载银多壁碳纳米管抗菌剂及其在纤维中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纺织材料在朝着功能化、舒适化和卫生保健的方向发展的过程中,抗菌纤维材料越来越引起了人们的关注。无机抗菌剂能够克服天然和有机抗菌剂在耐高温、耐洗涤、安全性、持久性等方面的不足,并可采用多种方法制备抗菌纤维,因而采用无机抗菌剂作为抗菌功能材料制备抗菌纤维的研究日益增多。自1991年Iijima发现碳纳米管(CNTs)以来,CNTs独特的结构、优异的物理和化学性能使其在许多领域具有潜在的应用前景,CNTs/高聚物复合材料已成为目前材料科学领域的研究热点之一。以CNTs为载体制备载银CNTs抗菌剂,并考察其在纤维中的应用具有重要的研究意义。
     本文采用第一性原理计算了银在CNTs内壁和经羧基和羟基修饰的外壁上吸附后的结构和稳定性;选择经硝酸氧化处理的多壁碳纳米管(MWNTs)为载体,AgNO3溶液为反应液,通过吸附法制成了载银MWNTs抗菌剂(Ag/MWNTs);以Ag/MWNTs抗菌剂为功能材料,采用紫外光(UV)辐照的方法制备了Ag/MWNTs抗菌羊毛纤维;采用双螺杆挤出机制备了Ag/MWNTs抗菌PET母粒,并用熔融纺丝技术纺制抗菌PETFDY功能纤维,对纺丝工艺、抗菌PET母粒的添加量等对抗菌PETFDY功能纤维的可纺性的影响进行了系统的研究。
     实验采用JSM-6700F型场发射扫描电镜(SEM)观察了样品的形貌;通过JEM-2010型高分辨透射电镜(HRTEM)、Y-2000型X射线衍射仪(XRD)和FTIR1730红外光谱测试仪(IR)表征了样品的结构;利用LABTAM-8410型等离子体原子发射光谱仪(ICPS)测定了样品中的银含量;采用DSC6200型差示扫描量热仪(DSC)测定了样品的结晶度;采用活菌计数法或振荡烧瓶法对样品的抗菌性能进行了测试。
     上述研究围绕抗菌功能材料的设计并对其在天然羊毛纤维和合成纤维PET上应用进行了工艺参数优化,主要取得了以下结论:
     (1) Ag离子在修饰后的CNTs中的负载主要以物理吸附为主;
     (2)经硝酸氧化处理后的MWNTs可以作为载体,通过吸附法制备Ag/MWNTs抗菌剂,且具有良好的缓释和抗菌性能;
     (3)采用“UV辐照处理后的羊毛纤维在抗菌功能溶液中浸渍,并进行二次UV辐照处理,可制得吸附率较高的Ag/MWNTs抗菌羊毛纤维,该纤维具有优良的热稳定性能,以及优良的抗菌和耐洗涤性能;
     (4)采用双螺杆熔融共混挤出机可以制备具有良好的分散性和抗菌性能的抗菌PET功能纤维母粒,且可促进Ag/MWNTs抗菌剂沿样条轴向取向,有利于提高Ag/MWNTs抗菌PET功能纤维的可纺性;
     (5)采用母粒熔融共混纺丝法可以纺制具有良好抗菌性能的抗菌PETFDY功能纤维。
In the development process of textile materials toward being functional, comfortable and healthy, more attention is being paid to the antibacterial fibers. Inorganic antimicrobial agents which are superior over natural and organic antibacterial agents in heat-resisting, launderability, safety and durability, can be used for manufacturing antibacterial fibers by different methods. Therefore, there are ever-increasing research in preparing antibacterial fibers in which inorganic antibacterial agents are used as antibacterial functional materials. Since its discovery by Iijima in 1991, carbon nanotubes (CNTs) with unique structures and excellent physical and chemical properties have exhibited promising applications in many areas. CNTs / polymer composite materials have become a hot topic in the field of material research. It is of significance to develop CNTs-supported silver antibacterial agents and explore their use fibers.
     In present paper the first-principle simulation was carried out to investigate the structure and stability of silver adsorbed on the internal-walls and the outer-walls of CNTs, with the outer-walls modified by carboxyl and hydroxyl groups. Multi-walled carbon nanotubes (MWNTs) were oxidized in nitric acid and then used as carrier to perpare Ag/MWNTs antibacterial agent by adsorption in AgNO3 solution.With the Ag/MWNTs antibacterial agent as functional material, the Ag/MWNTs antibacterial wool fibers were prepared by ultraviolet (UV) irradiation method. Ag/MWNTs antibacterial PET masterbatch was prepared with a twin-screw extruder. Melt spinning technique was adopted to spin antibacterial PETFDY fiber. The influences of the spinning technology and the additive amount of anti-bacterial PET masterbatch on the spinnability of antibacterial PETFDY function fibers were systematically investigated.
     The morphologies of the samples were observed by Scanning Electron Microscopy (SEM). The structures of specimens were characterized by High-Resolution Transmission Electron Microscopy (HRTEM), X-ray diffraction (XRD), and Infrared Spectrometry (IR). The contents of silver were measured with Inductively Coupled Plasma Spectrometry (ICPS). The degree of crystallinity was measured with differential scanning calorimetry (DSC). The antibacterial properties of all specimens were tested using alive-bacteria-counting and flask-shaking methods.
     With emphasis on the design of antibacterial functional materials and the process optimization for their applications in natural wool fibers and PET fibers, this study reached the main conclusions as follows.
     (1)The loading of Ag ions in the modified CNTs was mainly by physical adsorption.
     (2)HNO3-treated MWNTs used as carrier to prepare Ag/MWNTs antibacterial agent by adsorption. It had excellent release and antibacterial properties.
     (3) The antibacterial wool fibers were prepared by“UV-treatment + dipping + secondary UV-irradiation +washing and drying”. The fibers exhibited excellent thermal, antibacterial and wash-resistant properties.
     (4) Ag/MWNTs antibacterial PET masterbatch with good dispersity and antibacterial property was prepared using a twin-screw extruder. The orientation of Ag/MWNTs antibacterial agents was promoted along the axial direction, which was beneficial to improve the spinnability of antibacterial PET fibers.
     (5)Ag/MWNTs antibacterial PETFDY fibers with excellent antibacterial property were prepared by melt spinning technique.
引文
[1]季君晖,史维明.抗菌材料[M].北京,化学工业出版社, 2003: 18, 134-146.
    [2]张长欢,陈丽华.抗菌纤维[J].天津纺织科技, 2009, (2): 10-12.
    [3]石铮.抗菌PET纤维研究的进展[J].聚酯工业, 2009, 22(3): 1-5.
    [4]王广阔,马建伟,杨英贤.纳米抗菌纺织品的制备技术及其应用前景[J].纺织科技进展, 2004, 6: 1-3.
    [5]李燕飞,安玉山.抗菌剂和抗菌织物加工方法及展望[J].山东纺织科技, 2003, (6): 32-33.
    [6]赵家祥.抑菌织物发展综述[J].产业用纺织品, 2000, (8): 2-3.
    [7]肖卫军,刘功良.纳米材料在纺织品中的应用及思考[J].广东化纤, 2002, 9 (3):32-36.
