转PEPE基因杨树的光合特性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国杨树人工林面积已达700万hm2,位居世界首位。利用基因工程技术培育高光效杨树新品种对我国杨树人工林产量的提高具有重要意义。本研究以转磷酸稀醇式丙酮酸羧化酶(PEPC)基因南林895杨(Populus×euramericana cv.‘Nanlin895’)为材料,对转基因植株与对照(未转基因杨树)在苗期生长、叶绿素含量、PEPCase和RuBPase活性、光合作用相关参数指标和植株光合作用过程中保护性酶活力等方面的进行比较分析。为选育高光效转基因杨树新品种提供了依据。主要研究结果如下:
     (1)苗期观察分析结果显示,转PEPC基因植株生长状况优于对照,如大部植株系如PE68、PE33、PE30、PE28、PE84等株高高于对照,最高较对照增高达21.5cm;分析表明各转基因株系叶绿素含量变化不大;
     (2)磷酸稀醇式丙酮酸羧化酶(PEPCase)是C4植物CO_2同化途径中的关键酶,本研究结果显示:转基因杨树的PEPCase酶活性比对照增加显著,最高达22.3%;
     (3)光合作用相关参数测定,并对转C4植物PEPC基因杨树光合特性进行分析,结果表明:转基因杨树表现出较强的光能利用能力,其光饱和点比对照提高约10%~15%,饱和点时的光合速率也比对照高,且光补偿点低于对照,表明转基因杨树利用弱光的能力也较强;
     (4)转基因杨树CO_2饱和点与CO_2补偿点均较低,其光饱和点比对照减少,有利于光合形成有机物积累;羧化效率也比较高,比对照增加最高达36.4%,表明转基因杨树利用CO_2的能力较强;
     (5)分析结果也显示转PEPC基因杨树在光合作用过程中,光氧化保护性酶活性比对照显著增加,表明转基因杨树具有较好的耐光氧化等能力。
Poplar plantation area has reached 7 million hm2 in China, leading the world's first .Using genetic engineering of poplar cultivation of new varieties with high photosynthetic efficiency of poplar plantations is important to increase the yield in China. In this study, Transgenic poplar with PEPC gene for materials with the control transgenic plants (non-transgenic poplar) in the seedling growth, Carried out a physiological analysis of transgenic plants, transgenic poplar leaves photosynthetic enzyme activity in transgenic poplar, the process of plant photosynthesis and other aspects of the protective enzyme research, and photosynthesis relevant parameters of a preliminary comparative analysis of high efficiency for selection of transgenic poplar provide the basis for new varieties. The main findings are as follows:
     (1)After Seedlings were observed analysis showed that, the seedling growth of transgenic poplars was better than the control. Height of transgenic poplars was higher than the control such as PE68, PE33, PE30, PE28, PE84 and other plant were higher than the control, The highest compared with the control by up to 21.5cm; But analysis showed that the strains the contents of chlorophyll varied small.
     (2) PEPCase is a C4 plant CO_2 assimilation pathway key enzymes, the study showed: PEPC activity increased significantly as high as 22.3%.
     (3) After determination of photosynthesis-related parameters, and C4 plants PEPC gene transfer combined characteristics of anoplophora analysis shows that: Transgenic poplars have strong capacity for using high light intensity ,and its light saturation point increased than the control by about 10% to 15%.The photosynthetic rates of transgenic poplars in light saturation point were higher than that of the control ,and the light compensation points of transgenic poplars were lower than that of control, and the light compensation points of transgenic poplars were lower than that of control. Also, the ability of transgenic poplars to use low light was stronger than the control.
     (4)CO_2 saturation point and CO_2 compensation point of transgenic poplars were lower than the control. The photorespiration of transgenic poplars was lower than that of control, which is favorable to photosynthetic formation and organics accumulation. In addition, the transgenic poplars had higher efficiency of carboxylation, the highest of which was higher than that of the control by 62.3%, indicating that transgenic poplars have the ability to use more CO_2.
