褐飞虱内参基因的筛选及精氨酸激酶基因的分子特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
褐飞虱Nilaparvata lugens (brown planthopper, BPH)是水稻上的重要害虫之一,在我国南方部分地区和长江中下游地区近年来褐飞虱经常暴发成灾,对我国水稻生产和粮食安全构成严重威胁。目前,对于褐飞虱的控制以化学防治为主,然而化学药剂导致的环境污染问题日益严重,因此当前害虫防治的研究热点集中在寻求环境友好的防止新途径。与此同时,RNAi技术已经广泛地应用于各种生物体基因功能的研究,这一技术成功地阐明了多种昆虫的基因功能。利用该技术分析基因功能的同时,也为农业害虫的生物防治开辟了RNAi沉默靶标基因的新途径。在RNAi的研究过程中,利用实时荧光定量PCR分析靶标基因mRNA水平是检测基因沉默效果的重要手段,本研究详细分析评估了不同实验条件下(不同发育时期、不同组织部位、不同地理种群、不同温度胁迫、不同药剂处理、不同食物饲喂和饥饿处理)褐飞虱8种常用持家基因actin1(ACT)、muscle actin (MACT)、ribosomal protein S11(RPS11)、ribosomal protein S15e (RPS15)、alpha2-tubulin (TUB)、elongation factor1delta (EF)、18S ribosomal RNA (18S)和arginine kinase (AK)的表达稳定性。并且,克隆褐飞虱nlak基因的全长cDNA,分析nlak基因mRNA的组织分布和发育表达模式,构建昆虫杆状病毒重组质粒表达N1AK重组蛋白,通过RNAi探讨nlak基因作为分子靶标的可能性,为深入研究精氨酸激酶基因的表达与调控规律,阐明昆虫体内能量的代谢、贮存和利用等调控机制提供重要的理论依据,并且为利用RNAi这一新技术有效防治褐飞虱提供理论基础。研究结果如下:
     一、褐飞虱内参基因的筛选
     不同发育时期各内参基因稳定性的综合排序从稳定到不稳定依次为:RPS15, RPS11, TUB, EF,18S, AK, ACT, MACT。若要采用多内参校正,需要选取RPS15. TUB、18S和EF这四个基因;不同组织部位各内参基因稳定性的综合排序从稳定到不稳定依次为:PS11, TUB, RPS15,18S, ACT, MACT, EF, AK。若要采用多内参校正,需要选取RPS11、18S和RPS15这三个基因;不同地理种群各内参基因稳定性的综合排序从稳定到不稳定依次为:TUB, RPS11, EF, RPS15, AK, ACT,18S, MACT。采用多内参校正时,需要选取RPS11、EF和RPS15这三个基因;不同温度胁迫下各内参基因稳定性的综合排序从稳定到不稳定依次为:RPS15, TUB, EF, RPS11, AK, MACT,18S, ACT。采用多内参校正时,需要选取RPS15、TUB和EF这三个基因;不同药剂处理下各内参基因稳定性的综合排序从稳定到不稳定依次为:RPS11, EF, TUB, RPS15,18S, AK, MACT, ACT。采用多内参校正时,需要选取RPS11、EF和TUB这三个基因;不同食物饲喂时各内参基因稳定性的综合排序从稳定到不稳定依次为:RPS15, TUB, RPS11, EF, AK,18S, ACT, MACT。采用多内参校正时,需要选取RPS15、TUB、EF和RPS11这四个基因;饥饿处理下各内参基因稳定性的综合排序从稳定到不稳定依次为:RPS11, TUB, RPS15, AK,18S, EF, ACT, MACT。采用多内参校正时,需要选取RPS11、AK和EF这三个基因;对所有处理的样品数据进行综合分析,结果发现各内参基因稳定性的综合排序从稳定到不稳定依次为:RPS11, RPS15, EF, TUB, AK,18S, ACT, MACT。此结果对于褐飞虱中基因表达分析具有重要意义,并且为进一步分析褐飞虱和其他生物内参基因稳定性奠定了基础。
     二、褐飞虱精氨酸激酶基因的分子特性研究
     1.褐飞虱精氨酸激酶基因(nlak)的克隆与分析
     采用PCR. TA克隆、测序和拼接,获得了nlak基因的完整编码区序列,并通过5'-RACE和3'-RACE获得5’端和3’端非翻译区(Untranslated Regions, UTR)序列。克隆到的nlak基因cDNA全长为1377bp,含有一个完整的1071bp的开放阅读框序列(Open reading frame, ORF),编码356个氨基酸残基。其中,CPTNLGT位于nlak氨基酸序列第270-276位,是精氨酸激酶的活性中心。根据Prosite软件分析得出其蛋白质分子量为39.81kDa,等电点为5.69。
     2.重组Ac NPV-N1AK在昆虫杆状病毒系统中的表达
     将同源重组的Ac NPV-N1AK病毒转染健康的昆虫sf21细胞系,获得第一代重组Ac NPV-N1AK病毒。该重组病毒能够继续感染新的健康的sf21细胞,在感染后的第7天可以收集到重组Ac NPV-N1AK蛋白。利用抗6-His兔多克隆抗体进行Western Blotting,检测到重组NPV-N1AK蛋白在sf21细胞中成功表达。
     3. nlak基因在褐飞虱体内的表达分析
     qRT-PCR和酶活性检测结果表明nlak基因在褐飞虱各个发育时期均有表达,褐飞虱卵期的nlak基因表达量远低于其他各个时期,1龄若虫和2龄若虫中表达量显著高于其它龄期若虫,并且在2龄若虫中的表达量为整个发育时期最高。此外,在褐飞虱成虫的各组织部位中nlak基因均有表达,无论在雌成虫还是雄成虫体内,头部的nlak基因表达量最高,其次是胸部,而腹部的表达量明显低于头部和胸部。并且,对于整个虫体而言,nlak基因在雄成虫体内的表达量远大于雌成虫。
     4. nlak基因沉默后对褐飞虱的影响
     采用饲喂法将体外合成的nlak基因dsRNA通过人工饲料导入褐飞虱体内,通过对死亡率的统计、qRT-PCR和酶活性检测发现,在饲喂初期dsRNA对nlak基因干扰效果比较明显。不同浓度和不同片段的dsRNA饲喂结果均表明,摄取dsRNA的褐飞虱第2天出现死亡率上升、mRNA水平下降和酶活力降低的现象。第3天开始死亡率变化趋于平缓,第4天开始mRNA水平变化也趋于平缓,nlak基因的表达量随着RNAi处理时间的延长呈现先降低后升高的趋势。
     综上所述,褐飞虱RPS11和RPS15基因在大部分试验条件下表现出较高的稳定性,可以作为qRT-PCR的内参基因使用;nlak基因在褐飞虱各发育时期和各组织部位中均有较强的表达水平,该基因RNAi能对褐飞虱具有明显的致死效应,可作为防治褐飞虱的新途径,为昆虫内参基因筛选和褐飞虱基因功能研究提供了理论指导。
The brown planthopper (BPH), Nilaparvata lugens (N. lugens), is the most devastating rice pest in extensive areas throughout Asia. In recent years, N. lugens outbreaks have occurred more frequently in the Yangtze River Delta areas and in the South of China. As the genomes of more insect species are sequenced, RNAi is likely to become an ever-more powerful tool to ascribe functions to the many newly identified genes by means of direct feeding, micro injections or germ-line transformations. At present, RNA interference (RNAi) is an effective tool to control important insect pests via gene silencing to open new areas of basic investigation of insect physiology. In this paper, we presented a systematic exploration of eight candidate reference genes in N. lugens, namely, actin1(ACT), muscle actin (MACT), ribosomal protein S11(RPS11), ribosomal protein S15e (RPS15), alpha2-tubulin (TUB), elongation factor1delta (EF),18S ribosomal RNA (18S), and arginine kinase (AK) and used four alternative methods (BestKeeper, geNorm, NormFinder, and the delta Ct method) to evaluate the suitability of these genes as endogenous controls. We examined their expression levels among different experimental factors (developmental stage, body part, geographic population, temperature variation, pesticide exposure, diet change, and starvation). In addition, we cloned the full-length cDNA of N. lugens AK gene (nlak), analyzed the expression profile of nlak in different developmental stages and different tissue parts of N. lugens, constructed the recombinant plasmid to express N1AK recombinant protein, and investigated nlak gene function by RNAi. The results were as follows:
     1. Selection of reference genes in N. lugens