    [8]高绪珊,吴大诚.纳米纺织品及其应用[M].北京,化学工业出版社, 2004. 134-147.
    [9]王艳忠,黄素萍,潘玮.抗菌织物的加工方法及发展趋势[J].广东化纤, 1999, 9(3): 39-40.
    [10]徐继宠,凌群民,张建国.对抗菌织物的全面评价[J].中国纤检, 2003, 1: 28-29.
    [11]何秀玲,郭腊梅.抗菌织物的发展及其应用现状[J].广西纺织科技, 2003, 32 (3): 30-33.
    [12]Shenai V. A.. Antibacferial Fabrics[J]. The lndian Textile Journal, 2002, (7): 81.
    [13]师利芬,张一心.抗菌纤维及其最新研究进展[J].纺织科技进展, 2005, (1): 4-6.
    [14]小林茂,松井昭夫.抗菌防臭加工の展開[J].加工技术, 1998, 33(8): 522-523.
    [15]梁列峰,张霞,邹传勇.壳聚糖与聚乙烯醇共混成纤的可行性研究[J].现代纺织技术, 2006, (1): 1-4.
    [16]葛婕,王军,徐虹.抗菌纤维的最新研究进展[J].纺织导报, 2006, (3): 50-52, 59.
    [17]杨宇民,季莘,顾海鹰等.壳聚糖抗菌纤维中壳聚糖含量测定方法研究[J].中国公共卫生, 2006, 22(3): 338-339.
    [18]三木理研工集(株).新抗菌防臭·制菌加工刻[J].加工技术, 1998, 33(8): 588-589.
    [19]宫本贤一.制菌加工抗菌防臭加工药剂[J].加工技术, 1998, 33(8): 586-587.
    [20]庄旭品.溶剂纺壳聚糖衍生物/纤维素抗菌纤维的制备与特性研究[D].天津,天津大学, 2005, 5.
    [21]冯德才,刘小林,杨其等.抗茵剂与抗菌纤维的研究进展[J].合成纤维工业, 2005, 28 (4): 40-42.
    [22]陈文兴,沈之荃,刘冠峰等.铜(II)络合纤维的配位结构与抗菌性[J].高分子学报, 1998, (4): 431-437.
    [23]杨瑞玲,马国玉,宋瑾.抗菌聚酯切片及纤维的研制[J].合成纤维工业, 2000, 23(2): 20-23.
    [24]张宇,葛存旺,虞伟等.无机纳米抗菌剂用于医用无菌纱布的研究[J].东南大学学报(自然科学版), 2001, 31(2): 11-12.
    [25]李毕忠.无机纳米抗菌PET服用纤维的研制[J].纺织导报, 2002, (2): 37-38.
    [26]Zhang Zitao, Chen Liang, Ji Jinmin, et a1. Antibacterial properties of cotton fabrics treated with Chitosan [J]. Textile Research Journal, 2003, 73(12): l 103-l 106.
    [27]周轩榕,卢滇楠,邵曼君等.表面接枝季铵盐型高分子材料抗菌过程特性研究[J].高等学校化学学报, 2003, 23(6): 1 131-1 135.
    [28]Yu D. C., Teng M. Y., Chou W. L., et al. Characterization and inhibitory effect of antibacterial PAN-based hollow fiber loaded with silver nitrate[J]. J Mem Sci, 2003, 225(2): 115-123.
    [29]何继辉,马文石,谭绍早等.超细无机载银抗菌粉体的表面改性研究[J].塑料工业, 2004, 32(9): 51-54.
    [30]卢滇楠,周轩榕,邢晓东等.表面接枝季铵盐型聚合物的纤维素纤维——灭菌机理研究[J].高分子学报, 2004, (1): 107-113.
    [31]宋建芳,孟家光.棉针织物的纳米抗菌整理研究[J].针织工业, 2004, (6): 99-100.
    [32]Xu Xiaoyi, Yang Qingbiao, Wang Yongzhi, et al. Biodegradable electrospun poly (L-lactide) fibers containing antibacterial silver nanoparticles[J]. European Polymer Journal, 2006, (42): 2 081-2 087.
    [33]赵博. Amicor抗菌纤维与竹纤维混纺产品的开发[J].现代纺织技术, 2006, (1): 16-18.
    [34]赵博.抗菌中空细旦涤纶短纤维的性能分析[J].合成纤维工业, 2008, (4): 25-27.
    [35]涂惠芳,吴政.抗菌纤维的制备及抗菌性能的测试[J].北京服装学院学报, 2006, 26(4): 28-33.
    [36]梁右宜,吴政.含银纤维抗菌性能的研究[J].北京服装学院学报, 2007, 27 (4): 19-24.
    [37]涂惠芳,吴政.含银离子抗菌纤维的抗菌性能研究[J].针织工业, 2008, (4): 20-22.
    [38]张娜,吴政.含银离子纤维抗菌性能的研究[J].北京服装学院学报, 2008, 28 (4): 52-57.
    [39]张红霞,朱莹,祝成炎.抗菌功能性面料的开发与性能研究[J].丝绸, 2007, (12): 37-39.
    [40]朱平,隋淑英,李静等.纳米抗菌涤纶纤维的性能研究[J].纳米科技, 2007, (2): 21-28.
    [41]孟庆夫,姜立鹏,胡翱翔等. PA6抗菌纤维的研制与开发[J].合成纤维工业, 2008, 31 (5): 50-52.
    [42]刘美娜,韩光亭,张元明.纳米银抗菌涤纶纤维结构与性能初探[J].青岛大学学报(工程技术版), 2008, 23(1): 21-24.
    [43]雷晓云,刘秀清,刘刚.抗菌PET短纤维纺丝工艺探讨[J].合成纤维工业, 2008, 31(5): 47-49.
    [44]谭怀山.抗菌PP/PA6复合超细纤维的研制[J].合成纤维工业, 2009, 32 (2): 14-16.
    [45]代大庆,冯军强,张慧茹等.丙纶纤维专用抗菌母粒的制备及其应用[J].纺织科学研究, 2009, (1): 11-15.
    [46]代大庆,冯军强,张慧茹等.涤纶纤维专用抗菌母粒的制备及其应用[J].化纤与纺织技术, 2009, (1): 18-21.
    [47]Son Young A, Sun Gang. Durable antimicrobial nylon 66 fabrics:ionic interactions with quaternary ammonium salts[J]. J Appl Polym Sci, 2003, 90(8): 2 194-2 199.
    [48]Sun Yuyu, Sun Gang. Novel refreshable N-halamine polymeric biocides: Grafting hydantoin-containing monomer onto high performance fibers by a continuous process[J]. J Appl Polym Sci., 2003. 88(4): 1 032-1 039.
    [49]Bozja Jadranka, Sherrill Jennifer, Michielsen Stephen, et al. Porphyrin-based, light-activated antimicrobial materials[J]. J Polym Sci Part APolym Chem., 2003, 41(15): 2 297-2 303.
    [50]Yeo Sang Young, Lee Hoon Joo, Jeong Sung Hoon. Preparation of nanocomposite fibers for permanent antibacterial effect[J]. Journal of Materials Science, 2003, (38): 2 143 -2 147.