     (5) Under photosynthesis, antioxidant enzymes activity in the transgenic poplars were higher that of control. It showed that the transgenic poplars enhanced tolerance to photo oxidation.
引文
[1]吴国芳,冯志坚,马炜梁,等.植物学(第二版)[M].北京:高等教育出版社,2007, 256~259.
    [2]韩燕,段安安,张宴.杨树扦插繁殖理论与技术概述[J] .林木调查规划,2009,(2)94~97.
    [3]郑世锴.杨树速生丰产栽培[M].南京:江苏科学技术出版社,2005, 3~59.
    [4]王世绩.杨树研究进展[M].北京:中国林业出版社,1995,12~80.
    [5] Black C C..Photosynthetic carbon fixation in relationg to net CO2 uptake [J].Annu.Rev.Plant.Physiol.,1973,24:253~286.
    [6] Brown R H,Bassett C L,Cameron R.G.,Evans R.T.,Bouton J.H.,Black C.C.,Sternbery L.D.and Denino M.J. Photosynthesis of Fthybrids between Haveria brownii (C4 Like)and Haveria linearis (C3~C4)[J].Plant Physiol,1986,82:211~217.
    [7]Ku MSB,Sake A,Mika N,Hiroshi f,Hiroko T,Kazuko O,Sakiko H,Seiichi T,Misue M,Makoto M.High-level expression of maize phosphoenopyruvate carboxylase in transgenic rice plants [J].Nature Biotechnology, 1999,17:76~80.
    [8]焦德茂,李霞,黄雪清,等.转PEPC基因的杂交水稻的光合CO2同化和叶绿素荧光特性[J].科学通报,2001,46(5):414~418.
    [9] Jiao D M,Huang X Q,Li X ,Chi W,Kuang T Y,Zhang Q D,Ku S B M, Cho D G.Photosynthetic characteristics and tolerance to photooxidation of transgenic rice expressing C4 photosynthesis enzymes [J].Photosynthesis Research ,2002 ,72:85~93.
    [10]潘瑞炽.植物生理学(第五版)[M].北京:高等教育出版社,2004, 282~304.
    [11]陆时万,徐祥生,沈敏健.植物学(第二版)[M].北京:高等教育出版社,2007, 67~82.
    [12]Matsuaka M.,Fukayama H.,and Miyao M.,Mlecular engineering of C4photosynthesis,Annu.Rev.Plant Physiol.Plant Mol.Biol.,2001,52:297~314.
    [13] Long S P,Humphries S.Photoinhibition of photosynthesis in nature [J].Annual Review of Plant Physiology and Molecular Biology ,1994,45:633~662.
    [14]迟伟,焦德茂,黄雪清,等.转PEPC基因水稻的光合生理特性[J].植物学报(英文版),2001,43(6):657~660.
    [15]朱素琴,季本华,焦德茂.外源C4二羧酸对转PEPC基因水稻C4光合途径的促进作用[J] .中国水稻科学,2004,18(4):326~332.
    [16]李霞,焦德茂,戴传超,等.转PEPC基因的杂交水稻的光合生理特性[J] .作物学报,2001,21(2):137~142.
    [17]张方,迟伟,金成哲,等.高粱C4型磷酸稀醇式丙酮酸羧化酶基因的分子克隆及其转基因水稻的培育[J] .科学通报,2003,48(14):1542~1546.
    [18]Fukayama H,Tsuchida H,Agarie S,et al.Significant accumulation of C4-specific pyruvate,orthophosphate dikinase in a C3 plant rice [J]. Plant Physiol,2001,127(3):1136~1146.
    [19]凌丽莉,林宏辉,焦德茂.转PEPC基因水稻种质的稳定光合生理特性[J] .作物学报,2006,32(4):527~531.
    [20]Matsuoka M,EM inami.Eur[J].Biochem, 1988,181:593~597.
