搅拌式生物反应器溶解氧性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
搅拌式生物反应器是生物反应器的重要一种,搅拌系统是搅拌式生物反应器的核心装置。在好氧的发酵生产过程中,细胞需要分子态的氧作为呼吸链电子传递系统末端的电子受体,最终与氢离子结合成水并释放出大量能量,供细胞维持生长和合成反应使用。抗生素发酵多数是需氧发酵,氧的传递与摄取和抗生素合成有十分密切的关系。发酵液中氧扩散速率是限制很多抗生素发酵呼吸过程的因素。因此,如何改善溶氧已成为好氧发酵过程控制的重要课题。
     本文在30L全自动发酵罐中,通过改变搅拌浆不同组合型式以及通气量和搅拌转速等操作条件,研究水溶液和高粘度CMC溶液的溶解氧性能,找出了容量传递系数Kla比较高的几种搅拌型式。实验结果表面:水溶液和高粘度CMC溶液的Kla随搅拌转速的增加比随通气量的增加升幅较大;相同操作条件下,在低粘度范围(1-100cp)比在高粘度范围(100-200cp)内粘度的增加对Kla的影响更为显著;在水溶液中,双层园盘涡轮平直叶、底层园盘涡轮半圆管叶+上层园盘涡轮平直叶、底层园盘涡轮半圆管叶+上层园盘涡轮箭叶搅拌浆组合的溶解氧性能总体优于底层园盘涡轮平直叶+上层园盘涡轮45°斜直叶和底层园盘涡轮平直叶+上层园盘涡轮弯叶搅拌浆组合,其中尤以双层园盘涡轮平直叶搅拌浆在各种操作条件下的溶解氧性能最稳定;在高粘度CMC溶液中,底层园盘涡轮半圆管叶+上层园盘涡轮箭叶搅拌浆组合整体优于底层园盘涡轮平直叶+上层园盘涡轮45°斜直叶。
     通过抗生素发酵罐设计放大实例以及对现有抗生素生产发酵罐搅拌系统改进,即洛伐他汀1m~3中试罐由2层园盘涡轮箭叶改为2层园盘涡轮平直叶、放大设计头孢菌素120m~3发酵罐时采用底层园盘涡轮半圆管叶+上面3层轴向流搅拌器(原36m~3发酵罐为3层园盘涡轮平直叶搅拌器)、大观霉素大生产42m~3发酵罐的搅拌系统由3层园盘涡轮平直叶优化为底层园盘涡轮平直叶+上面一层轴向流搅拌器时,跟踪各相应生产品种洛伐他汀、头孢菌素和大观霉素的发酵单位、发酵液溶解氧、菌丝体浓度、发酵液总糖浓度的变化,实验数据表明:改进搅拌系统后的发酵罐(包括放大设计的发酵罐)的溶解氧整体优于改进前;改进后的发酵单位,洛伐他汀增加40%,大观霉素和头孢菌素也略有增加,并且改进后
Stirred-tank bioreactor is one of the most important bioreactors. The agitation system is a key component in the stirred-tank bioreactor. In aerobic fermentation processes, cells in the culture medium need oxygen, which acts as the electronic acceptor of electron transfer system in the respiratory chain. Oxygen interacts with hydrogen ion to form water, releasing a large amount of energy, which is required by the cells for their maintenance and the synthetic reactions. Most of the fermentation processes for antibiotic production are aerobic, and the antibiotic synthesis is greatly affected by the transport and uptake rates of oxygen. The diffusion rate of oxygen in the fermentation is a limiting factor for many antibiotic fermentation processes. Therefore, enhancing oxygen transfer is very critical for the aerobic fermentation.In this study, by using a 30 L automatic fermentor, the performance of the oxygen transfer in aqueous media and high viscous CMC solution were investigated by changing the process parameters such as the combinations of different kinds of agitators, the aeration rate and the agitation speed. Several manners of agitation that improved volumetric oxygen transfer coefficient (Kla) were identified. The results indicated that Kla values in aqueous media and high viscous CMC solution increased with both agitation speed and aeration rate, but agitation speed is more effective than aeration rate;Kla decreased with the increase of viscosity and it decreased more serious in higher viscosity (100-200 cp) than in lower viscosity (1-100 cp). In water, the combination of two layers of disc turbine impellers with flat blades, disc turbine with half tube blade as bottom impeller and disc turbine with flat blade as upper impeller, disc turbine with half tube blade as bottom impeller and disc turbine with arrow blade as upper impeller resulted in high oxygen transfer rate than the
    combinations of disc turbine with flat blade as bottom impeller and disc turbine with 45° oblique blade as upper impeller, disc turbine with flat blade as bottom impeller and disc turbine with curved blade as upper impeller. Among all the tested conditions, the combination of two layers of disc turbine impellers with flat blade had the most stable result for control of dissolved oxygen level;However, in high viscous CMC solution, the combination of disc turbine with half tube blade as bottom impeller and disc turbine with arrow blade as upper impeller was better than disc turbine with flat blade as bottom impeller and disc turbine with 45° oblique blade as upper impeller .Several agitation systems were re-designed for current antibiotic manufacturing and the fermentation tanks with the new agitation systems were scaled up. For example, two layers of disc turbine impellers with arrow blade in 1 m3 fermentation tank in the pilot scale for manufacturing Lovastatin was replaced by two layers of disc turbine impellers with flat blade;when the fermentation tank for Cephalothin was scaled up to 120 m3, disc