    [51]Lee H. J., Yeo S. Y., Jeong S. H.. Antibacterial effect of nanosized silver colloidal solution on textile fabrics[J]. JOURNAL OF MATERIALS SCIENCE, 2003, (38): 2 199-2 204.
    [52]Lim Sang-Hoon, Hudson Samuel M.Synthesis and antimicrobial activity of a water-soluble chitosan derivative with a fiber-reactive group[J]. Carbohydr Res., 2004, 339(2): 313-319.
    [53]Milena Ignatova, Kirilka Starbova, Nadya Markova, et al. Electrospun nano-fibre mats with antibacterial properties from quaternised chitosan and poly(vinyl alcohol) [J]. Carbohydrate Research. 2006 , (341): 2 098-2 107.
    [54]秦益民. Cupron铜基抗菌纤维的性能和应用[J].纺织学报, 2009, 30(12): 134-136.
    [55]李梅,王庆瑞.抗菌材料的发展及其应用[J].化工新型材料, 1998, 26(5): 8-11.
    [56]黄汉生.日本抗菌、防霉剂的开发与应用近况[J].现代化工, 1997, 18(11): 40-42.
    [57]张环,刘敏江.国内外塑料用抗菌剂的发展状况[J].化工新型材料, 2001, 29(10): 4-7.
    [58]山本则幸,加藤秀橱.无机系抗菌剂の特长とその应用[J]. Antibait Antifung Agents, 1998, 26(10): 428-434.
    [59]柳清菊,王毓德,赵景畅等.强力安全的无机抗菌功能材料[J].无机材料学报, 2002, 17(1): 73-78.
    [60]Osamu Yamamoto, Jun Sawai, Tadashi Sasamoto. Change in antibacterial characteristics with doping amount of ZnO in MgO–ZnO solid solution[J]. International Journal of Inorganic Materials, 2000, (2): 451-454.
    [61]Kawashita M, Tsuneyama S, Miyaji F, et al. Antibacterial silver-containing silica glass prepared by sol–gel method[J]. Biomaterials, 2000, 21: 393-398.
    [62]Imazato S, Torii Y, Takatsuka T, et al. Bactericidal effect of dentin primer containing antibacterial monomer methacryloyloxydodecylpyridinium bromide (MDPB) against bacteria in human carious dentin[J]. J Oral Rehabil, 2001, 28: 314-319.
    [63]Hong I. T., Koo C. H.. Antibacterial properties, corrosion resistance and mechanical properties of Cu-modified SUS 304 stainless steel[J]. Materials Science and Engineering A, 2005, 393(1): 213-222.
    [64]Jiang Shan, Wang Li, Yu Haojie, et al. Preparation of crosslinked polystyrenes with quaternary ammonium and their antibacterial behavior[J]. Reactive & Functional Polymers, 2005, 62: 209-213.
    [65]侯文生.载银4A沸石抗菌剂及载银锌纳米SiO2抗菌纤维的制备、结构与性能的研究[D].太原,太原理工大学, 2007, 6.
    [66]李毕忠.抗菌剂应用的最新进展[J].精细与专用化学品, 2004, 20 (12): 1-2.
    [67]冯乃谦,严建华.银型无机抗菌剂的发展及其应用[J].材料导报, 1998, 12(2): 1-4.
    [68]黄占杰.无机抗菌剂的发展及应用[J].材料导报, 1999, 13(2): 35-37.
    [69]Rungby J, Ellermann. ES, Danscher G. Effects of selenium cultured macrophages[J]. Arch Toxicol, 1987, 61: 40-45.
    [70]Webster D. A., Spadaro A. J., Becker R. U., et al. Silver and trentment of chronic ostermyelitis[J]. Clin Orthop Rel Res, 1981, 161: 105-114.
    [71]Vimala K., Murali Mohan Y., Samba Sivudu K., et al. Fabrication of porous chitosan films impregnated with silver nanoparticles: A facile approach for superior antibacterial application [J]. Colloids and Surfaces B: Biointerfaces, 2010, 76: 248-258.
    [72]Wei Dongwei, Sun Wuyong, Qian Weiping, et al. The synthesis of chitosan-based silver nanoparticles and their antibacterial activity [J]. Carbohydrate Research, 2009, 344: 2375–2382.
    [73]Shahab Ansari Amin, Mohammad Pazouki, Azarmidokht Hosseinnia. Synthesis of TiO2-Agnanocomposite with sol-gel method and investigation of its antibacterial activity against E. coli [J]. Powder Technology, 2009, 196: 241-245.
    [74]Baoe Li, Xuanyong Liu, Fanhao Meng, et al. Preparation and antibacterial properties of plasma sprayed nano-titania/silver coatings [J]. Materials Chemistry and Physics, 2009, 118: 99-104.
    [75]戴晋明,侯文生,魏丽乔等.载银锌4A沸石抗菌剂抗变色性能的研究[J].无机材料学报, 2008, 23(5): 1011-1015.
    [76]Jia Husheng, Hou Wensheng, Wei Liqiao, et al. The structures and antibacterial properties of nano-SiO2 supported silver/zinc-silver materials [J]. Dental Materials, 2008, 24: 244-249.
    [77]Xu Bingshe, Hou Wensheng, Wang Shuhua, et al. Study on the Heat Resistant Property of Ag/4A Antibacterial Agent [J]. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH (PART B), 2008, 84B (2): 394-399.
    [78]Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E.coli as a model for gram-negative bacteria [J]. J Colloid Interface, 2007, 275: 177-182.
    [79]王维清,冯启明,袁昌来.一种新型无机抗菌剂载体——麦饭石[J].中国矿业, 2005, 14(1): 41-44.
    [80]VernèE., Nunzio S.Di, Bosetti M., et al. Surface characterization of silver-doped bioactive glass[J]. Biomaterials, 2005, 26 (25): 5 111–5 119.
    [81]Prudencio W. R. Osinaga, Rosa Helena M. Grande, Rafael Y. Ballester, et al. Zinc sulfate addition to glass-ionomer-based cements: influence on physical and antibacterial properties, zinc and fluoride release[J]. Dental Materials, 2003, 19(3): 212-217.
    [82]侯文生,魏丽乔,戴晋明等.载银4A沸石抗菌剂的制备及其抗菌性能的研究[J].无机材料学报, 2005, 20(4): 907-913.
    [83]邓平晔,白新德,叶彬等.载银抗菌功能膜的制备和研究[J].稀有金属材料与工程, 2004, 33(12): 1278-1282.
    [84]Ayben Top, Semraülkü. Silver, zinc, and copper exchange in a Na-clinoptilolite and resulting effect on antibacterial activity[J]. Applied Clay Science, 2004, (27): 13-19.
    [85]叶彬,崔凯,冯庆玲等.载银氟磷灰石抗菌剂的制备和耐高温性能研究[J].无机材料学报, 2003, 18(2): 485-489.
    [86]Matsumura Y, Yoshikata K, Kunisaki S I, et al. Mode of bactericidal action of silver zeolite and itscomparison with that of silver nitrate [J]. Appl Environ Microbiol, 2003, 69 (7): 4278-4281.
    [87]佘文君,张富强. 6种纳米级载银无机抗菌剂对口腔病原菌的抗菌活性比较[J].上海口腔医学, 2003, 12(5): 356-358.
