表面活性剂对浮选气泡动力学特性影响的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
浮选作为一种高效快速的固液分离技术,广泛应用于污水处理、水质净化、选矿和石油开采等诸多工业领域。在浮选过程中,空气以小气泡的形式分散在浮选系统中,作为载体,将粘附在其上的悬浮物带到液面。浮选过程通常采用表面活性剂来调节气泡尺寸及稳定性以提高浮选效率。因此,深入认识在表面活性剂存在下的气泡动力学特性,对提高浮选效率具有重要的理论价值。
     论文在总结前人研究的基础上,针对目前研究较少的1~5mm的中尺度浮选气泡,采用高速摄影技术,在一个方截面浮选柱中实验研究了表面活性剂对单气泡和气泡团动力学特性的影响,并探讨了其影响机理。实验中,单气泡和气泡团采用不同气泡发生装置生成,液体使用蒸馏水和不同浓度的三种表面活性剂溶液,气泡的瞬时运动利用MS75K(Mega Speed Corp)高速摄影仪实时记录,气泡的形状、大小、轨迹、速度和分布均由图像处理软件(AVI Player,Mega Speed Corp)分析获得。
     研究结果表明,除了喷嘴直径与进气流量外,表面活性剂的存在对单个气泡的运动特性也有非常重要的影响。实验发现,由于Marangoni效应,适量的表面活性剂可以有效地减小气泡体积,抑制气泡变形,降低气泡上升速度和增强气泡上升轨迹的规则性。相比于纯水,曲拉通100的浓度为0.15×10-3mOl/L时,气泡高宽比的振荡幅度缩减了57%,终端上升速度减小了35%,体积平均减小40%,气泡的运动轨迹更有规则,偏离中心位置较纯水中小。实验还发现,气泡的形状振荡影响着气泡的瞬时速度,气泡形状越扁,瞬时上升速度越大。在实验条件范围内,不同表面活性剂对气泡的影响程度差异较大,曲拉通100的影响程度强于聚乙二醇和正戊醇。
     研究结果还表明,不同进气流量下,表面活性剂的存在均显著影响了气泡团的运动速度和尺寸分布特性。实验发现,相比于纯水中,由于Marangoni效应限制了气泡的聚并行为和增强了气泡的稳定性,表面活性剂溶液中,气泡团的上升速度减小,但气泡团的上升速度大于单个气泡的上升速度。表面活性剂溶液中,气泡团的尺寸分布范围变窄,气泡团的尺寸也更均匀。纯水和浓度为0.05×10-3 mol/L曲拉通100溶液中,气泡团的Sauter当量直径相比于纯水中减少了22.9%。实验还发现,相同流量相同浓度条件下,曲拉通溶液中气泡的尺寸分布范围最窄,气泡团的当量直径最小,正戊醇次之,聚乙二醇最大。另外,相同表面活性剂浓度下,增加进气流量,气泡分散度增大,尺寸分布不均匀,同时增大气泡团的平均直径和Sauter当量直径,但降低气泡团的比表面积。
Froth flotation is an efficient solid-liquid separation process, widely used in various industries such as wastewater treatment, water purification, mineral process and oil recovery. In flotation process, gas is normally introduced in the form of small bubbles into a flotation column and acts as carriers transporting particles to the surface of the continuous liquid phase. A proper amount of surfactants are generally added to the system in order to control bubble size and promote formation of a stable froth in practical flotation operation. Therefore, it is significantly essential to deeply understand bubble dynamic characteristics in the presence of surfactants in order to improve the efficiency of the flotation process.
     After literature review on the flotation process and the role of surfactant, this thesis focused on meso-scale bubbles in a range of 1~5 mm which had not been studied extensively in flotation process at present. Experiment was carried out to investigate the effect of surfactants on bubble dynamic characteristics in a square plexiglass flotation column using high-speed photography technique. Effect mechanism was also represented. In this experimental study, single bubble and bubble swarms were released through the nozzle and a porous ceramic sparger at the bottom of column, respectively. Distilled water and three types of surfactant solutions with different concentrations were used for test liquid. The bubble motion was monitored and recorded by a high speed camera (MS 75K, Mega Speed Corp.). The sequences of the recorded images were then analyzed using the image analysis software (AVI View, Mega Speed Corp.) to obtain bubble trajectory, dimensions, velocity and distribution.