     (1) Developmental stage:According to the results of RefFinder, the stability ranking from the most stable to the least stable in the developmental stages was RPS15, RPS11, TUB, EF,18S, AK, ACT, and MACT. According to geNorm, four reference genes (RPS15, TUB,18S, and EF) should be required for a suitable normalization in the different developmental stages;(2) Body part:According to the results of RefFinder, the stability ranking from the most stable to the least stable gene in different body parts was RPS11, TUB, RPS15,18S, ACT, MACT, EF, and AK. According to geNorm, three stable reference genes (RPS11,18S, and RPS15) should be required for a suitable normalization in the different body parts;(3) Geographic population:According to the results of RefFinder, the stability ranking from the most stable to the least stable gene in the two different populations was TUB, RPS11, EF, RPS15, AK, ACT,18S, and MACT. According to geNorm, three reference genes (RPS11, EF, and RPS15) should be required for a suitable normalization in the two different geographic populations;(4) Temperatural press:From the results of RefFinder, the stability ranking from the most stable to the least stable gene in the temperature-stressed samples was RPS15, TUB, EF, RPS11, AK, MACT,18S, and ACT. According to geNorm, three reference genes (RPS15, TUB, and EF) should be required for a suitable normalization in the different temperature treatment samples;(5) Pesticide treatment:According to RefFinder, the stability ranking from the most stable to the least stable in the pesticide-stressed samples was RPS11, EF, TUB, RPS15,18S, AK, MACT, and ACT. According to geNorm, three reference genes (RPS11, EF, and TUB) should be required for a suitable normalization in the pesticide-stressed samples;(6) Diet treatment:According to RefFinder, the stability ranking from the most stable to the least stable in the different diets treatments was RPS15, TUB, RPS11, EF, AK,18S, ACT, and MACT. According to geNorm, four reference genes (RPS15, TUB, EF, and RPS11) should be required for a suitable normalization in the different diets treatments;(7) Stravation:According to RefFinder, the stability ranking from the most stable to the least stable in the starvation treatments was RPS11, TUB, RPS15, AK,18S, EF, ACT, and MACT. According to geNorm, three reference genes (RPS11, AK, and EF) should be required for a suitable normalization in the starvation treatments. After identifing the ranking of N. lugens reference genes across all of the investigated treatments, the stability ranking from the most stable to the least stable across the different developmental stages, body parts, populations, and stressors was RPS11, RPS15, EF, TUB, AK,18S, ACT, and MACT. We believe that these results make an important contribution to gene analysis studies in N. lugens and form the basis of further research on stable reference genes in N. lugens and other organisms.
     2. The molecular characterization of arginine kinase Gene in N. lugens
     (1) Cloning and sequence analysis of nlak
     Using PCR, TA cloning, sequencing to obtain CDS sequence of nlak, and using5'-RACE and3'-RACE to obtain5'-and3'-UTR (Untranslated Regions) of nlak. The nlak cDNA is1377bp long and contains a1071bp unique ORF (open reading frame) which encodes356amino acides. The arginine kinase activity center-CPTNLGT located from270to276. According to the result of Prosite, the calculated molecular mass of N1AK is46.6kDa, and the isoelectric point is5.69.
     (2) Expression of N1AK recombinant protein
     The N1AK recombinant protein was successful expressed by Tranferring the recombinant virus Ac NPV-N1AK into healthy insect cell line sf21. We detected the the N1AK recombinant protein through Western Blotting by using6-His antibodies.
     (3) Expression profile of nlak of N. lugens
     The relative expression of nlak was investigated in all developmental stages of BPH via qRT-PCR and AK enzyme activity. The expression of nlak in egg was the lowest in all developmental stages, the expression in1st and2nd instar were higher than any other stages, and the expression in2nd instar was the highest. In addition, the relative expression of nlak was also investigated in all tissue parts of BPH. Whether in the male adults or in the female adults, the expression of nlak in head was the highest, followed by the expression in thorax. The expression in abdomen was significantly lower than the expression in head and thorax. And, the expression of nlak in male adults was higher than the expression in female adults.
     (4) RNAi of nlak
     In this study, we transferred dsRNA of nlak into the BPH by the method of feeding artificial diet. According the results of mortality, qRT-PCR, and AK enzyme activity, we found that the effect of nlak RNAi was more obvious in the early feeding. After ingestion of different concentrations of nlak dsRNA and different fragments of nlak dsRNA, the mortality of BPH increased from the day after feeding dsRNA. At the same time, the relative expression of nlak gene and the activity of NLAK decreased. After two days, the mortality of BPH tended to be more flat. And, the relative expression of nlak gene also tended to be flat after three days. With the extension of RNAi, the relative expression of nlak gene fell down first and then rose up.
     Taken together, the results indicated that all the programs identified both RPS11and RPS15as the same ideal reference genes for most of the experimental conditions assessed here; the relative expression of nlak was investigated in all developmental stages and all body parts of N. lugens, and knockdown of nlak expression in vivo RNAi generated the lethal effect in N. lugens. These techniques will provide powerful tools for evaluation of reference genes in insect and functional genomics of N. lugens.