    [88]Yoshihiro Inoue, Masanobu Hoshino, Hiroo Takahashi, et al. Bactericidal activity of Ag-zeolite mediated by reactive oxygen species under aerated conditions [J]. Journal of Inorganic Biochemistry, 2002, 92 (1): 37-42.
    [89]朱伟员.银、铜离子双组份无机抗菌剂[J].化工新型材料, 2001, 29 (10): 37-38, 45.
    [90]Feng Q L, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus [J]. J Biomed Mater, 2000, 52(4): 662-668.
    [91]于会文,王君,孙宝函等.具有代表性的无机抗菌剂及其特征[J].辽宁化工, 2000, 29(4): 208-211.
    [92]Yoshida K, Tanagawa M, Matsumoto S, et al. Antibacterial activity of resin composites with silver-containing material[J]. Eur J Oral Sci., 1999, 107: 290-296.
    [93]Syafiuddin T., Hisamitsu H., Toko T., et al. In vitro inhibition of caries around a resin composite restoration containing antibacterial filler[J]. Biomaterials, 1997, 18(15): 1 051-1 057.
    [94]Kohji Yamamoto, Shizue Ohashi, Masao Aono, et al. Antibacterial activity of silver ions implanted in SiO2 filler on oral streptococci[J]. Dental Materials, 1996, 12(4): 227-229.
    [95]S Iijima. Helical microtubules of graphitic carbon[J]. Narure, 1991, 354(6348): 56-58.
    [96]S Iijima, T Iehihashi. Single-shell carbon nanotubes of l-nm diameter[J]. Narure, 1993, 363: 603-605.
    [97]米万良,林跃生,张宝泉等.取向碳纳米管制备方法及其应用进展[J].化学进展, 2004, 16(6): 843-848.
    [98]胡文平,刘云圻,曾鹏举.纳米碳管[J].化学通报, 2000, (2): 7-11.
    [99]林明.多壁碳纳米管的功能化及其与环氧树脂复合研究[D].长沙,湖南大学, 2007, 6.
    [100]高尧.碳纳米管的功能化及其在聚合物中的应用[D].成都,西南交通大学, 2008.
    [101]Zhang X F, Zhang X B, Tendeloo V J, et al. Carbon nano-tubes: their formation process and observation by electron microscopy[J]. Cryst Growth, 1993, 130: 368-382.
    [102]Colbert P T,Zhang J,Mcclure S M,et al. Growth and sintering of fullerence nanotubes[J]. Science, 1994, 266: 1 218-1 233.
    [103]陈晓红.热解法制备气相生长碳纤维和纳米碳管的研究[D].北京,化工大学, 1998.
    [104]Endo M, Takeuchi K, Kobori K, et al. Pyrolytic carbon nanotubes from vapor-grown carbon fibers[J]. Carbon, 1995, 33(7): 873-880.
    [105]Guo T, Nikolaev P, Thess A, et al. Catalytic growth of single-walled nanotubes by laser vaporization[J]. Chemical physics letters, 1995, 243: 49-54.
    [106]Zhang Haiyan, Ding Yu, Wu Chunyan, et al. The effect of laser power on the formation of carbon nanotubes prepared in CO2 continuous wave laser ablation at room temperature[J]. Physics B, 2003, 325: 224-229.
    [107]Ren Z F, Huang Z P, Wu J W, et al. Synthesis of large arrays of well-aligned carbon nanotubes on glass[J]. Science, 1998, 282: 1 105-1 107.
    [108]Biro L P, Mark G I, Gyulai J, et al. AFM and STM investigation of carbon nanotubes produced by high energy ion irradiation of graphite[J]. Nuclear instruments and methods in physics research B, 1999, 147: 142-147.
    [109]Chernozatonskii L A, Kosakovskaja I J, Fedorov E A, et al. New carbon tubelite-orderd film structure of multi-layer nanotube[J]s. Physics Letters A, 1995, 197(1): 40-43.
    [110]Qian W Z, Liu T, Wei F, Wang Z W, et al. Carbon nanotubes containing iron and molybdenum particles as a catalyst for methane decomposition[J]. Carbon, 2003, 41(4): 846-848.
    [111]Laplaze D, Bernier P, Maser W K, et al. Carbon nanotubes: The solar approach[J]. Carbon, 1998, 36(5/6): 685-688.
    [112]Anglaret Eric, Bendiab Nedjma, Guillard Tony, et al. Raman characterization of single wall carbon nanotubes prepared by solar energy route[J]. Carbon, 1998, 36(12): 1 815-1 820.
    [113]Alvarez L, Guillard T, Sauvajol J L, et al. Growth mechanisms and diameter evolution of single wall carbon nanotubes[J]. Chemical Physics Letters, 2001, 342: 7-14.
    [114]Hsu W K, Terrones M, Hare J P, et al. Electrolytic formation of carbon nanostructures[J]. Chemical Physics Letters, 1996, 263: 161-166.
    [115]Bai J B, Hamon A L, Marraud A, et al. Synthesis of SWNTs and MWNTs by a molten salt(NaCl)method[J]. Chemical Physics Letters, 2002, 365: 184-188.
    [116]Randall L, Wal V. Flame synthesis of substrate-supported metal-catalyzed carbon nanotubes[J]. Chemical Physics Letters, 2000, 324: 217-223.
    [117]Randall L, Wal V. Flame synthesis of Ni-catalyzed nanofibers[J]. Carbon, 2002, 40: 2 101-2 107.
    [118]陈易明,张海燕,朱清锋等.取向碳纳米管阵列的等离子体复合化学气相沉积法制备[J].红外与毫米波学报, 2008, 27(6): 470-474.
    [119]魏任重,沈友良,李凤仪.碳纳米管管径的可控性研究[J].材料科学与工艺, 2008,16(6):830-834.
    [120]张崇辉,杨百愚,朱长军等.应用模板法在硅基底上生长碳纳米管阵列[J].纺织高校基础科学学报, 2008, 21(4): 501-504.
    [121]于晓丽,杨小勇,叶萍等.乙炔/空气预混火焰法合成多壁碳纳米管的实验研究[J].工热物理学报, 2009, 30(1): 165-168.
    [122]冉茂飞,储伟,文婕等.助剂铬对Ni/MgO催化剂CVD法制备碳纳米管的促进作用[J].高等学校化学学报, 2009, 30(2): 231-235.
    [123]杜亮,魏忠,王晓川等.旋涂分布催化剂制备直立单壁碳纳米管[J].精细化工, 2009, 26(3): 218-222, 251.
    [124]黄佳琦,张强,魏飞.螺旋状碳纳米管[J].化学进展, 2009, 41(4): 637-642.
    [125]刘远超,孙保民,丁兆勇等. V型热解火焰合成碳纳米管的催化剂选择与分析[J].工程热物理学报, 2009, 30(4): 703-706.
    [126]孙晓刚.碳纳米管的特性及应用[J].中国粉体技术, 2001, (7): 29-33
    [127]朴玲钰,李永丹,碳纳米管的研究进展[J].化工进展, 2001, 20(11): 18-22.
    [128]Berber S, KwonYoung Kyum, Tomanek D. Unusually high thermal conductivity of carbon nanotubes[J]. Phys Rev Lett, 2000, 84: 4 613-4 619.