     Experimental results show that the presence of the surfactant has a significant effect on single bubble behaviors in flotation column besides nozzle diameter and air flow rate. The right amount of surfactant was found to reduce bubble size, dampen bubble deformation, slow down the bubble rising velocity and improve bubble trajectory stabilization significantly due to the Marangoni effect. Compared to pure water, Triton X-100 of concentration 0.15×10-3mol/L can reduce the oscillating amplitude of the aspect ratio of the bubble by 57%, slows the terminal velocity of the bubble by 35% and reduces the volumn of the bubble by 40%. In addition, compared to motion in pure water, bubble trajectory takes more regular pattern and smaller deviation off center position in surfactant solutions than in pure water. It is also found that the bubble shape oscillations influence the bubble transient velocity:the more oblate the bubble, the faster it rising. Under the experimental conditions, surfactant effect on meso-scale bubble dynamics depends on surfactant type. The effect of Triton X-100 is stronger than Polyethylene glycol and n-Pentanol.
     Experimental results also indicate that the presence of the surfactant has a dramatic effect on the rising velocity and size distribution of bubble swarms for various gas flow rates in flotation column. When bubbles rise in surfactant solutions, surfactant molecules can be adsorbed over the bubble surface, which stabilizes the bubbles and yields the repulsive force between the adsorbed surfactant layers of bubbles, resulting in preventing the coalescence of bubbles. As a consequence, the rising velocity of bubble swarms in surfactant solution is less than that in pure water. At same time, bubble swarms have more uniform and narrower size distribution in surfactant solutions than in pure water. In the cases of 0 (pure water) and 0.05x10-3mol/L Triton X-100 solutions, Sauter mean diameters of bubble swarm are 2.80 and 2.16 mm, respectively. Compare to pure water, Sauter mean diameters decreasse by 22.9%. Moreover, the narrowest bubble size distribution and the least Sauter mean diameter of bubble swarms can be observed in Triton 100 solution. Another finding is that the bubble sizes become nonuniform and the bubble size distribution is widened slightly with increasing gas flow rate. An increase in gas flow rate can increase the average bubble diameter and Sauter mean diameter, but decrease the specific surface area of bubble swarms.
引文
[1]A.M.Gaudin. Flotation:A.M. Gaudin memorial volume.v.1[M], McGraw-Hill, New York,1957.
    [2]王毅力,汤鸿霄.浮选净水技术研究及进展[J].环境科学进展.1999V7(6):4-103
    [3]许珂敬.用选矿技术从粉煤灰中提取有用成分[J].山东建材学院学报,1995,9(3):65-70
    [4]孟凡杓.重有色金属冶炼渣的处理与利用[J].有色金属,1991(2):43-45
    [5]何从行.用选矿工艺回收冶炼渣中的有价金属[J].有色矿山,1997(5):38-42
    [6]斯提克拉德B T O.废弃塑料混合物的浮选分离.国外金属矿选矿,1998,35(9):26-40
    [7]陈红,张坚.高效气浮的技术关键及对含油废水的净化效果[J].钢铁,2001,36(5):66-68
    [8]陈翼孙,胡斌,环境工程治理丛书:浮选净水技术[M],中国环境科学出版社,1992
    [9]J. A. Kitchener. The Froth Flotation Process-Past Present and Future In Brief in The Scitenific Basis of Flotation[M], Martinus Nijhoff Publishers, The Hague, Netherlands,1984
    [10]L.S.Robert. Water treatment plant design[M], Ann Arbor Sci. Pub., Inc.,1979
    [11]张海明,李成海,唐亚娟.泡沫浮选分离技术应用进展[J].辽宁化工,2006,35(2):92-95
    [12]J. F. Scamehorn and J. H. Harwell, Mineral separation by froth flotation in Surfactant Based Separation Processes [J]. Marcel Dekker,1989, V3:259-320
    [13]何从行.用选矿工艺回收冶炼渣中的有价金属[J].有色矿山,1997(5):38-42
    [14]J. Koivunen, Heinonen-Tanski. Dissolved air flotation (DAF) for primary and tertiary treatment of municipal wastewaters[J].Environmental Technology.2008, V29(01):101-109
    [15]魏在山,徐晓军等.浮选法处理废水的研究及进展[J].Journal of Safety and Environment. 2001,V1(4):14-17
    [16]Edzwald J K, Malley J P Jr, Yu C. A conceptual nodel for dissolved aif flotation in water treatment[C]. IWSA/IAWPRC joint Specialized Conference on Coagulation, Flocculation, Filtration. Sedimentation and Flotation,1990:141-150
    [17]Malley J P, Edzwald J K. Concepts for dissolved air flotation treatment of drinking water[J]. J. Water SRT-Aqua,1991,40(1):7-17
    [18]王静超,马军,刘芳.气浮接触区气泡-颗粒碰撞效率影响因素分析[J].工业水处理,2008,28(9):66-69
    [19]Weuster-Botz D, Altenbach-Rehm J, Hawrylenko A. Process engineering characteriza- tion of small-scale bubble columns for microbial process development [J].Bioprocess and Biosystems Engineering.2001, V24 (3):3-11
    [20]王毅力,李大鹏,郭瑾珑等.絮凝-溶气浮选处理低温、低浊水(中试)[J].中国给水排 水.2002,18(11):9-12
    [21]陈翼孙,胡斌.浮选净水技术的研究与应用[M].上海科学技术出版社.1985
    [22]唐文浩,夏福君,饶西宁等.涡旋浮选的理论及其应用研究[J].环境工程.2002,20(3):6-17
    [23]邹茂荣,李长青,张苇.涡凹浮选(CAF)在石化废水处理中的应用[J].工业用水与废水.2000,31(4):34-35.