引文
1.陈忠斌,孟庆文,仇华吉.RNAii——基因沉默指南.北京:化学工业出版社,2004,45-53
    2.邓文星,张映.实时荧光定量PCR技术综述.生物技术通报,2007,5:93-95
    3.董晓丽,王加启,卜登攀,张春林,李珊珊,赵国琦.内参基因在实时定量PCR中应用的研究进展.中国畜牧兽医,2009,36:83-85
    4.李洁.抗虫水稻对褐飞虱抗性研究及褐飞虱apterousA基因的功能研究.[博士学位论文].武汉:华中农业大学,2013
    5.凌炎,黄凤宽,龙丽萍,钟勇,尹文兵,黄所生,吴碧球.中国和越南褐飞虱抗药性研究.应用昆虫学报,2011,48(5):1374-1380
    6.刘凤沂,李惠陵,邱建友,张燕雄,黄丽聪,李华,王国忠,沈晋良.惠州地区褐飞虱对几种药剂的抗药性监测.应用昆虫学报,2010,47(5):991-993
    7.苏晓峰.精氨酸激酶在棉铃虫中的表达及调控研究.[硕士学位论文].北京:中国农业科学院,2011
    8.苏晓峰,陆国清,程红梅.精氨酸激酶蛋白及分子生物学的研究进展.生物技术通报,2011,4:26-30
    9.盛清.对磷酸原激酶家族中精氨酸激酶与肌酸激酶抑制作用的研究.[博士学位论文].杭州:浙江大学,2009
    10.王华兵,徐豫松.家蚕精氨酸激酶基因的克隆、基因结构与表达分析.中国农业科学,2006,39(11):2354-2361
    11.徐秀凤.小菜蛾精氨酸激酶基因dsRNA在大肠杆菌中的表达及其效应研究.[硕士学位论文].福州:福建农林大学,2012
    12.杨中侠,文礼章,吴青君,王少丽,徐宝云,张友军.RNAi技术在昆虫功能基因研究中的应用进展.昆虫学报,2008,51(10):1077-1082
    13.张艳君,朱志峰,陆融,徐琼,石琳熙,简序,刘俊燕,姚智.基因表达转录分析中内参基因的选择.生物化学与生物物理进展,2007,34:546-550
    14.张元臣.烟夜蛾气味受体基因和精氨酸激酶基因的克隆与表达分析.[硕士学位论文].郑州:河南农业大学,2011
    15.张元臣,安世恒,李为争,郭线茹,罗梅浩,原国辉.烟夜蛾精氨酸激酶基因的克隆及mRNA表达分析.昆虫学报,2011,54(7):754-761
    16.赵峰.海参精氨酸激酶的反应半胱氨酸巯基的初步研究.[硕士学位论文].北京:清华大学,2005
    17.赵伊英.黄曲条跳甲关键功能基因的克隆及利用RNAi技术控制害虫.[博士学位论文].福州:福建农林大学,2008
    18. Amdam GV, Simoes ZL, Guidugli KR, Norberg K, Omholt SW. Disruption of vitellogenin gene function in adult honeybees by intra-abdominal injection of double-stranded RNA. BMC Biotechnol.2003.3:1
    19. Andersen CL, Ledet-Jensen J, ?rntoft T. Normalization of real-time quantitative RT-PCR data, a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res.2004. 64:5245-5250
    20. Angelini DR, Kaufman TC. Functional analyses in the milkweed bug Oncopeltus fasciatus (Hemiptera) support a role for Wnt signaling in body segmentation but not appendage development. Dev Biol.2005.283 (2):409-23
    21. Arya M, Shergill IS, Williamson M, Gommersall L, Arya N, Patel HR. Basic principles of real-time quantitative PCR. Expert Rev Mol Diagn.2005.5 (2): 209-219
    22. Awama AM, Mazon H, Vial C, Marcillat O. Despite its high similarity with monomeric arginine kinase, muscle creatine kinase is only enzymatically active as a dimer. Arch Biochem Biophys.2007.458 (2):158-166
    23. Azzi A, Clark SA, Ellington WR, Chapman MS. The role of phosphagen specificity loops in arginine kinase. Protein Sci.2004.13 (3):575-585
    24. Bagnall NH, Kotze AC. Evaluation of reference genes for real-time PCR quantification of gene expression in the Australian sheep blowfly, Lucilia cuprina. Med Vet Entomol.2010.24 (2):176-181
    25. Bao YY, Wang Y, Wu WJ, Zhao D, Xue J, Zhang BQ, Shen ZC, Zhang CX. De novo intestine-specific transcriptome of the brown planthopper Nilaparvata lugens revealed potential functions in digestion, detoxification and immune response. Genomics.2012.99 (4):256-264
    26. Baum JA, Bogaert T, Clinton W, Heck GR, Feldmann P, Ilagan O, Johnson S, Plaetinck G, Munyikwa T, Pleau M, Vaughn T, Roberts J. Control of coleopteran insect pests through RNA interference. Nat Biotechnol.2007.25 (11):1322-1326
    27. Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature.2001.409 (6818): 363-366
    28. Binder M, Mahler V, Hayek B, Sperr WR, Scholler M, Prozell S, Wiedermann G, Valent P, Valenta R, Duchene M. Molecular and immunological characterization of arginine kinase from the Indianmeal moth, Plodia interpunctella, a novel cross-reactive invertebrate pan-allergen. J Immunol.2001.167 (9):5470-5477
    29. Borgio JF. RNAi mediated gene knockdown in sucking and chewing insect pests. J Biopesticides.2010.3:386-393
    30. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976.72:248-254
    31. Brown AE, Grossman SH. The mechanism and modes of inhibition of arginine kinase from the cockroach (Periplaneta americana). Arch Insect Biochem Physiol. 57(4):166-177
    32. Bucher G, Scholten J, Klingler M. Parental RNAi in Tribolium (Coleoptera). Curr Biol.2002.12 (3):R85-86
    33. Burand JP, Hunter WB. RNAi:future in insect management. J Invertebr Pathol.2013. 112 Suppl:S68-74
    34. Bustin SA. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol.2000.25 (2):169-193
    35. Bustin SA. Real-time, fluorescence-based quantitative PCR: a snapshot of current procedures and preferences. Expert Rev Mol Diagn. 2005.5 (4):493-498
    36. Campbell MG, Karbstein K. Protein-protein interactions within late pre-40S ribosomes. PLoS One.2011.6 (1):e16194
    37. Caplen NJ, Zheng Z, Falgout B, Morgan RA. Inhibition of viral gene expression and replication in mosquito cells by dsRNA-triggered RNA interference. Mol Ther.2002. 6 (2):243-251
    38. Chapuis MP, Tohidi-Esfahani D, Dodgson T, Blondin L, Ponton F, Cullen D, Simpson SJ, Sword GA. Assessment and validation of a suite of reverse transcription-quantitative PCR reference genes for analyses of density-dependent behavioural plasticity in the Australian plague locust. BMC Mol Biol.2011.12:7
    39. Chen J, Zhang D, Yao Q, Zhang J, Dong X, Tian H, Chen J, Zhang W. Feeding-based RNA interference of a trehalose phosphate synthase gene in the brown planthopper, Nilaparvata lugens. Insect Mol Biol.2010.19 (6):777-786
    40. Chiang PW, Song WJ, Wu KY, Korenberg JR, Fogel EJ, Van Keuren ML, Lashkari D, Kurnit DM. Use of a fluorescent-PCR reaction to detect genomic sequence copy number and transcriptional abundance. Genome Res.1996.6 (10):1013-1026
    41. Conte D Jr, Mello CC. RNA interference in Caenorhabditis elegans. Curr Protoc Mol Biol.2003. Chapter 26:Unit 26.3
    42. Copf T, Schroder R, Averof M. Ancestral role of caudal genes in axis elongation and segmentation. Proc Natl Acad Sci U S A.2004.101 (51):17711-17715
    43. Dong X, Zhai Y, Zhang J, Sun Z, Chen J, Chen J, Zhang W. Fork head transcription factor is required for ovarian mature in the brown planthopper, Nilaparvata lugens (Stal). BMC Mol Biol.2011.12:53