    [129]张娟玲,崔屾.碳纳米管/聚合物复合材料[J].化学进展, 2006, 18(10): 1 313-1 321.
    [130]孙晓刚,曾效舒,程国安等.碳纳米管的特性及应用[J].中国粉体技术, 2001, 7(6): 29-33.
    [131]崔云康;王博;张晓兵等.碳纳米管场发射显示器件(CNT-FEDs)封接关键技术的研究[J].电子器件, 2006, 29(4): 1 004-1 006.
    [132]曹伟,宋雪梅,王波等.碳纳米管研究进展[J].材料导报, 2007, 21(3): 77-78.
    [133]梁逵,陈艾,周旺等.碳纳米管作为超大容量离子电容器电极的研究[J].电子学报, 2002, 30(5): 621-623.
    [134]马仁志,魏秉庆,徐才录等.基于碳纳米管的超级电容器[J].中国科学(E辑), 2000, 30(2): 112-116.
    [135]李志杰,梁奇,陈栋梁等.碳纳米管和石墨在电化学嵌锂过程中的协同效应[J].应用化学, 2001, 18(4): 269-271.
    [136]聂海瑜.碳纳米管的应用研究进展[J].化学工业与工程技术, 2004, 25(5): 34-37.
    [137]曹茂盛,高正娟,朱静.CNTs/Polyester复合材料的微波吸收特性研究[J].材料工程, 2003, 47, (2): 34-36.
    [138]刘云芳,沈增民,于建民.活化碳纳米管的孔结构及微波吸收性能的研究[J].炭素, 2005, 27(1): 3-6.
    [139]Ajayan P M, Stephan O, Colliex C, et al. Aligned carbon nanotubes formed by cutting a polymer resin-nanotube composite[J]. Science, 1994, 265:1 212-1 214.
    [140]Kim Y A, Hayashi T, Fuki Y, et al. Effect of ball milling on morphology of cap-stacked carbon nanotubes[J]. Chem Phys Lett, 2002, 355(3): 279-284.
    [141]Kónya I Z, Vesselenyi, Niesz K, et al. Large scale production of short functionalized carbon nanotubes[J]. Chemical Physics Letters. 2002, 360: 429-435.
    [142]Chen J, Dyer M J, Yu M F. Cyclodextrin-mediated soft cuting of single-walled carbon nanotubes[J]. Journal of the American Chemical Society, 2001, 123(25): 6201-6202.
    [143]Koshio A,Yudasaka M,Iijima S.Thermal degradation of ragged single-wall carbon nanotubes produced by polymer-assisted ultrasonicafion[J].Chemical Physcs Leters, 2001, 341(5-6): 461-466.
    [144]Liu J, Rinzler A G,Dai H, et al. Large-scale purification of single-wall carbon nanotubes: process, product,and characterization[J]. Science, 1998, 280: 1253-1256.
    [145]陈传盛,刘天贵,陈小华等.碳纳米管的表面修饰及其应用[J].机械工程材料, 2007, 31(11): 1-5.
    [146]万淼,黄新堂.低速球磨对多壁碳纳米管球磨特性的影响研究[J].炭素技术, 2005, 24(3): 20-23.
    [147]徐吉勇,范旭,孙唯.机械球磨对碳纳米管电化学性能的影响[J].广东化工, 2008, 35(9): 14-17.
    [148]庞秋,谷万里等.机械球磨法制备CNTs/Al复合粉末的工艺过程研究[J].材料热处理技术, 2009, 38(4): 46-48.
    [149]Chen S M,Shen W M,Wu G Z,et al.A new approach to the functionalization of single-walled carbon nanotubes with both alkyl and carboxyl groups[J]. Chemical Physics Letters, 2005, 402: 312-317.
    [150]唐国强,梁旦等.多壁碳纳米管掺溴及表面高分子修饰的研究[J].华东师范大学学报(自然科学版), 2008, 5: 84-89.
    [151]王国建,刘琳,许乾慰.超支化聚对氯甲基苯乙烯修饰碳纳米管表面的研究[J].高等学校化学学报, 2007, 28(1): 164-168.
    [152]苏小红,熊传溪等.硅烷偶联剂对单壁碳纳米管的化学修饰[J].化工新型材料, 2007, 35(3): 40-44.
    [153]刘爱红,孙康宁等.壳聚糖对碳纳米管的表面修饰[J].硅酸盐学报, 2008, 36(2): 163-165.
    [154]邱军,王国建,尚婧.聚乙烯基吡咯烷酮修饰多壁碳纳米管的研究[J].高分子学报, 2007, (4): 327-331.
    [155]Kai Yang, Mingyuan Gu, Yiping Guo, et al. Effects of carbon nanotube functionalization on the Mechanical and thermal properties of epoxy composites[J]. CARBON, 2009, 47: 1 723-1 737.
    [156]Mickael Castrol,Jianbo Lu,Stephane Bruzaud etc. Carbon nanotubes/poly (e-caprolactone) composite vapour sensors[J]. CARBON . 2009,47:1930-1942.
    [157]黄娟,郑婵等.表面修饰纳米碳管复合二氧化硅凝胶玻璃的制备研究[J].光谱学与光谱分析, 2009, 29(1): 52-55.
    [158]许兰兰,赵鸿斌等.氨基卟啉共价化学修饰多壁碳纳米管[J].化学学报. 2008, 66(10): 1 228-1 234.
    [159]吴小利,岳涛等.碳纳米管的表面修饰及FTIR, Raman和XPS光谱表征[J].光谱学与光谱分析, 2005, 25(10): 1 595-1 598.
    [160]陈小华,颜永红,张高明等. Ni-Co合金包覆碳纳米管的研究[J].微细加工技术, 1999, (2): 17-22
    [161]李直蔓,康玉清等.碳纳米管的分散与表面化学修饰[J].中国表面工程, 2006, 19(4): 36-39.
    [162]郭洪范,朱红等.聚噻吩/碳纳米管复合材料的制备与性能研究[J].功能材料, 2007, 38(9): 1 496-1 506.
    [163]Bubert H,Haiber S,Brandl W,et al.Characterization of the uppermost layer of plasma-treated carbon nanotubes[J]. Diamond and Related Materials, 2003, 12(3): 811-815.
    [164]郭金学,李宇国等.多壁碳纳米管γ辐照后的化学修饰[J].辐射研究与辐射工艺学报. 2005, 23(3): 155-158.
    [165]李宏伟,高绪珊等.聚丙烯接枝多壁碳纳米管的结构表征[J].四川大学学报(工程科学版), 2006, 38(6): 88-91.
    [166]李学锋,官文超等.紫外光辐照ABS纳米管的研究[J].合成树脂及期料, 2003, 3(20): 1-4.
    [167]Haggenmueller R, Gmommans H H, Rinzler A G, et al. Aligned single-wall carbon nanotubes in composites by melt processing methods[J]. Chemical Physics Letters, 2000, 330: 219-225.
    [168]Satish K, Harit D, Mohan S, et al. Fibers from polypropylene/nano carbon fiber composites[J]. Polymer, 2002, 43(5): 1 701-1 703.