    [21]张建福,孙亚萍,马宏敏,等.转甘蔗pepc基因籼稻恢复系N175的遗传学分析[J].分子植物育种,2009,7(4):666~670.
    [22]李霞,吴爽,焦德茂,等.转pepc基因水稻的选育[J].江苏农业学报,2001,17(3):143~147.
    [23]焦德茂,刘蔚,周月兰.转PEPC基因水稻的农艺性状及生理[J] .江苏农业学报,2007,23(2):87~92.
    [24]王德正,焦德茂,吴爽,等.转玉米pepc基因的杂交水稻亲本的选育[J].中国农业科学,2002,35(10):1165~1170.
    [25]Gehlin J,Panstruga R,Smets H,et al.Effects of altered phosphoenolpyruvate carboxylase in transgenic C3 plant Solanum tuberosum [J]. Plant Mol Biol,1996, 32:831~848.
    [26]Tsuchida H,Tamai T,Fukayama H,et al..High level expression of C4 specific NADP-malic enzyme in leaves and impairment of photoautotrophic growth of a C3 plant,rice [J].Plant Cell Physiol,2001,42:138~145.
    [27]黄雪清,焦德茂.转C4光合酶基因水稻株系的抗光氧化特性[J].植物生理学报,2002,27:393~400.
    [28]Moore P.Evolution of photosynthetic pathways in flowering plants [J].Nature,1982,295:647~648
    [29]Hatch M.D.,C4 photosynthesis:a unique blend of modified biochemistry,anatomy and ultrstructure,Biochim.Biophys,Acta,1987,895: 81~106.
    [30] Aoyaki K.,and Bassham J.A., Appearance and accumulation of C4 carbon pathway enzymes in developing wheat leaves[J]. Plant Physiol. 1986,80: 334~340.
    [31]Matsuoka M,J Kyozuka,K Sh imamo to,et al.Plant [J].1994,6:311~319.
    [32]Matsuoka M.The gene for pyruvate,orthophosphate dikinase in C4 plant:Structure,regulation and evolution [J].Plant Cell Physiol,1995,36(6):937~943.
    [33]Magnin N.C.,Cooley B.A.,Reiskind J.B.and Bowes G. Regulation and localization of key enzymes during the induction of Kranz-less C4-type photosynthesis in Hydrilla vericilata [J].Plant Physiol.,1997,115:1681~1689.
    [34] Casati P.,Lara M.V.,and Andreo C.S., Induction of a C4-like mechanism of CO2 fixation in Egeria densa ,a submerged aquatic species[J].Plant Physiol., 2000123:1611~1622.
    [35]陈根云,叶济宇.草酰乙酸和苹果酸对菠菜叶片和完整叶绿体光合作用的影响[J] .植物生理学通报,2001,27:478~482.
    [36]Glackin C A,Grula J W.Oragan-specific transcripts of different size and abundance derive from the same pyruvate,orthophosphate dikinase gene in maize[J].Proc Natl Acad Sci USA,1990,87(8):3004~3008.
    [37] Koltunow AM,Truettner J,CoxKH etal. Different temporal and spatial gene expression patterns occur during anther development [J].Plant Cell,1990,2:1201~1224.
    [38]Fukayama H,Tsuchida H,Agarie S,et al.Significant accumulation of C4-specific pyruvate,orthophosphate dikinase in a C3 plant,rice[J].Plant Physiol,2001,127(3):1136~1146.
    [39]Ku MSB ,Kano-Murakami Y,Matsuok M.Evolution and expression of C4 photosynthesis genes [J].Plant Physiol,1996,111:949~957.
    [40]Mann C.C.Genetic engineers aim to soup up crop photosynthesis [J]. Science, 1999, 283:314~316.
    [41]陈绪清,张晓东,梁荣奇,等.玉米C4型PEPC基因的分子克隆及其在小麦的转基因研究[J] .植物生理学通报,2004,49(19):1976~1980.
    [42]李霞,焦德茂,戴传超.转PEPC基因水稻对光氧化逆境的影响[J] .作物学报,2005,31(4):408~413.