    44. Eaton BA, Fetter RD, Davis GW. Dynactin is necessary for synapse stabilization. Neuron.2002.34 (5):729-741
    45. Eder M, Fritz-Wolf K, Kabsch W, Wallimann T, Schlattner U. Crystal structure of human ubiquitous mitochondrial creatine kinase. Proteins.2000.39 (3):216-225
    46. Eggleton P, Eggleton GP. The inorganic phosphate and labile form of organic phosphate in gastrocnemius of the frog. Biochem J.1927.21:190-195
    47. Ercan A, Grossman SH. Proteolytic susceptibility of creatine kinase isozymes and arginine kinase. Biochem Biophys Res Commun.2003.306 (4):1014-1018
    48. Eric AN, Isidorus B, Anthony RE, Victor AZ. The role of creatine kinase and arginine kinase in muscle. Biochem J.1978.172:533-537
    49. Fabrick JA, Kanost MR, Baker JE. RNAi-induced silencing of embryonic tryptophan oxygenase in the Pyralid moth, Plodia interpunctella. J Insect Sci.2004.4:15
    50. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature.1998.391 (6669):806-811
    51. France RM, Sellers DS, Grossman SH. Purification, characterization, and hydrodynamic properties of arginine kinase from gulf shrimp (Penaeus aztecus). Arch Biochem Biophys.1997.45 (1):73-78
    52. Freeman WM, Walker SJ, Vrana KE. Quantitative RT-PCR:pitfalls and potential. Biotechniques.1999.26(1):112-122,124-125
    53. Fu Q, Zhang ZT, Hu C, Lai FX, Sun ZX. A chemically defined diet enables continuous rearing of the brown planthopper, Nilaparvata lugens (Stal) (Homoptera: Delphacidae). Appl Entomol Zool.2011.36 (1):111-116
    54. Fujimoto N, Tanaka K, Suzuki T. Amino acid residues 62 and 193 play the key role in regulating the synergism of substrate binding in oyster arginine kinase. FEBS Lett. 2005.579 (7):1688-1692
    55. Furter R, Furter-Graves EM, Wallimann T. Creatine kinase:the reactive cysteine is required for synergism but is nonessential for catalysis. Biochemistry.1993.32 (27): 7022-7029
    56. Hibino H. Biology and epidemiology of rice viruses. Annu Rev Phytopathol.1996. 34:249-274
    57. Ghanim M, Kontsedalov S, Czosnek H. Tissue-specific gene silencing by RNA interference in the whitefly Bemisia tabaci (Gennadius). Insect Biochem Mol Biol. 2007.37 (7):732-738
    58. Gibson UE, Heid CA, Williams PM. A novel method for real time quantitative RT-PCR. Genome Res.1996.6 (10):995-1001
    59. Gordon KH, Waterhouse PM. RNAi for insect-proof plants. Nat Biotechnol.2007. 25 (11):1231-1232
    60. Gordon PV, Keller TC 3rd. Functional coupling to brush border creatine kinase imparts a selective energetic advantage to contractile ring myosin in intestinal epithelial cells. Cell Motil Cytoskeleton.1992.21 (1):38-44
    61. Guo S, Kemphues KJ. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell. 1995.81 (4):611-620
    62. Hammond SM, Bernstein E, Beach D, Hannon GJ. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature.2000.404 (6775):293-296
    63. Hannon GJ. RNA interference. Nature.2002.418 (6894):244-2451
    64. He ZB, Cao YQ, Yin YP, Wang ZK, Chen B, Peng GX, Xia YX. Role of hunchback in segment patterning of Locusta migratoria manilensis revealed by parental RNAi. Dev Growth Differ.2006.48 (7):439-445
    65. Heid CA, Stevens J, Livak KJ, Williams PM. Real time quantitative PCR. Genome Res.1996.6 (10):986-994
    66. Hornakova D, Matouskova P, Kindl J, Valterova I, Pichova I. Selection of reference genes for real-time polymerase chain reaction analysis in tissues from Bombus terrestris and Bombus lucorum of different ages. Anal Biochem.2010.397 (1): 118-120
    67. Huggett J, Dheda K, Bustin S, Zumla A. Real-time RT-PCR normalisation; strategies and considerations. Genes Immun.2005.6 (4):279-284
    68. Hughes CL, Kaufman TC. RNAi analysis of Deformed, proboscipedia and Sex combs reduced in the milkweed bug Oncopeltus fasciatus:novel roles for Hox genes in the hemipteran head. Development.2000.127 (17):3683-3694
    69. Huvenne H, Smagghe G. Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control:a review. J Insect Physiol.2010.56 (3):227-235
    70. Iwanami K, Iseno S, Uda K, Suzuki T. A novel arginine kinase from the shrimp Neocaridina denticulata:the fourth arginine kinase gene lineage. Gene.2009.437 (1-2):80-87
    71. Jain M, Nijhawan A, Tyagi AK, Khurana JP. Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem Biophys Res Commun.2006.345 (2):646-651
    72. Jaubert-Possamai S, Rispe C, Tanguy S, Gordon K, Walsh T, Edwards O, Tagu D. Expansion of the miRNA pathway in the hemipteran insect Acyrthosiphon pisum. Mol Biol Evol.2010.27 (5):979-987
    73. Ji R, Yu H, Fu Q, Chen H, Ye W, Li S, Lou Y. Comparative transcriptome analysis of salivary glands of two populations of rice brown planthopper, Nilaparvata lugens, that differ in virulence. PLoS One.2013.8 (11):e79612
    74. Kaldis P, Hemmer W, Zanolla E, Holtzman D, Wallimann T. 'Hot spots' of creatine kinase localization in brain:cerebellum, hippocampus and choroid plexus. Dev Neurosci.1996.18 (5-6):542-554
    75. Kang L, Shi H, Liu X, Zhang C, Yao Q, Wang Y, Chang C, Shi J, Cao J, Kong J, Chen K. Arginine kinase is highly expressed in a resistant strain of silkworm (Bombyx mori, Lepidoptera):Implication of its role in resistance to Bombyx mori nucleopolyhedrovirus. Comp Biochem Physiol B Biochem Mol Biol.2011.158 (3): 230-234
    76. Kanginakudru S, Royer C, Edupalli SV, Jalabert A, Mauchamp BC, Prasad SV, Chavancy G, Couble P, Nagaraju J. Targeting ie-1 gene by RNAi induces baculoviral resistance in lepidopteran cell lines and in transgenic silkworms. Insect Mol Biol. 2007.16 (5):635-644