    [169]Jin ZX, Pramoda KP,Xu GQ, et al. Dynamic mechanical behavior of melt-processed multi-walled carbon nanotube/poly (methyl methacrylate) composites[J]. Chem Phy Lett, 2001, 337: 43-47.
    [170]Potschke P, Bhattacharyya A R, Janke A. Melt mixing of polycarbonate with multiwalled carbon nanotubes: microscopic studies on the state of dispersion[J]. Eur Polym J, 2004, 40(1): 137-148.
    [171]陈西良,付海英,张聪. MWNTs/HDPE的导电性和流变学性质[J].高分子材料科学与工程, 2008, 24(1): 87-90.
    [172]祝芳南,曾效舒,周勇.聚碳酸酯/多壁碳纳米管复合材料的制备和研究[J].塑料工业, 2008, 36(8): 17-19, 29.
    [173]祝芳南,曾效舒,李梦华等.聚丙烯/多壁碳纳米管复合材料的制备及电性能研究[J].塑料, 2008, 37(3): 64-66, 86.
    [174]Shaffer M S P, Alan H W. Towards the production of large-scale aligned carbon nanotubes[J]. Adv Mater, 1999, 11(11): 937-655.
    [175]Kaushal R, Nachiket R R, Kim D Y, et al. Enzyme-Polymer Single Walled Carbon Nanotube Composites as Biocatalytic Films[J]. Nano Letters, 2003, 3(6): 829-832.
    [176]Musa I, Baxendale M, Amaratunga G A J, et al. Properties of regioregular poly (3-octylthiophene)/multi-wall carbon nanotube composites[J]. Synthetic Metals, 1999, 102(1-3): 1 250-1 250
    [177]Curran S, Davey A P, Coleman J, et al. Evolution and evaluation of the Polymer/Nanotube composite[J]. Syn Mater, 1999, 103: 2559-2562.
    [178]Cooper C A, Young R J, Halsall M, et al. Investigation into the deformation of carbon nanotubes and their composites through the use of raman spectroscopy[J]. Compos: Part A, 2001, 32: 401-411.
    [179]王川,夏延致,邢哲等.聚氨酯/多壁碳纳米管复合薄膜的制备及其热稳定性研究[J].聚氨酯工业, 2009, 24(1): 6-9.
    [180]Harry J B, Francisco P, O’Rear E A, et al. SWNT fllled thermoplastic and elastomeric compositesprepared by miniemulsion polymerization[J]. Nano Letters, 2002, 2 (8): 797-802.
    [181]Andrews R, Jacques D, Rao A M, et al. Nanotube composite carbon fibers[J]. Applied Physics Letters, 1999, 75(9): 1329-1331.
    [182]Kay H A, Kwan K J, Jeong K H, et al. High-Capacitance Supercapacitor Using a Nanocomposite Electrode of Single-Walled Carbon Nanotube and Polypyrrole[J]. Nano Letters, 2002, 149(8) A: 1 058-1 062.
    [183]张靖宗,纪全,马晓梅等. MWNTs/PET纳米复合材料的研究[J].科学技术与工程, 2009, 9(8): 2 245-2 248, 2 259.
    [184]余丁山.碳纳米管基复合材料的制备及表征[D].长沙,武汉理工大学, 2005. 5.
    [185]D Qian, E C Kiekey, R Andrews, et al. Load transfer and deformation mechanisms in carbon nanotube-Polystyrene composites[J]. Appl Phys Lett, 2000, 76(20): 2 868-2 870.
    [186]R Andrews, D Jacques, A M Rao, et al. Nanotube composite carbon fibers[J]. Appl Phys Lett, 1999, 75: 1 329-1 331.
    [187]J P Salvetat, G A D Briggs, J M Bonard, et al. Elastic and shear moduli of single-walled carbon nanotube ropes[J]. Phys Rev Lett, 1999, 82(5): 944-947.
    [188]贾志杰,王正元,徐才录等.原位法制取碳纳米管/尼龙-6复合材料[J].清华大学学报(自然科学版), 2000, 40 (4): 14-16
    [189]贾志杰,王正元,徐才录.碳纳米管的加入对PMMA强度和导电性能的影响[J].材料开发与应用, 1998, 13 (6): 22-26.
    [190]J Fan, M Wan, D Zhu, et al. Synthesis,characterizations and physical properties of carbon nanotubes coated by conducting Polypyrrole[J]. J AppI Poly Sci, 1999, 74: 2 605-2 610.
    [191]J Sandler, M S P Shaffer, T Prasse, et al. Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties[J]. Polymer, 1999, 40(21): 5 967-5 971.
    [192]李宏建,彭景翠,陈小华等.填充碳纳米管/石墨的复合型电磁波屏蔽膜[J].化学物理学报, 2001, 14 (2): 211-215
    [193]C A Grimes, C Mungle, D. Kouzoudis, et al. The 500 MHz to 5.50 GHz complex permittivity spectra of single-wall carbon nanoutbe-loaded Polymer composties[J]. Chem Phy Lett, 2000, 319: 460-464.
    [194]Hiroki Ago, Klaus Petritsch, Milo S P Shaffer, et al. Composites of carbon nanotubes and conjugatedpolymers for Photovoltiaic devices[J]. Adv Mater, 1999, 11: 1 281-1 285.
    [195]B Z Tang, H Xu. Preparation, alignment and optical properties of soluble Poly (Pheny-lacetylene) wrapped carbon nanotubes[J]. Macromolecules, 1999, 32: 2 569-2 576
    [196]Curran S A, Ajayan P M, Blau W J, et al. A Composite from Poly (m-phenylenevinylene-co-2, 5-dioctoxy–p-phenylenevinylene) and Carbon Nanotubes: A Novel Material for Molecular Optoelectronics [J]. Adv Mater, 1998, 10 (14): 1 091-1 093.
    [197]Coleman J N, Dalton A B, Curran S, et al. Phase separation of carbon nanotubes and turbstratic graphite using a functional organic polymer[J]. Adv Mater, 2000, 12(3): 213-216.
    [198]Jurewicz K, Delpeux S, Bertagna V, et al. Supercapacitors from nanotubes Polypyrrole composites[J]. Chem Phys Lett, 2001, 347: 36-40.
    [199]Frackowiak E, Jurewicz K, Delpeux S, et al. Nanotubular materials for supercapacitor [J]. J Power Sources, 2001, 97-98: 822-825.
    [200]P?tschke Petra, Fornes T D, Paul D R. Rheological Behavior of Multiwalled Carbon Nanotube/Polycarbonate Composites [J]. Polymer, 2002, 43 (11): 3 247-3 255.
    [201]Lourie O, Wagner H D. Evidence of Stress Transfer and Formation of Fracture Clusters in Carbon Nonotube2based Composites [J]. Composites Science and Technology, 1999, 59 (7): 975-977.
    [202]Sternstein S, Zhu A J. Reinforcement Mechanism of Nanofilled PolymerMelts as Elucidated by Nonlinear Viscoelastic Behavior [J]. Macromolecules, 2002, 35 (19): 7 262-7 263.
    [203]Cooper C A, Young R J, Halsall M. Investigation into the Deformation of Carbon Nanotubes and Their Composites through the Use of Raman Spectroscopy [J]. Composites: Part A, 2001, 32 (3): 401-411.