    [43]张勇,付邵红,张汝全,牛应泽.甘蓝型油菜PEPC基因保守序列的克隆和种子特异性ihpRNA表达载体的构建[J].分子植物育种,2008,6(4):775~780.
    [44]李霞,焦德茂,刘蔚,等.转玉米PEPC基因水稻的农艺性状及生理特性[J].江苏农业学报,2007,23(2):87~92.
    [45]高宇,田恬.超高产水稻生理育种研究进展[J].中国农学通报,2004,20(3):1~3.
    [46]Zhang Fang,Chi Wei,Wang Qing,et al.Molecular cloning of C4-specific PEPC gene of sorghum and its high level expression transgenic rice [J].Chinese Science Bulletin ,2003,48(17): 1835~1840.
    [47]Huang X.Q.,Jiao D.M.,Chi W.,and Ku M.S.B.Characteristics of CO2 exchange and chlorophyll fluorescence of transgenic rice with C4 genes[J].Zhiwu Xuebao,2002,44(4):405~412.
    [48]王德正,吴守海,吴爽,李成荃,等.玉米pepc基因在杂交转育的转基因水稻后代中的传递和表达特征[J].遗传学报,2004,31(2):195~201.
    [49]Wang D-Z,Chi W,Wang S-H,et al.Characteristics of transgenic rice over expressing maize photosynthetic enzymes for breeding two line hybridricel[J]. Acta Agron Sin,2004,30(3): 248~252.
    [50]Wang D-Z,Jiao D-M,Wu S,et al.Breeding for parents of hybrid rice with maize PEPC geng[J].Sci Agric Sin,2002,35(10):1165~1170.
    [51] Brown R.H.,Bassett C.L.,Cameron R.G.,Evans R.T.,Bouton J.H.,Black C.C.,Sternbery L.D.,and Denino M.J.Potosynthesis of F1 hybrids between Haveria brownii (C4 Like)and Haveria linearis (C3~C4) [J].Plant Physiol ,1986,82:211~217.
    [52]苏晓华,黄秦军,张冰玉.杨树遗传育种[M].北京:中国林业出版社,2007,180~293.
    [53]李丽莎.杨树光合特异性启动子克隆与转PEPC基因研究[C] .南京林业大学研究生硕士学位论文,2007.
    [54] Krause G.H.Photoinhitition of photosynthesis.An evalution of damaging and protective mechanisms [J].Physiologia Plantarum,1988,74:566~574.
    [55]王超,李霞,蔡庆生.不同测定环境条件下转PEPC基因水稻及杂交后代光合特性的比较[J].江苏农业学报,2008,24(3):232~236.
    [56] Wei J C,Wang R L,Cheng G Y.Studies on the kinetic properties of ribulose-1,5-biphosphate carboxylase from F1 hybrid rice[J].Acta Phytophysiol Sin,1994,20(1):55~60.
    [57]张志良,瞿伟菁.植物生理学实验指导(第三版)[M].北京:高等教育出版社, 2003,121~123.
    [58]Gonzalez D H,Iglesias A A,Andeo C S.On the regulation of phos–phoenolpyruvate carboxylase activity from maize leaves by L-malate :effect of pH[J].Plant Physiol,1984,116:425~429.
    [59]张边江,周梅仙,姚淑.C4光合作用的基因工程研究进展[J].安徽农学通报, 2006,12(7):44~46.
    [60]张边江,华春,周峰,等.转PEPC、PPDK双基因水稻的光合特性[J].中国农业科学, 2008,41(10):3008~3014.
    [61]焦德茂,匡廷云,李霞,等.转PEPC基因水稻具有初级CO2浓缩机制的生理特点[J].中国科学C辑2003,33(1):32~39.
    [62]季本华,朱素琴,焦德茂.转玉米C4光合酶基因水稻株系中的光合C4微循环[J].作物学报,2004,30(6):536~543.