    77. Katoch R, Thakur N. Advances in RNA interference technology and its impact on nutritional improvement, disease and insect control in plants. Appl Biochem Biotechnol.2013.169(5):1579-1605
    78. Kennerdell JR, Carthew RW. Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell. 1998.95 (7):1017-1026
    79. Ketting RF, Fischer SE, Bernstein E, Sijen T, Hannon GJ, Plasterk RH. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev.2001.15 (20):2654-2659
    80. Kreuzer KA, Lass U, Nagel S, Ellerbrok H, Pauli G, Pawlaczyk-Peter B, Siegert W, Huhn D, Schmidt CA. Applicability of an absolute quantitative procedure to monitor intra-individual bcr/abl transcript kinetics in clinical samples from chronic myelogenous leukemia patients. Int J Cancer.200.86 (5):741-746
    81. Kucharski R, Maleszka R. Arginine kinase is highly expressed in the compound eye of the honey bee, Apis mellifera. Gene.1998.211 (2):343-349
    82. Lang AB, Wyss C, Eppenberger HM. Localization of arginine kinase in muscles fibres of Drosophila melanogaster. J Muscle Res Cell Motil.1980.1 (2):147-161
    83. Lee PD, Sladek R, Greenwood CM, Hudson TJ. Control genes and variability: absence of ubiquitous reference transcripts in diverse mammalian expression studies. Genome Res.2002.12 (2):292-297
    84. Li J, Wang XP, Wang MQ, Ma WH, Hua HX. Advances in the use of the RNA interference technique in Hemiptera. Insect Sci.2013.20 (1):31-39
    85. Li J, Chen Q, Lin Y, Jiang T, Wu G, Hua H. RNA interference in Nilaparvata lugens (Homoptera:Delphacidae) based on dsRNA ingestion. Pest Manag Sci.2011.67 (7): 852-859
    86. Li J, Shang K, Liu J, Jiang T, Hu D, Hua H. Multi-generational effects of rice harboring Bph15 on brown planthopper, Nilaparvata lugens. Pest Manag Sci.2014. 70 (2):310-317
    87. Li J, Chen Q, Wang L, Liu J, Shang K, Hua H. Biological effects of rice harbouring Bph14 and Bphl5 on brown planthopper, Nilaparvata lugens. Pest Manag Sci.2011. 67 (5):528-534
    88. Li R, Xie W, Wang S, Wu Q, Yang N, Yang X, Pan H, Zhou X, Bai L, Xu B, Zhou X, Zhang Y. Reference gene selection for qRT-PCR analysis in the sweetpotato whitefly, Bemisia tabaci (Hemiptera:Aleyrodidae). PLoS One.2013.8 (1):e53006
    89. Ling D, Salvaterra PM. Robust RT-qPCR data normalization:validation and selection of internal reference genes during post-experimental data analysis. PLoS One.2011.6(3):e17762
    90. Liu PZ, Kaufman TC. hunchback is required for suppression of abdominal identity, and for proper germband growth and segmentation in the intermediate germband insect Oncopeltus fasciatus. Development.2004.131 (7):1515-1527
    91. Liu S, Ding Z, Zhang C, Yang B, Liu Z. Gene knockdown by intro-thoracic injection of double-stranded RNA in the brown planthopper, Nilaparvata lugens. Insect Biochem Mol Biol.2010.40 (9):666-671
    92. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods.2001.25 (4): 402-408
    93. Lord JC, Hartzer K, Toutges M, Oppert B. Evaluation of quantitative PCR reference genes for gene expression studies in Tribolium castaneum after fungal challenge. J Microbiol Methods.2010.80 (2):219-221
    94. Lu Y, Park Y, Gao X, Zhang X, Yao J, Pang YP, Jiang H, Zhu KY. Cholinergic and non-cholinergic functions of two acetylcholinesterase genes revealed by gene-silencing in Tribolium castaneum. Sci Rep.2012.2:288
    95. Lynch JA, Desplan C. A method for parental RNA interference in the wasp Nasonia vitripennis. Nat Protoc.2006.1(1):486-494
    96. Majerowicz D, Alves-Bezerra M, Logullo R, Fonseca-de-Souza AL, Meyer-Fernandes JR, Braz GR, Gondim KC. Looking for reference genes for real-time quantitative PCR experiments in Rhodnius prolixus (Hemiptera: Reduviidae). Insect Mol Biol.2011.20 (6):713-722
    97. Mao YB, Cai WJ, Wang JW, Hong GJ, Tao XY, Wang LJ, Huang YP, Chen XY. Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol.2007.25 (11):1307-1313
    98. Mao YB, Tao XY, Xue XY, Wang LJ, Chen XY. Cotton plants expressing CYP6AE14 double-stranded RNA show enhanced resistance to bollworms. Transgenic Res.2011.20 (3):665-673
    99. March JC, Bentley WE. RNAi-based tuning of cell cycling in Drosophila S2 cells-effects on recombinant protein yield. Appl Microbiol Biotechnol.2007. 73 (5): 1128-1135
    100.Maroniche GA, Sagadin M, Mongelli VC, Truol GA, del Vas M. Reference gene selection for gene expression studies using RT-qPCR in virus-infected planthoppers. Virol J. 2011.8:308
    101. Martinez J, Patkaniowska A, Urlaub H, Luhrmann R, Tuschl T. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell. 2002.110 (5):563-574
    102. Matthews BF, Macdonald MH, Thai VK, Tucker ML. Molecular Characterization of Arginine Kinases in the Soybean Cyst Nematode(Heterodera glycines). J Nematol. 2003.35 (3):252-258
    103. Matzke M, Matzke AJ, Kooter JM. RNA:guiding gene silencing. Science.2001.293 (5532):1080-1083
    104. Miranda MR, Canepa GE, Bouvier LA, Pereira CA. Trypanosoma cruzi:.114 (4): 341-344
    105.Misquitta L, Paterson BM. Targeted disruption of gene function in Drosophila by RNA interference (RNA-i):a role for nautilus in embryonic somatic muscle formation. Proc Natl Acad Sci U S A.1999.96 (4):1451-1456
    106.Miyawaki K, Mito T, Sarashina I, Zhang H, Shinmyo Y, Ohuchi H, Noji S. Involvement of Wingless/Armadillo signaling in the posterior sequential segmentation in the cricket, Gryllus bimaculatus (Orthoptera), as revealed by RNAi analysis. Mech Dev.2004.121 (2):119-130
    107.Muller PY, Janovjak H, Miserez AR, Dobbie Z. Processing of gene expression data generated by quantitative real-time RT-PCR. Biotechniques.2002.32 (6):1372-1374, 1376,1378-1379.