    [24]EekenfelderW.W.FactorS Affeeting Aeration Effieieney of Sewage and Industrial Wastes[J]. Sew. Ind. Wasters,1959,31-60
    [25]王培义,徐宝财,王军.表面活性剂合成、性能、应用[M].北京:化学工业出版社,2007
    [26]焦学瞬,张春霞,张宏中.表面活性剂分析[M].北京:化学工业出版社,2009
    [27]Finch, J.A., Nesset, J.E.,Acuna, C..Role of fother on bubble production and behaviour in flotation[J]. Minerals Engineering.2008(21):949-957.
    [28]梁治其,宗惠娟,李金华.功能性表面活性剂[M].北京:中国轻工业出版,2002
    [29]石常省,赵跃民,俞和胜.表面活性剂对污泥沉降及压滤脱水性能的研究[J].江苏环境科技.2006,19(3):4-9
    [30]刘剑,王九思等.表面活性剂在泡沫浮选分离中的应用[J].精细石油化工进展.2008.09(6):50-53.
    [31]赵世民.表面活性剂—原理、合成、测定及应用[M].北京:中国石化出版社,2005.
    [32]赵国玺.表面活性剂物理化学[M].北京:北京大学出版社,1991.
    [33]顾惕人,朱步瑶,李外郎等.表面化学[J].北京:科学出版社,1999.
    [34]M.Krzan,J.Zawala,K.Malysa.Development of steady state adsorption distribution over interface of a bublle rising in soluions of n-alkanols(C5,C8)and n-alkyltrimethylammonium bromides(C8,C12, C16)[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2007.298:431-441.
    [35]张自杰等.排水工程(下册)[M).北京:中国建筑工业出版社,1996.
    [36]Leja J. Surface chemistry of frothe flotation[M]. New York:Plenum Press,1982.
    [37]Laskowski J S., In:Laskowski J, Woodburn E.T.. Rrothing in flotation-Ⅱ [M].Goordon and Brech Publishers,1998
    [38]Bergelt H, Stechemesser H. Experimental investigation of collision time of a spherical particle colliding with a liquid/gas interface[J]. Miner Prosess 1992, V34(4):321-331
    [39]Dai Z, Formasier D., Rslston J. Particle-bubble attachment in mineral flotation[J]. Journal of Colloid and Interface Science.1999,217:70-76
    [40]Nguyen AV,Schulze HJ. Colloidal science of flotation[M].New York:Marcel Kekker,2004
    [41]Nguyen AV,Evans G.M.,Attachment interaction between air bubbles and particles in froth flotation[J],Exp.Therm.and Fluid Sci.2004,V28(5):381-385
    [42]Stechemesser H, Nguyen AV. Dewetting kinetics between a gas bubble and a flat solid surface and the effect of three-phase solid-gas-liquid contact line tension[J].Colloids and Surf A:Phusicochem and Eng Asp.1998, Ⅴ142(2):142-257
    [43]Schulze HJ, Stockelhuber KW, Wenger A. First Experimental Proof of the Nonexistence of Long-Range Hydrophobic Attraction Forces in Thin Wetting Films[J].Chemical Engineering and Technology.2001,V24(6):624-628
    [44]Gu G, Xu Z, Nadakumar K, Masliyah J. Effects of Physical Environment on Induction Time of Air-Bitumen Attachment[J].Mineral Processing.2003,69235-250
    [45]Yoon R-H. The role of hydrodynamic and surface forces in bubble-particle interaction[J]. Miner Process 2000,58:129-143
    [46]Wang W, Zhou Z, Nandakumar K, Xu Z, Masliyah JH. Attachment of Individual Particles to a Stationary Air Bubble in Model Systems[J]. Mineral Processing.2003,68:47-49
    [47]Dukhin SS,Kretzsmar G, Miller R. Dynamics of adsorption at liquid interfaces, theory, experiments, application[M]. Elsevier,1995
    [48]Ryskin G, Leal LG. Bubble Deformation in an Axisymmetric Straining Flow[J].Fluid Mech,1984, V148:19-37
    [49]McLaughlin JB. Numerical simulation of mass transfer for bubbles in water[J]. Chem. Eng. Sci.2000, 55:1237-1255
    [50]Duineveld PC. The rise velocity and shape of bubbles in pure water at high Reynolds number[J]. Fluid Mech.1995,292:325-332