    [63]尹吴.转C4植物光合关键基因PEPC杨树的初步分析[C].南京林业大学研究生硕士学位论文, 2009.
    [64]郑淑霞,上官周平.8种阔叶树种叶片交换特征和叶绿素荧光特征比较[J].植物生态学报, 2006,26(4):1080~1087.
    [65]马成仓,高玉葆,王金龙等.内蒙古高原甘蒙锦鸡儿光合作用和水分代谢的生态适应性研究[J].植物生态学报, 2004,28(3):306~311.
    [66]Uemura K,Miyachi S.Ribulose 1,5-2 bisphosphate carboxylase /oxygenase from thermalphilic red algae with a strong specificity for CO2 fixation[J].Bionchem Biophys Re Comm,1997,233(2):568~571.
    [67]张建福,谢华安,王国英.玉米PEPC基因和PPDK基因在籼稻明恢63中的整合及与光合作用相关的特性分析[J].分子植物育种,2006,4(5):655~662.
    [68]许大全.光合作用“午睡”现象的生态、生理与生化[J] .植物生理通讯,1990,(6)510.
    [69]陈文荣.植物光合作用的午睡现象[J].生物学教学, 2002,27(10)36.
    [70]郑淑霞,上官周平.近70年黄土高原3种植物叶片气孔特征参数比较[J].植物资源与环境学报, 2005,14(1):1~5.
    [71]方立峰,丁在松,赵明.转ppc基因水稻苗期抗旱特性研究[J].作物学报, 2008,34(7):1220~1226.
    [72]李卫华,郝乃斌,戈巧英,等. C3植物中C4途经的研究进展[J].植物学通报,1999,16(2):97~106.
    [73] Li Y SH,Li D M,Zhu Y G.Progresses of Molecular Biology for Super High Yield in Rice [J]. Research of Agricultural Modermization,2001, 22(5):823~288.
    [74]徐镜波,袁晓凡,郎佩珍.过氧化氢酶活性分光光度法测定.环境化学,1997,16(1):73~76.
    [75]李瑞智.SO2对作物叶片过氧化物酶的影响[J].西南师范大学学报;自然科学版,1984(3):114~116.
    [76]王仁雷,华春,李霞,张其德,等.光抑制条件下转PEPC基因水稻的光合表现[J].作物学报,2002,28(3):321~326.
    [77]张谦,焦德茂,张云华,等.转PEPC基因水稻的光保护效应的研究[J].中国农业科学,2004,37(12):1812~1818.
    [78]Prasad T K. Mechanism of chilling-induced oxidative stressing and tolerance :changes in antioxidant system ,oxidation of proteins and lipids and protease activities [J].Plant J ,1996,10:1017.
    [79] Heath R L,Parker L.Photoperitation in isolated chloroplasts kinetics and stoichiometry of faty acid peroxidation[J].Arch Biophys,1968,25:189~198.
    [80] Giannopolitis C N, Ries S k. Superoxide dismutase(I) Occurrence in higher Plant[J].Plant Physiol,1977,59(2):309~314.
    [81]王爱国,罗广华.植物的超氧自由基与羟胺的定量关系[J] .植物生理学通讯,1990,26(6):55~57.
    [82]王涛,牛志峰,杜慧玲.铬对芹菜叶绿素及保护酶活性的影响[J].山西农业学报, 2006,26(3) 259~261.
    [83]王富荣,张云华,于江龙等.转PEPC基因水稻耐光抑制和光氧化的特性[J].安徽农业大学学报, 2007,34(3):320~323.
    [84]李艳,许为钢,胡琳,张磊,等.玉米磷酸烯醇式丙酮酸羧化酶基因高效表达载体构建及其导入小麦的研究[J].麦类作物学报,2009,29(5):741~746.
    [85]Confalonieri M ,et al..Factors affectors affecting Agrobacterium tumefaciens-mediated rransformation in several black poplar clones [J].Plant Cell Tissus Organ Culture,1994,43:215~222.