    108.Mutti NS, Park Y, Reese JC, Reeck GR. RNAi knockdown of a salivary transcript leading to lethality in the pea aphid, Acyrthosiphon pisum. J Insect Sci.2006.6:1-7
    109. Newsholme EA, Beis I, Leech AR, Zammit VA. The role of creatine kinase and arginine kinase in muscle. Biochem J. 1978.172 (3):533-537
    110. Nicholas Silver, Best S, Jiang J, Thein SL. Selection of housekeeping genes for gene expression studies in human reticulocytes using realtime PCR. BMC Mol Biol.2006. 7:33
    111. Noda H, Kawai S, Koizumi Y, Matsui K, Zhang Q, Furukawa S, Shimomura M, Mita K. Annotated ESTs from various tissues of the brown planthopper Nilaparvata lugens:a genomic resource for studying agricultural pests. BMC Genomics.2008.9: 117
    112.Ogwok E, Odipio J, Halsey M, Gaitan-Solis E, Bua A, Taylor NJ, Fauquet CM, Alicai T. Transgenic RNA interference (RNAi)-derived field resistance to cassava brown streak disease. Mol Plant Pathol.2012.13 (9):1019-1031
    113.Ohkumo T, Masutani C, Eki T, Hanaoka F. Use of RNAi in C. elegans. Methods Mol Biol.2008.442:129-137
    114. Orlando C, Pinzani P, Pazzagli M. Developments in quantitative PCR. Clin Chem Lab Med.1998.36 (5):255-269
    115.Otake A. Population characteristics of the brown planthopper, Nilaparvata lugens (Hemiptera:Delphacidae), with special reference to differences in Japan and the tropics. J Appl Ecol.1978.15:385-394
    116. Paim RM, Pereira MH, Di Ponzio R, Rodrigues JO, Guarneri AA, Gontijo NF, Araujo RN. Validation of reference genes for expression analysis in the salivary gland and the intestine of Rhodnius prolixus (Hemiptera, Reduviidae) under different experimental conditions by quantitative real-time PCR. BMC Res Notes.2012.5: 128
    117. Pan JC, Cheng Y, Hui EF, Zhou HM. Implications of the role of reactive cystein in arginine kinase:reactivation kinetics of 5,5'-dithiobis-(2-nitrobenzoic acid)-modified arginine kinase reactivated by dithiothreitol. Biochem Biophys Res Commun.2004.317 (2):539-544
    118. Peng X, Zha W, He R, Lu T, Zhu L, Han B, He G. Pyrosequencing the midgut transcriptome of the brown planthopper, Nilaparvata lugens. Insect Mol Biol.2011. 20 (6):745-762
    119.Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pairwise correlations. Biotechnology Letters. 2004.26:509-515
    120.Pereira CA, Alonso GD, Paveto MC, Iribarren A, Cabanas ML, Torres HN, Flawia MM. Trypanosoma cruzi arginine kinase characterization and cloning. A novel energetic pathway in protozoan parasites. J Biol Chem.2000.275 (2):1495-1501
    121.Piccin A, Salameh A, Benna C, Sandrelli F, Mazzotta G, Zordan M, Rosato E, Kyriacou CP, Costa R. Efficient and heritable functional knock-out of an adult phenotype in Drosophila using a GAL4-driven hairpin RNA incorporating a heterologous spacer. Nucleic Acids Res.2001.29 (12):E55-5
    122. Pitino M, Coleman AD, Maffei ME, Ridout CJ, Hogenhout SA. Silencing of aphid genes by dsRNA feeding from plants. PLoS One.2011.6 (10):e25709
    123. Ponton F, Chapuis MP, Pernice M, Sword GA, Simpson SJ. Evaluation of potential reference genes for reverse transcription-qPCR studies of physiological responses in Drosophila melanogaster. J Insect Physiol.2011.57 (6):840-850
    124. Price DR, Gatehouse JA. RNAi-mediated crop protection against insects. Trends Biotechnol. 2008.26 (7):393-400
    125. Provenzano M, Mocellin S. Complementary techniques:validation of gene expression data by quantitative real time PCR. Adv Exp Med Biol.2007.593:66-73
    126. Provost P, Dishart D, Doucet J, Frendewey D, Samuelsson B, Radmark O. Ribonuclease activity and RNA binding of recombinant human Dicer. EMBO J. 2002.21 (21):5864-5874
    127. Pruett PS, Azzi A, Clark SA, Yousef MS, Gattis JL, Somasundaram T, Ellington WR, Chapman MS. The putative catalytic bases have, at most, an accessory role in the mechanism of arginine kinase. J Biol Chem. 2003.278 (29):26952-26957
    128.Radonic A, Thulke S, Mackay IM, Landt O, Siegert W, Nitsche A. Guideline to reference gene selection for quantitative real-time PCR. Biochem Biophys Res Commun.2004.313 (4):856-862
    129. Rao JK, Bujacz G, Wlodawer A. Crystal structure of rabbit muscle creatine kinase. FEBS Lett.1998.439 (1-2):133-137
    130. Reddy SR, Watts DC. Hybridization of matrix-bound MM-creatine kinase with BB-creatine kinase and arginine kinase. Comp Biochem Physiol Biochem Mol Biol. 1994.108(1):73-78
    131. Robin Y, Guillou A, Van Thoai N. Unspecific arginine kinase of molecular weight 150000. Amino acid composition, subunit structure and number of substrate binding sites. Eur J Biochem.1975.52 (3):531-537
    132. Roxstrom-Lindquist K, Terenius O, Faye I. Parasite-specific immune response in adult Drosophila melanogaster. a genomic study. EMBO Rep.2004.5 (2):207-212
    133. Schmittgen TD, Zakrajsek BA. Effect of experimental treatment on housekeeping gene expression:validation by real-time, quantitative RT-PCR. J Biochem Biophys Methods.2000.46 (1-2):69-81
    134. Schwarz K, Anton M, Kuhn H. Sequence determinants for the positional specificity of lipoxygenases. Adv Exp Med Biol. 2002.507:55-60
    135.Selvey S, Thompson EW, Matthaei K, Lea RA, Irving MG, Griffiths LR. Beta-actin-an unsuitable internal control for RT-PCR. Mol Cell Probes.2001.15 (5): 307-311
    136. Shakesby AJ, Wallace IS, Isaacs HV, Pritchard J, Roberts DM, Douglas AE. A water-specific aquaporin involved in aphid osmoregulation. Insect Biochem Mol Biol.2009.39 (1):1-10
    137. Shen GM, Jiang HB, Wang XN, Wang JJ. Evaluation of endogenous references for gene expression profiling in different tissues of the oriental fruit fly Bactrocera dorsalis (Diptera:Tephritidae). BMC Mol Biol.2010.11:76