    [204]Haffenmueller R, Gommans H H, Rinzler A G. Aligned Single Wall Carbon Nanotubes in Composites by Melt Processing Methods[J]. Chemical Physics Letters, 2000, 330 (3-4): 219-225.
    [205]Sreekumar Thaliyil V, Liu Tao, et al. Polyacrylonitrile Single Walled Carbon Nanotube Composite Fibers [J]. Advanced Materials, 2004, 16 (1): 58-61.
    [206]Bhattacharyya A R, Sreekumar T V, Liu T, et al. Crystallization and Orientation Studies in Polypropylene /Single Wall Carbon Nanotube Composite [J]. Polymer, 2003, 44 (8): 2 373-2 377.
    [1]Durgun E., Dag S., Bagci M. V., et a1. Systematic study of adsortion of single atoms on a carbon nanotube[J]. Phys. Rev. B, 2003, 6720: 1 401-1 404.
    [2]Dai H. J.. Carbon nanotubes: opportunities and challenges[J]. Surf. ace Science, 2002, 500: 2l8-241.
    [3]Kruger P., Rakotomahe Vitra A., Parlebas J., et a1. Magnetism of epitaxial 3d-transition-metal monolayer on graphite[J]. Phys. ReV. B, 1998, 57: 5 276-5 280.
    [4]Ma Q., Rosenberg A.. Interaction of Ti with the (0001) surface of highly oriented pyrolytic graphite[J]. Phys. Rev. B, l999, 60: 2 827-2 832.
    [5]Ma Q., Rosenberg R., Interaction of Al clusters with the (0001) surface of highly oriented pyrolyric graphite[J]. Surf. Sci., 1997, 39l: 1 224-1 229.
    [6]Ohno T. R., Chen Y., Vey Hal. S., et a1. C60 bonding and energy-level alignment on metal and semiconductor surfaces [J]. Phys. Rev. B, l99l, 44: l3 747-13 755.
    [7]Vijayalrishnan V., santra A., seshadri R., et a1. A comparative study of the interaction of nickel clusters with bucle minister fullerene C60 and graphite [J]. Surface Sci., 1992, 262: L 87-90.
    [8]Menon M., Andrjotis A., Froudakis G., Curvature dependence of metal catalyst atom interaction with carbon nanotubes walls[J]. Chem. Phys. Lett., 2000, 320: 425-434.
    [9]Gao C., Jin Y. Z.. Multihydroxy polymer-functionalized carbon nanotubes: synthesis, derivatization, and metal loading[J]. Macromolecules, 2005, 38: 8 634-8 648.
    [10]Jiang K., Eitan A., Schadler L.S.. Selective attachment of gold nanoparticles to nitrogen-doped carbon nanotubes[J]. Nano Lett, 2003, 3: 275-277.
    [11]Tsang S. C., Chert Y. K., Harris P. J. F., et a1. A simple chemical method of opening and filling carbon nanotubes[J]. Nature, 1994, 372: 159-162.
    [12]Louie S. G., Froyen S., Cohen M. L.. Nonlinear ionic pseudopotentials in spin-density-functional calculations[J]. Phys. Rev. B, 1982, 26: 1738-1742.
    [13]Hamann D. R., Schluter M., Chiang C.. Norm-conserving pseudopotentials[J]. Phys. Rev. Lett., 1979, 43: 1 494-1 497.
    [14]李正中.固体理论[M].北京:高等教育出版社, 2002,第二版, 136.
    [15]Delley B.. Analytic energy derivatives in the numerical local-density-functional approach [J]. J. Chem. Phys., 1991, 94: 7 245-7 250.
    [16]Fletcher R.. Practical Methods of Optimization[M]. New York, Wiley, 1980, Vol.1, 235.
    [1]欧阳玉,彭景翠,王慧等.碳纳米管的稳定性研究[J].物理学报, 2008, 57(1): 615-620.
    [2]Srivastava A., Srivastava O. N., Talapatra S., et al. Carbon nanotube filters [J]. Nature Materials LETTERS, Published online: 1 August 2004, doi: 10.1038/nmat1192.
    [3]Krishna V., Pumprueg S., Lee S.-H., et al. Photocatalytic Disinfection With Itanium Dioxide Coated Multi-Wall Carbon Nanotubes[J]. Process Safety and Environmental Protection, 2005, 83(B4): 393-397.
    [4]Akhavan O., Abdolahad M., Abdi Y., et al. Synthesis of titania/carbon nanotube heterojunction arrays for photoinactivation of E. coli in visible light irradiation [J]. CARBON, 2009, (47): 3280-3287.
    [5]刘桐,唐慧琴,张学华等.镀铜碳纳米管的抗菌性研究[J].透析与人工器官, 2006, 17(4): 1-5.
    [6]刘桐,唐慧琴,张学华等.镀银碳纳米管的抗菌性研究[J].功能材料, 2007, 38(5): 802-805.
    [7]Jun Sawai. Inorganic Antibacterial Agents[J]. Inorganic Materials, 1997, (4): 156-162.
    [8]尤玉静,瞿美臻,周固民等.液相氧化碳纳米管的氧化剂选择[J].合成化学, 2006, 14(5): 446-449.
    [9]周爱林,王红娟,傅小波等.酸氧化处理对多壁碳纳米管表面基团的影响[J].化工新型材料, 2005, 35(7): 37-39.
    [10]Valery N. Khabashesku, et al. Chemical modification of carbon nanotubes [J]. Mendeleev Commun, 2006, 16(2): 61-66.
    [10]Peng-Xiang Hou, Chang Liu, Hui-Ming Cheng. Purification of carbon nanotubes[J]. CARBON, 2008, 46: 2 003-2 025.
    [12]Li Y H, Zhu Y Q, Zhao Y M, et al. Different morphologies of carbon nanotubes effect on the lead removal from aqueous solution [J]. Diam Relat Mater, 2006, 15: 90-94.
    [1]唐增荣.抗菌剂JNS-2000在纺织品上的应用研究[J].印染助剂, 2002, 4: 23-26.
    [2]严玉蓉.聚丙烯超细粉体多功能共混纤维的研究[D].广州:华南理工大学, 2003.
    [3]张军译.服装卫生学[M].北京:轻工业出版社, 1987: 190-191.
    [4]何中琴译.棉纺织品的耐久性防臭整理[J].印染译丛, 1997, 2: 43-44.
    [5]李艳.纳米无机抗菌剂及抗菌织物研究[D].西安:西北大学, 2002.
    [6]王广阔,马建伟,杨英贤.纳米抗菌纺织品的制备技术及其应用前景[J].纺织科技进展, 2004, 6: 1-3.
    [7]李燕飞,安玉山.抗菌剂和抗菌织物加工方法及展望[J].山东纺织科技, 2003, (6): 32-33.
    [8]赵家祥.抑菌织物发展综述[J].产业用纺织品, 2000, (8): 2-3.
    [9]王建平.抗菌纤维的最新进展[J].针织工业, 2000, 5: 27-29.
    [10]闵洁.无机抗菌剂及其纤维应用[J].合成纤维, 2002, 31(2): 21-24.
    [11]党喃燕,张淑芬,杨锦宗.四乙烯五胺交联染料在羊毛上的吸附及染色性能研究[J].大连理工大学学报, 2009, 49(6): 793-799.