    [51]Duineveld PC. Bouncing and coalescence of bubble pairs rising at high Reynolds number in pure water or aqueous surfactant solutions[J].1998;58:409
    [52]Dukhin,S.S.,Miller, R.,Loglio, G., Phusico-chemical hydrodynamics of rising bubble[J]. 1998,V6:253-267
    [53]Krzan M, Malysa K., Influence of frother concentration on bubble dimension and rising velocities[J]. Problems Mineral Process.2002,V36:65-76
    [54]Krzan M, Lunkenheimer K, Malysa K. Physicochemical Problems of Mineral Processing[J]. Problems Mineral Process,1999,33:143-161
    [55]Sam,A,Gomez,C,O,Finch,J,A..Axial velocity profiles of single bubbles in water/frother solutions[J]. International Journal of Mineral Processing.1996(47):177-196
    [56]Marcel Krzan, Kazimierz Malysa. Profiles of local velocities of bubbles in n-butanol, n-hexanol and n-nonanol solutions[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2002, V207:279-291
    [57]Clift,R,Grace,J, R,Weber,M,E,. Bubble, Drops and Particles[M].2nd editon.Academic Press,New York.2005
    [58]Zhang,Y., Gomez,C.O.,Finch J.A.. Proceedings of the international Symposium of Column Flotation [J].1996(96):63-69
    [59]Krzan, M.,Lunkenheimer,K.,Malysa,K..On the influence of the surfactant's polaar group on the local and terminal velocity of bubbles[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2004(250):431-441
    [60]Acuna, C.. Measurement techniques to characterize bubble motion in swarms[M]. McGill University, Montreal, QC, Canada. PhD Thesis.2007
    [61]Zhang, Y., Mclaughlin, J.B., Finch, J.A., Bubble velocity profile and model of surfactant mass transfer to bubble surface[J]. Chemical Engineering Science.2001,56:6605-6616
    [62]Wu, M., Gharib, M.. Experimental studies on the shape and path of small aif bubbles rising in clean water[J]. Physics of Fluids.2002,V14(7):49-52
    [63]De Vries, J., Luther, S., Lohse, D.. Induced bubble shape oscillations and their impact on the rise velocity[J].The European Physical Journal.2002,B29:503-509
    [64]Kendoush,A.A.. The virtual mass of an oblate-ellipsoidal bubble[J].Physics Letter. 2007,A366:253-255
    [65]Dijkhuizen,W.,van den Hengel, E.I.V.,Deen,N.G..Numerical investigation of closures for interface forces acting on single air-bubbles in water using Volume of Front Tracking models[J].Chemical Engineering Science.2005,60:6169-6175
    [66]Azgomi,F., Gomez,C.O.,Finch, J.A..Characterizing frothers using gas hold-up[J]. Canadian Metallurgical Quarterly.2007,V46(3):237-242
    [67]Zhou,Z,A.,Egiebor,N.O.,Plitt,L.R.Frother effect on single bubble motion in a water column[J].Canadian metallurgical Quraterly,1992.V31(1):11-16
    [68]DU Jianwei, TANG Cuiping, FAN Shuanshi, et al. Experimental investigation on Span20 promoting effect on methane hydrate formation [J]. J of Xi'an Jiaotong University,2008,42(9):1165-1168.
    [69]Q. Xu, M. Nakajima, S. Ichikawa, N. Nakamura, P. Roy, H. Okadome, T. Shiina. Effects of surfactant and electrolyte concentrations on bubble formation and stabilization[J]. Journal of Colloid and Interface science,2009,332:.208-214.