    138. Silver N, Best S, Jiang J, Thein SL. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol Biol.2006. 7:33
    139. Siomi H, Siomi MC. On the road to reading the RNA-interference code. Nature. 2009.457 (7228):396-404
    140. Smith NA, Singh SP, Wang MB, Stoutjesdijk PA, Green AG, Waterhouse PM. Total silencing by intron-spliced hairpin RNAs. Nature.2000.407 (6802):319-320
    141.Sookrung N, Chaicumpa W, Tungtrongchitr A, Vichyanond P, Bunnag C, Ramasoota P, Tongtawe P, Sakolvaree Y, Tapchaisri P. Periplaneta americana arginine kinase as a major cockroach allergen among Thai patients with major cockroach allergies. Environ Health Perspect.2006.114 (6):875-880
    142. Strong SJ, Ellington WR. Horseshoe crab sperm contain a unique isoform of arginine kinase that is present in midpiece and flagellum. J Exp Zool.1993.267:563-571
    143. Suzuki T, Yamamoto Y, Umekawa M. Stichopus japonicus arginine kinase:gene structure and unique substrate recognition system. Biochem J. 2000.351 Pt 3: 579-585
    144. Suzuki T, Kamidochi M, Inoue N, Kawamichi H, Yazawa Y, Furukohri T, Ellington WR. Arginine kinase evolved twice: evidence that echinoderm arginine kinase originated from creatine kinase. Biochem J.1999.340 (Pt 3):671-675
    145. Suzuki T, Fukuta H, Nagato H, Umekawa M. Arginine kinase from Nautilus pompilius, a living fossil. Site-directed mutagenesis studies on the role of amino acid residues in the Guanidino specificity region. J Biol Chem.2000.275 (31): 23884-23890
    146.Takeuchi M, Mizuta C, Uda K, Fujimoto N, Okamoto M, Suzuki T. Unique evolution of Bivalvia arginine kinases. Cell Mol Life Sci.2004.61(1):110-117
    147. Tanaka K, Ichinari S, Iwanami K, Yoshimatsu S, Suzuki T. Arginine kinase from the beetle Cissites cephalotes (Olivier). Molecular cloning, phylogenetic analysis and enzymatic properties. Insect Biochem Mol Biol.2007.37 (4):338-345
    148. Tanaka Y, Suetsugu Y, Yamamoto K, Noda H, Shinoda T. Transcriptome analysis of neuropeptides and G-protein coupled receptors (GPCRs) for neuropeptides in the brown planthopper Nilaparvata lugens. Peptides.2014.53:125-133
    149. Teng X, Zhang Z, He G, Yang L, Li F. Validation of reference genes for quantitative expression analysis by real-time rt-PCR in four lepidopteran insects. J Insect Sci. 2012.12:60
    150.Terenius O, Papanicolaou A, Garbutt JS, Eleftherianos I, Huvenne H, Kanginakudru S, Albrechtsen M, An C, Aymeric JL, Barthel A, Bebas P, Bitra K, Bravo A, Chevalier F, Collinge DP, Crava CM, de Maagd RA, Duvic B, Erlandson M, Faye I, Felfoldi G, Fujiwara H, Futahashi R, Gandhe AS, Gatehouse HS, Gatehouse LN, Giebultowicz JM, Gomez I, Grimmelikhuijzen CJ, Groot AT, Hauser F, Heckel DG, Hegedus DD, Hrycaj S, Huang L, Hull JJ, Iatrou K, Iga M, Kanost MR, Kotwica J, Li C, Li J, Liu J, Lundmark M, Matsumoto S, Meyering-Vos M, Millichap PJ, Monteiro A, Mrinal N, Niimi T, Nowara D, Ohnishi A, Oostra V, Ozaki K, Papakonstantinou M, Popadic A, Rajam MV, Saenko S, Simpson RM, Soberon M, Strand MR, Tomita S, Toprak U, Wang P, Wee CW, Whyard S, Zhang W, Nagaraju J, Ffrench-Constant RH, Herrero S, Gordon K, Swevers L, Smagghe G. RNA interference in Lepidoptera:an overview of successful and unsuccessful studies and implications for experimental design. J Insect Physiol.2011.57 (2):231-245
    151.Thellin O, Zorzi W, Lakaye B, De Borman B, Coumans B, Hennen G, Grisar T, Igout A, Heinen E. Housekeeping genes as internal standards:use and limits. J Biotechnol.1999.75 (2-3):291-295
    152.Tian H, Peng H, Yao Q, Chen H, Xie Q, Tang B, Zhang W. Developmental control of a lepidopteran pest Spodoptera exigua by ingestion of bacteria expressing dsRNA of a non-midgut gene. PLoS One.2009.4 (7):e6225
    153.Toutges MJ, Hartzer K, Lord J, Oppert B. Evaluation of reference genes for quantitative polymerase chain reaction across life cycle stages and tissue types of Tribolium castaneum. J Agric Food Chem.2010.58 (16):8948-8951
    154. Travanty EA, Adelman ZN, Franz AW, Keene KM, Beaty BJ, Blair CD, James AA, Olson KE. Using RNA interference to develop dengue virus resistance in genetically modified Aedes aegypti. Insect Biochem Mol Biol.2004.34 (7):607-613
    155.Tricarico C, Pinzani P, Bianchi S, Paglierani M, Distante V, Pazzagli M, Bustin SA, Orlando C. Quantitative real-time reverse transcription polymerase chain reaction: normalization to rRNA or single housekeeping genes is inappropriate for human tissue biopsies. Anal Biochem.2002.309 (2):293-300
    156. Turner CT, Davy MW, MacDiarmid RM, Plummer KM, Birch NP, Newcomb RD. RNA interference in the light brown apple moth, Epiphyas postvittana (Walker) induced by double-stranded RNA feeding. Insect Mol Biol.2006.15 (3):383-391
    157.Uda K, Matumoto A, Suzuki T. Identification of the key amino acid residues in Sabellastarte indica arginine kinase for distinguishing chiral guanidino substrates (D-and L-arginine). Journal of Molecular Catalysis B:Enzymatic.2010.64(1-2): 75-80
    158. Uda K, Suzuki T. Role of amino acid residues on the GS region of Stichopus arginine kinase and Danio creatine kinase. Protein J.2004.23 (1):53-64
    159. Uda K, Iwai A, Suzuki T. Hypotaurocyamine kinase evolved from a gene for arginine kinase. FEBS Lett.2005.579 (30):6756-6762
    160. Uda K, Fujimoto N, Akiyama Y, Mizuta K, Tanaka K, Ellington WR, Suzuki T. Evolution of the arginine kinase gene family. Comp Biochem Physiol Part D Genomics Proteomics.2006.1(2):209-218
    161. Van Deursen J, Heerschap A, Oerlemans F, Ruitenbeek W, Jap P, ter Laak H, Wieringa B. Skeletal muscles of mice deficient in muscle creatine kinase lack burst activity. Cell.1993.74 (4):621-631
