant-binding protein genes with variation in olfactory response to benzaldehyde in Drosophila [J]. Genetics,2007,177(3): 1655-65.
    Wang, X., Fang, X., Yang, P., et al. The locust genome provides insight into swarm formation and long-distance flight [J]. Nat Commun,2014,5:2957.
    Wang, Y., Guo, H.-F., Pologruto, T. A., et al. Stereotyped odor-evoked activity in the mushroom body of Drosophila revealed by green fluorescent protein-based Ca2+ imaging [J]. The Journal of neuroscience,2004, 24(29):6507-6514.
    Wanner, K. W., Nichols, A. S., Walden, K. K. O., et al. A honey bee odorant receptor for the queen substance 9-oxo-2-decenoic acid [J]. Proceedings of the National Academy of Sciences of the United States of America,2007,104(36):14383-14388.
    Wetzel, C. H., Behrendt, H.-J., Gisselmann, G., et al. Functional expression and characterization of a Drosophila odorant receptor in a heterologous cell system [J]. Proceedings of the National Academy of Sciences,2001,98(16):9377-9380.
    Wiener, D., Schafer, R., Bauernfeind, R., et al. Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels [J]. Nature,2008,452(7190):1007-1011.
    Wilson, R. I.,Mainen, Z. F. Early events in olfactory processing [J]. Annu. Rev. Neurosci.,2006, 29:163-201.
    Wilson, R. I., Turner, G. C.,Laurent, G. Transformation of olfactory representations in the Drosophila antennal lobe [J]. Science,2004,303(5656):366-370.
    Wogulis, M., Morgan, T., Ishida, Y., et al. The crystal structure of an odorant binding protein from Anopheles gambiae:Evidence for a common ligand release mechanism [J]. Biochemical and Biophysical Research Communications,2006,339(1):157-164.
    Wojtasek, H.,Leal, W. S. Conformational change in the pheromone-binding protein from Bombyx mori induced by pH and by interaction with membranes [J]. Journal of Biological Chemistry,1999,274(43): 30950-30956.
    Xia, Y., Wang, G., Buscariollo, D., et al. The molecular and cellular basis of olfactory-driven behavior in Anopheles gambiae larvae [J]. Proceedings of the National Academy of Sciences,2008,105(17):6433-6438.
    Xu, H., Guo, M., Yang, Y., et al. Differential expression of two novel odorant receptors in the locust (Locusta migratoria) [J]. BMC neuroscience,2013,14(1):50.
    Xu, P., Atkinson, R., Jones, D. N., et al. Drosophila OBP LUSH is required for activity of pheromone-sensitive neurons [J]. Neuron,2005,45(2):193-200.
    Xu, P., Zwiebel, L.,Smith, D. Identification of a distinct family of genes encoding atypical odorant-binding proteins in the malaria vector mosquito, Anopheles gambiae [J]. Insect molecular biology,2003,12(6): 549-560.
    Xu, P. X., Zwiebel, L. J.,Smith, D. P. Identification of a distinct family of genes encoding atypical odorant-binding proteins in the malaria vector mosquito. Anopheles gambiae [J]. Insect Molecular Biology, 2003,12(6):549-560.
    Xu, W.,Leal, W. S. Molecular switches for pheromone release from a moth pheromone-binding protein [J]. Biochemical and Biophysical Research Communications,2008,372(4):559-564.
    Xu, X. Z., Xu, W., Rayo, J., et al. NMR structure of navel orangeworm moth pheromone-binding protein (AtraPBP1):Implications for pH-Sensitive Pheromone Detection [J]. Biochemistry,2010,49(7):1469-1476
    Yang, Y., Krieger, J., Zhang, L., et al. The olfactory co-receptor Oreo from the migratory locust(Locusta migratorid) and the desert locust (Schistocerca gregaria):identification and expression pattern [J]. Int J Biol Sci,2012,8(2):159-170.
    Yao, C. A., Ignell, R.,Carlson, J. R. Chemosensory coding by neurons in the coeloconic sensilla of the Drosophila antenna [J]. The Journal of neuroscience,2005,25(37):8359-8367.
    Yu, F., Zhang, S., Zhang, L., et al. Intriguing similarities between two novel odorant-binding proteins of locusts [J]. Biochem Biophys Res Commun,2009,385(3):369-374.
    Yn, Y., Cui, X., Jiang, Q., et al. New isoforms of odorant-binding proteins and potential semiochemicals of locusts [J]. Arch Insect Biochem Physiol,2007,65(1):39-49.
    Yu, Y., Zhang, S., Zhang, L., et al. Developmental expression of odorant-binding proteins and chemosensory proteins in the embryos of Locusta migratoria [J]. Arch Insect Biochem Physiol,2009,71(2): 105-115.
    Zhang, Y. V., Ni, J.,Montell, C. The molecular basis for attractive salt-taste coding in Drosophila [J]. Science,2013,340(6138):1334-1338.
    Zhou, J.-J., Field, L. M.,He, X. L. Insect odorant-binding proteins:do they offer an alternative pest control strategy? [J]. Outlooks on Pest Management,2010,21(1):31-34.
    Zhou, J.-J., Huang, W., Zhang, G-A., et al. "Plus-C" odorant-binding protein genes in two Drosophila species and the malaria mosquito Anopheles gambiae [J]. Gene,2004,327(1):117-129.
    Zhou, J. J., He, X. L., Pickett, J. A., et al. Identification of odorant-binding proteins of the yellow fever mosquito Aedes aegypti:genome annotation and comparative analyses [J]. Insect Mol Biol,2008,17(2): 147-163.
    Zhou, X., Slone, J. D., Rokas, A., et al. Phylogenetic and transcriptomic analysis of chemosensory receptors in a pair of divergent ant species reveals sex-specific signatures of odor coding [J]. PLoS genetics,2012,8(8): e1002930.