    [70]M.C. Ruzicka, M.M. vecer, S. Orvalho, J. Drahos. Effect of surfactant on homogeneous regime stability in bubble column[J]. Chemical Engineering Science,2008,V63:951-967
    [71]S. Takagi, T. Ogasawara, Y. Matsumoto. The effect of surfactant on the multiscale structure of bubbly flows[J]. Philosophical Transactions of The Royal Society A,2008,366(3):2117-2129
    [72]M.Polli,M.D.Stanislao,R.Bagatin,E.A.Bakr,M.Masi, Bubble size distribution in the sparger region of bubble columns[J].Chemical Engineering Science,2002,57:197-205
    [73]何丹,李彦鹏,刘艳艳.初始形状对浮升气泡动力特性影响的研究.西安交通大学学报,2011(01):43-47
    [74]S.K.Majumder,G.Kundu,D.Mukherjee,Bubble size distribution and gas-liquid interfacial area in modified downflow bubble column[J].Chemical Engineering Journal 2006,122:1-10
    [75]B.A. Comley,P.J.Harris, D.J.Bradshaw,M.C.Harris, Frother characterisation using dynamic surface tension measurements[J]. International Journal of Mineral Processing 2002,64:81-100
    [76]D.Rodrigue,D.De Kee,C.F.Chan ManFong, An experimental study of the effect of surfactants on the free rise velocity of gas bubbles[J]. Journal of Non-Newtonian Fluid Mechanics,1996,66:213-232
    [77]S.Lefebyre,C.Guy, Characterization of bubble column hydro-dynamics with local measurements[J].Chemical Engineering Ccience,1999,54:4895-4902
    [78]S. Watcharasing, W. kongkowit, S. Chavadej, Motor oil removal from water by continuous froth flotation using extended surfactant:Effects of air bubble parameters and surfactant concentration[J].separation and Purification Technology,2009,V70:179-189.
    [79]W.Kracht,J.A. Finch.Effect of frother on initial bubble shape and velocity[J].International Journa of Mineral Processing.2010,94:115-120
    [80]刘华森,阳春华,王雅琳等.微泡浮选中气泡尺寸影响分析与参数优化[J].矿业工程研究,2009,V24(4):58-61
    [81]张学铭,何北海,李军荣.水性油墨废纸浮选过程气泡特性的研究[J].中国造纸,2009,V28(6):9-12
    [82]J.E. Nesset, J.R. Hernandez-Aguilar, C.A. Acuna, C.O. Gomez, J. A. Finch. Some gas dispersion characteristics of mechanical flotation machines [J].Minerals Engineering,2006, V19:807-815
    [83]何思为,邵建斌等.气泡成像机理及对图像测量的影响[D].第九届全国水动力学学术会议暨第二十二届全国水动力学研讨会文集.2009:466-472
    [84]唐远河,刘汉臣,陈刚.流动可视化的拍摄技艺[J].西安理工大学学报,2001,V17(4):417-420
    [85]唐远河,刘汉臣.从理想光具组出发推出景深及超焦距[J].西安理工大学学报,1999,V15(4):104-107
    [86]章毓晋.图象工程上册—图象处理和分析[M].清华大学出版社,1999
    [87]马椿年.摄影用光实践[M].北京:中国摄影出版社,1999
    [88]罗玮.曝气池中气液两相流PIV实验研究及数值模拟[D].西安理工大学.2006.
    [89]Gian Piero Celata,Maurizio CCumo, Francesco D'Annibale el at. Effect of gas injection mode and purity of liquid on bubble rising in two-component systems[J].Experimental Thermal and Fluid Science.2006,31:37-53
    [90]R.Newell. S. Grano, Hydrodynamics and scale up in Rush on turbin flotation cells, pratlcell hydrodynamics[J], International Jornal of Mineral Processing.2007(8):224-236
    [91]E.Ventura-Medina,J.J. Cillers, Calculation of the specific surface area in flotation[J], Minerals Engineering.2000,13:265-275
    [92]S. Garcia-Salasa, M.E.Rosales Pena Alfaroa, R.M.Porterc,F. Thalassob, Measurement of lacal specific interfacial area in bubble columns via a non-isokinetic withdrawal method coupled to electooptical detector[J], Chemical Engneering Science.2008,63:1029-1038
    [93]P.Chungchamroenkit, S. Chavadej,U.Yanatatsaneejit,B.Kitiyanan, J.F. Scamehorn, Resi- due Catalyst support removal and purification of carbon nanotubes by NaOH Leaching and froth flotation[J], Separation and Purification Technology.2008,60:206-214
    [94]Claudio Abraham.Measurement techniques to characterize bubble motion in swarms [M].2007.06
    [95]李彦鹏,张乾隆,白博峰.竖直通道内相邻气泡对上升的直接数值模拟[J].热能动力工程.2007,22(4):375-379
    [96]张志炳,耿皎等Marangoni效应与气液传质过程[J].化工学报.2003,54(4):508-515