turbine with half tube blade as bottom impeller and three layers axial flow impellers as upper agitators were used to replace the previous three layers disc turbine with flat blade impellers in previous 36m3 fermentor. Also disc turbine with flat blade as bottom impeller and one layer axial flow impeller as the upper agitator was used in a 42 m3fermentor for production of Spectinomycin to replace the formerly used three layers disc turbine with flat blade impellers. For all the fermentations of Lovastatin-, Cephalothin and Spectinomycin with the re-designed agitation systems, the time course of the antibiotic unit, the level of dissolved oxygen, "the concentrations of the cell and the sugar were monitored. The experimental results demonstrated that the level of the dissolved oxygen in the fermentation tanks with the re-designed agitation systems was improved significantly. The fermentation unit using the new system for
    production of Lovastatin was increased up to 40% compared with the previous one. The new agitation systems also improved the fermentation units to some extent for Spectinomycin and Cephalothin, respectively. In addition, the power consumption for agitation reduced about 10. 53 Kw using the new agitation system for Spectinomycin fermentation. Experimental results also showed that the multiple disc turbine agitators were better for the small-sized fermentation tanks. However, for the big-sized tanks, it is better to use disc turbine agitator for bottom mixing and axial flow impeller for upper mixing. This combination of agitators takes advantages of both radial flow impeller for good dispersion and axial flow impeller for desirable circulation, which provides an excellent environment for aerobic fermentation. Finally, the production of Spectinomycin in a 42 m 3 fermentor using the improved agitation systems could increase economic benefit of 415£,15 thousand Yuan per year compared with that using the old one. Therefore, the improvement in the agitation systems makes a significant contribution to the manufacture of antibiotic.
引文
[1] 梅乐和等.生化生产工艺学.科学出版社.2000.
    [2] 戚以政等.生化反应动力学与反应器[第二版].
    [3] 陈乙崇.搅拌设备设计:上海科学技术出版社,1988.
    [4] 俞俊棠.抗生素生产设备:化学工业出版社,1982.
    [5] 俞俊棠.唐孝宣.生物工艺学.上海:华东化工学院出版社.1991.
    [6] HiroseYH, Shibai Effect of oxygen on amino acids fermentation, Advances in Biotechnology, ed. Moo-Young M, Robinson CW and Vezina C,I: 329-333, Pergamon Press, (1988).
    [7] Feren CF, ,Squires RW, The relationship between critical oxygen level and antibiotic synthesis of capreomycin and ciphalisporin C, Biotech Bioeng ,11,583-592(1968)
    [8] 李卫旗等.反应器结构对黄原胶发酵的影响,食品与发酵工业,1996,N0.1:31.
    [9] 卫功元等.溶氧及对产朊假丝酵母分批发酵生产谷胱甘肽的影响,生物工程学报,2003,19(6):734.
    [10] 燕国梁等.谷氨酰胺转胺酶发酵条件的优化研究,工业微生物,2003,31(1):4.
    [11] 刘玉平,林建强.浅谈如何提高发酵生产的溶解氧浓度,医药工程设计,2005,26(2).
    [12] 刘树臣等.十三碳二元酸发酵工业试验,石油化工,2002,31(7):558.
    [13] Nienow AW. Trends in Biotechnol, 1990,8(8):224-233
    [14] Nienow AW. In: Ladisch MR, Bose A. Eds. Proceedings of the 9~(th) Internationl Biotechnology Symposium and Exposition, Washington: ACS. 1992.193-196.
    [15] 王凯,冯连芳.混合设备设计:机械工业出版社,2000
    [16] J0h A.Yon Essen,Seminar 0n Fluid Mixing,与美国费城混合设备公 司技术交流资料,1997
    [17] 美国莱宁公司产品目录,1992
    [18] 美国凯米尼尔公司产品目录,1996
    [19] 程连芳.有关发酵罐设计的几个问题,第七届全国发酵罐及其系统设计研讨会论文集:1999
    [20] GBEWONYO K, DIMASI D, BUCKLAND BC, Characterization of Oxygen Transfer and Power Absorption of Hydrofoil Impellers in Viscous Mycelial Fermentations, Biotechnilogy Processes
    [21] A Brief History ofAgitator Impellers Uesed in Gas Dispersion,美国凯米尼尔公司,1995
    [22] Gregory T. Benz, Impeller Solidity, Flow and Head,美国凯米尼尔公司, 1991
    [23] Kenneth S. Lally, James Y. Oldshue, Ronald J. Weetman, Mass ransfer and Fluid Mixing in Fermentation, American Institute of Chemical Engineers 1985 Annual Meeting, Chicago: 1985
    [24] Fasano, J. B., Advanced Impeller Geometry Boosts Liquid Agitation, Chem. Eng. Aug. 1994:110-116
    [25] Cooper OM, Fernstrum QA Miller SA, Performance of agitated gas-liquid contactors, Ind Eng Chem, 36,504-509(1944).