    162. Van Hiel MB, Van Wielendaele P, Temmerman L, Van Soest S, Vuerinckx K, Huybrechts R, Broeck JV, Simonet G. Identification and validation of housekeeping genes in brains of the desert locust Schistocerca gregaria under different developmental conditions. BMC Mol Biol.2009.10:56
    163. Vandesompele J, De Preter K, Pattyn F, Poppe B, Roy NV, Paepe AD, Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol.2002.3(7): RESEARCH0034.1-11
    164. Veazey KJ, Golding MC. Selection of stable reference genes for quantitative rt-PCR comparisons of mouse embryonic and extra-embryonic stem cells. PLoS One.2011. 6(11):e27592
    165. Walker WB, Allen ML. Expression and RNA interference of salivary polygalacturonase genes in the tarnished plant bug, Lygus lineolaris. J Insect Sci. 2010.10:173
    166. Walker WB, Allen ML. RNA interference-mediated knockdown of IAP in Lygus lineolaris induces mortality in adult and pre-adult life stages. Entomologia Experimentalis et Applicata.2011,138:83-92
    167.Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands:the 'phosphocreatine circuit'for cellular energy homeostasis. Biochem J.1992.281 (Pt 1):21-40
    168. Wallimann T, Hemmer W. Creatine kinase in non-muscle tissues and cells. Mol Cell Biochem.1994.133-134:193-220
    169. Wang H, Zhang L, Zhang L, Lin Q, Liu N. Arginine kinase:differentiation of gene expression and protein activity in the red imported fire ant, Solenopsis invicta. Gene. 2009.430 (1-2):38-43
    170. Wang Y, Chen J, Zhu YC, Ma C, Huang Y, Shen J. Susceptibility to neonicotinoids and risk of resistance development in the brown planthopper, Nilaparvata lugens (Stal) (Homoptera:Delphacidae). Pest Manag Sci.2008.64 (12):1278-1284
    171. Wang Y, Fan HW, Huang HJ, Xue J, Wu WJ, Bao YY, Xu HJ, Zhu ZR, Cheng JA, Zhang CX. Chitin synthase 1 gene and its two alternative splicing variants from two sap-sucking insects, Nilaparvata lugens and Laodelphax striatellus (Hemiptera: Delphacidae). Insect Biochem Mol Biol.2012.42 (9):637-646
    172. Wang YE, Esbensen P, Bentley D. Arginine kinase expression and localization in growth cone migration. J Neurosci.1998.18 (3):987-998
    173. Watts DC. Evolution of phosphagen along the chordate line. Symp Zool Soc Lond. 1975.36:105-207
    174. Watts DC, Anosike EO, Moreland B. The use of arginine analogues for investigating the functional organization of the arginine-binding site in lobster muscle arginine kinase:Role of the "essential" thiol group. Biochem J.1980.185:593-599
    175. Werr M, Cramer J, Ilg T. Identification and characterization of two arginine kinases from the parasitic insect Ctenocephalides felis. Insect Biochem Mol Biol.2009.39 (9):634-645
    176. Wong ML, Medrano JF. Real-time PCR for mRNA quantitation. Biotechniques. 2005.39 (1):75-85
    177. Wu QY, Li F, Zhu WJ, Wang XY. Cloning, expression, purification, and characterization of arginine kinase from Locusta migratoria manilensis. Comp Biochem Physiol B Biochem Mol Biol.2007.148 (4):355-362
    178. Xue J, Bao YY, Li BL, Cheng YB, Peng ZY, Liu H, Xu HJ, Zhu ZR, Lou YG, Cheng JA, Zhang CX. Transcriptome analysis of the brown planthopper Nilaparvata lugens. PLoS One.2010.5 (12):e14233
    179. Yao CL, Ji PF, Kong P, Wang ZY, Xiang JH. Arginine kinase from Litopenaeus vannamei:cloning, expression and catalytic properties. Fish Shellfish Immunol.2009. 26 (3):553-558
    180. Yao CL, Wu CG, Xiang JH, Dong B. Molecular cloning and response to laminarin stimulation of arginine kinase in haemolymph in Chinese shrimp, Fenneropenaeus chinensis. Fish Shellfish Immunol.2005.19 (4):317-329
    181. Yoshida S, Forno DA, Cock JH, Gomez KA. Laboratory manual for physiological studies of rice. Third edition. The international rice research institute.1976:61-68
    182. Yu H, Ji R, Ye W, Chen H, Lai W, Fu Q, Lou Y. Transcriptome analysis of fat bodies from two brown planthopper(Nilaparvata lugens) populations with different virulence levels in rice. PLoS One.2014.9 (2):e88528
    183. Yu N, Christiaens O, Liu J, Niu J, Cappelle K, Caccia S, Huvenne H, Smagghe G. Delivery of dsRNA for RNAi in insects:an overview and future directions. Insect Sci.2013.20(1):4-14
    184. Zamore PD, Tuschl T, Sharp PA, Bartel DP. RNAi:double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell.2000.101 (1):25-33
    185.Zha W, Peng X, Chen R, Du B, Zhu L, He G. Knockdown of midgut genes by dsRNA-transgenic plant-mediated RNA interference in the hemipteran insect Nilaparvata lugens. PLoS One.2011.6 (5):e20504
    186. Zhang JW, Guo Q, Zhao TJ, Liu TT, Wang XC. Two fused proteins combining Stichopus japonicus arginine kinase and rabbit muscle creatine kinase. Biochemistry (Mosc).2006.71 (9):983-988
    187. Zhou G, Parthasarathy G, Somasundaram T, Ables A, Roy L, Strong SJ, Ellington WR, Chapman MS. Expression, purification from inclusion bodies, and crystal characterization of a transition state analog complex of arginine kinase:a model for studying phosphagen kinases. Protein Sci.1997.6 (2):444-449
    188. Zhou G, Somasundaram T, Blanc E, Parthasarathy G, Ellington WR, Chapman MS. Transition state structure of arginine kinase:implications for catalysis of bimolecular reactions. Proc Natl Acad Sci U S A.1998.95 (15):8449-8454
    189. Zhou G, Ellington WR, Chapman MS. Induced fit in arginine kinase. Biophys J. 2000.78(3):1541-1550
    190. Zhou SS, Sun Z, Ma W, Chen W, Wang MQ. De novo analysis of the Nilaparvata lugens (Stal) antenna transcriptome and expression patterns of olfactory genes. Comp Biochem Physiol Part D Genomics Proteomics.2014.9:31-39
    191. Zimmermann K, Mannhalter JW. Technical aspects of quantitative competitive PCR. Biotechniques.1996.21 (2):268-272,274-279