    [12]牛梅.抗菌羊毛纤维制备及其结构与性能的研究[D].太原:太原理工大学, 2009.
    [13]牛梅,刘旭光,邱丽,戴晋明,魏丽乔,许并社.不同制备工艺对抗菌羊毛纤维的抗菌性能影响[J].北京服装学院学报, 2009, 29(2):36-40.
    [14] Wojciechowska E., W?ochowicz A., Wese?ucha-Birczyńska A.. Application of Fourier-transform infrared and Ramans pectroscopy to study degradation of the wool fiber keratin[J]. J Mol Struct, 1999, 511–512: 307–318.
    [15] Li W. X., Liao Q.. Study on the spectroscopic behavior of super-fine wool powder by FT-IR and FT-Roman spectroscopy[J]. J Anal Sci , 2007, 23(5): 519-522.
    [16] Wojciechowska E., Rom M., W?ochowicz A., et al. The use of Fourier transform-infrared (FTIR) and Raman spectroscopy (FTR) for the investigation of structural changes in wool fibre keratin after enzymatic treatment[J]. J Mol Struct, 2004, 704(1-3): 315–321.
    [17] Jordi F., Lourdes C., Meritxell M., et al. X-ray diffraction analysis ofinternal wool lipids[J]. Chem Phys Lipids, 2004,130(2): 159–166.
    [18] Aluigi A., Zoccola M., Vineis C., et al. Study on the structure and properties of wool keratin regenerated from formic acid[J]. Int J Biol Macromol, 2007, 41(3): 266–273.
    [19] Shao J. Z., Liu J. Q., Zheng J. H., et al. FTIR spectroscopic study of the wool surface modification in permonosulphate/sulphite process[J]. Textile Res J ,2001, 22(5): 285-288.
    [20]姚穆,周锦芳,黄淑珍等.纺织材料学[M].北京:中国纺织出版社, 2004: 125-135.
    [21]高绪珊,吴大诚.纤维应用物理学[M].北京:中国纺织出版社, 2001: 49.
    [22] Popescu C., Segal E., Iditoiu C.. A kinetic model for the thermal decomposition of wool [J]. Thermochimica Acta, 1995, (256): 419-427.
    [23] Xu W. L., Cui W. G., Li W. B., et al. Development and characterizations of super-fine wool powder [J]. Powder Technol, 2004, (140): 136-140.
    [24]李芝,刘卉敏,武伟红等.阻燃羊毛纤维的热性能研究[J].河北大学学报(自然科学版), 2005, 25(4): 386-390.
    [25]孙建红,徐建中,孙建萍,屈红强,陈灵智. SiO2溶胶对羊毛的阻燃改性及热降解[J].毛纺科技, 2009, 37(7): 21-24.
    [1]李毕忠.无机纳米抗菌PET服用纤维的研制[J].纺织导报, 2002, 2: 37-38.
    [2]孟庆夫,姜立鹏,胡翱翔等. PA6抗菌纤维的研究与开发[J].合成纤维工业, 2008, 31(5): 50-52.
    [3]常桂霞,赵焕金.锦纶抗菌纤维的研制[J].纺织科学研究, 2007, 4: 9-11.
    [4]吴建华.抗菌纤维及其织物的加工技术[J].合成纤维, 2006, (9): 22-25.
    [5]谭绍早.无毒载银抗菌母粒的制备及在打孔膜的应用[J].合成纤维, 2006, 4: 17-20.
    [6]李毕忠.抗菌纤维及抗菌织物的研制与开发[J].纺织科学研究, 2003 , 14 (1):13-16.
    [7]谢雪琴. AMF抗菌纤维及其应用[J].合成纤维, 2000, 29 (4): 34-36.
    [8]侯文生.载银4A沸石抗菌剂及载银锌纳米SiO2抗菌纤维的制备、结构与性能的研究[D].太原,太原理工大学, 2007, 6.
    [1]周轩榕,卢滇楠,邵曼君等.表面接枝季铵盐型高分子材料抗菌过程特性研究[J].高等学校化学学报, 2003, 23(6): 1 131-1 135.
    [2]卢滇楠,周轩榕,邢晓东等.表面接枝季铵盐型聚合物的纤维素纤维——灭菌机理研究[J].高分子学报, 2004, (1): 107-113.
    [3]冯德才,刘小林,杨其等.抗菌剂与抗菌纤维的研究进展[J].合成纤维工业,2005 ,28 (4) : 40-42.
    [4]李毕忠.抗菌纤维及抗菌织物的研制与开发[J] .纺织科学研究, 2003 , 14 (1): 13-16.
    [5]谢雪琴. AMF抗菌纤维及其应用[J].合成纤维, 2000, 29 (4): 34-36.
    [6]杨瑞玲,马国玉,宋瑾.聚酯抗菌切片及纤维的研制[J].合成纤维工业, 2000, 23(2): 20-23.
    [7]张宇,葛存旺,虞伟等.无机纳米抗菌剂用于医用无菌纱布的研究[J].东南大学学报(自然科学版), 2001, 31(2): 11-12.
    [8]Zhang Zitao, Chen Liang, Ji Jinmin, et a1. Antibacterial properties of cotton fabrics treated with Chitosan [J]. Textile Research Journal, 2003, 73(12): l 103-l 106.
    [9]宋建芳,孟家光.棉针织物的纳米抗菌整理研究[J].针织工业, 2004, (6): 99-100.
    [10]常桂霞.几种抗菌纤维的生产方法简介[J].非织造布, 2008, 16(2): 34-36.
    [11]陈稀,黄象安.化学纤维实验教程[M].北京:中国纺织工业出版社, 1988.
    [12]GB/T14344-1993,合成纤维长丝及变形丝断裂强度及断裂伸长试验方法[S].北京:中国化学纤维工业协会, 2001.
    [13]GB/T14344-1993,合成纤维长丝及变形丝断裂强度及断裂伸长试验方法[S].北京:中国化学纤维工业协会, 2001.
    [14]GB/T 6505—2001,合成纤维长丝热收缩率试验方法[S].北京:中国化学纤维工业协会, 2001.
    [15]李允成,徐心华.涤纶长丝生产[M].北京:中国纺织工业出版社, 1995.
    [16]Lyoo W. S., Lee H. S., Ji B. C., et al. Effect of Zone Drawing on the Structure and Properties of Melt-spun Poly (trimethylene terephthalate) Fiber. Journal of Applied Polymer Science, 2001, 81: 3471-3480.
    [17]焦书科,蔡夫柳等.高分子化学[M].北京:中国纺织工业出版社, 1988.
    [18]朱志国,董振峰.原位复合法制备多壁碳纳米管/聚对苯二甲酸乙二酯复合物[J].合成纤维, 2009, 38(3): 16-20.
    [19]高绪姗,吴大成等.纤维应用物理学[M].北京:中国纺织工业出版社, .2001.
    [20]Anand K A,Agarwal U S,et al.Carbon nanotubes induced crystal-lization of poly(ethylene terephthalate)[J].Polymer,2006,47(11):3976-3980.
    [21]张美玲,柳百坚等.聚合物研究方法.北京:中国轻工业出版社.2009.