    [26] Higbie R, The rate of absorption of pure gas into a still liquid short periods of exposure, Trans Am Inst Chem Engrs ,31,365-389(1935).
    [27] Echenfelder EE, Barnhart EL, The effect of organic substances on the transfer of oxygen from air bubbles in water, AIChE J, 7, 631-634[1961].
    [28] Zlokarnik M, Sorption characteristics for gas-liquid contacting in mixing vessels, Adw Biochem Eng, 8,113-115 (1978).
    [29] Chain EB, Gualandi G, Morisi G, Aeration studies IV ,Aeration conditions in 3000 liters submerged fermentations with various microorganisms, Biotech Bioeng, 8,595-619 (1966).
    [30] 蒋作良.药厂反应设备及车间工艺设计.中国医药科技出版社,2001:47— 68.
    [31] 肖作兵,戴干策.翼型轴流浆的搅拌性能研究.化学工程师,1994,43(5):4-8.
    [32] 李桢,彭瑞洪等.抗菌素发酵罐的几种搅拌型式和通气效果.中国医药工业杂志,2002,33(6):296-298.
    [33] 蔡志斌,戴感策.搅拌混合中的循环与剪切.化工学报,1996,47(2):145—151.
    [34] 马民强,徐亲民.搅拌器改进与工业发展.中国医药工业杂志,1998,29(3):131-136.
    [35] 储炬,李友荣.现代工业发酵调控.化学工业出版社,2002.
    [36] 史荣梅.溶氧浓度对产黄霉稳定培养生物合成青霉素的影响.外国医药抗生素分册,2000,21(2):74-83.
    [37] 周光斌.摇瓶试验与发酵罐结果间差异的因素.抗生素杂志,1988,13(1):72—75.
    [38] 付为民.轴向搅拌浆发酵生产红霉素的研究.中国医药工业杂志,1999,30(10):465-468.
    [39] 丝状菌丝体发酵流变性质的研究.华东化工学院学报,1989,15(4):470.
    [40] 储炬,李伯林.胞内抗生素积累分泌抗生素合成的影响.国外医药抗生素分册,1999,20(50:232.
    [41] 许学书,方夏虹.妥布拉霉素放大规律的研究.华东理工大学学报,1999,25(11):51-54.
    [42] 王欣荣,刘淑奎.螺旋霉素发酵工艺的研究.中国抗生素杂志,2002,27(12):120-126.
    [43] 张达力,储炬.溶氧水平和磷酸盐对庆大霉素合成与分泌的影响.中国抗生素杂志,2002,27(3):145-147.
    [44] 潘杰,秦德华.溶氧对生物转化螺旋霉素的影响.化工冶金,1998,19(4):350-354.
    [45] 扶教龙,储炬,刘玉伟.金霉素发酵过程的代谢特征及调控策略.中国抗生素杂志,2002,27(30:14-144.
    [46] 张嗣良,储炬,庄庆萍.抗生素发酵过程优化技术研究.中国抗生素杂志,2003,27[9]:572-575.
    [47] Lounes, Anissa;Lebrihi, Ahmed;et al. Effect of nitrogen/carbon ratio on the specific production rate of spiramycin by streptomyces ambofaciens. Process Biochem. [OxFod],1995,31[1]:13-30.
    [48] 蔡志斌,戴干策.新型BAF翼型轴流浆的开发.华东理工大学学报,1996,22[2]:123—128.
    [49] 王斯靖.离心式搅拌细胞培养反应器液体循环及氧传递规律.华东理工大学学报,1994,20[6]:764—768.
    [50] 刘咏梅等.溶解氧控制与发酵过程摄氧率及鸟苷积累的关系.华东理工大学学报,2002,28[3]:245—247.
    [51] 郝惠娣等.自混式搅拌器非牛顿流体传质性能研究.化工学报,2002,30[5]:44—47.
    [52] Van' t Riet K, Smith JM. Chem Eng Sci, 1973,28:1031.
    [53] Van' t Riet K, Smith JM. Chem Eng Sci, 1975,30:1093.
    [54] 赵建国等,轴向流搅拌器及其在井岗霉素生产中的应用.无锡轻工大学学报,1998,17[4]:21—25.
    [55] 朱雪琴,通风发酵搅拌技术的研究.无锡轻工大学学报,1995,14[3]:233—238.
    [56] 胡建成,搅拌器优化组合在大型发酵罐中的应用.化工机械,2003,31[1]:37—39.
    [57] 丁绪淮,周理.液体搅拌.北京:化学工业出版社,1983.
    [58] Nienow AW. Trends Biotechnol, 1990,8:61.
    [59] Buckland BC, Gbewonyo K, DiMasi D et al. Biotech Bioeng, 1988,31:737.