内外源性血管紧张素Ⅱ对肺泡液体清除及ENaC表达调控机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的急性肺损伤(ALI)以失控性炎症反应、通透性肺水肿、肺泡内液体聚集及呼吸衰竭为病理生理特征。血管紧张素II(Ang II)是肾素-血管紧张素系统(RAS)的主要效应物,具有维持体内水盐平衡和细胞外液容量的生理作用。Ang II在ALI失控性炎症反应中扮演重要作用,但是在ALI肺水肿形成及肺泡内液体聚集中作用尚未阐明。肺泡上皮钠通道(ENaC)是肺泡内钠水重吸收的关键限速步骤,调控肺泡内液体容量平衡。来源于肾及结肠等多个组织器官的研究均提示Ang II能调控ENaC表达及功能活性,尚不清楚Ang II在肺组织中对ENaC的作用。故本研究通过气道内滴入脂多糖诱导ALI动物模型及微量泵泵入不同浓度Ang II两种方式,探讨内源性生成及外源性给予AngII对肺泡液体清除(AFC)及肺泡上皮钠通道(ENaC)表达的影响,并用A549细胞进一步证实Ang II对ENaC的表达调控作用。
     方法内源性Ang II实验部分:SD大鼠用戊巴比妥腹腔注射麻醉后,行气管插管,通过气管导管向气管内注入LPS(1mg/kg)诱导ALI。空白对照组大鼠则给予等量的生理盐水。血管紧张素II1型(AT1)受体阻滞剂ZD7155(10mg/kg)在LPS滴入前30min于腹腔内注入。SD大鼠均杀死后抽取血液及取出完整肺组织,右肺用于AFC测量,左肺用于测量肺组织水含量及支气管肺泡灌洗液分析,并采用HE染色观察病理改变,用免疫组织化学分析ENaC在肺组织内的表达变化。用ELISA方法分析肺组织和血浆中内Ang II浓度。肺组织内的ENaC蛋白表达用蛋白免疫印迹法(Western blotting)测定。外源性Ang II实验部分:SD大鼠以戊巴比妥腹腔注射麻醉后,行颈静脉置管术,通过微量泵泵入不同浓度(1,10及100μg/kg·min)的外源性Ang II。空白对照组大鼠则泵入等量的生理盐水。血管紧张素II1型(AT1)受体阻滞剂ZD7155(10mg/kg)及cAMP降解抑制剂罗利普兰(1mg/kg)在Ang II泵入前30min于腹腔内注入。SD大鼠均杀死后抽取血液及取出完整肺组织,右肺用于AFC测量,左肺用于测量肺组织水含量及支气管肺泡灌洗液分析,并采用HE染色观察病理改变,用免疫组织化学分析ENaC在肺组织内的表达变化。用ELISA方法分析肺组织中TNF-α、IL-β浓度。采用RIA法测定肺组织内环磷酸腺苷(cAMP)水平。肺组织内的ENaC mRNA及蛋白表达分别用逆转录聚合酶链反应(RT-PCR)和蛋白免疫印迹法(Western blot)测定。并进一步给予A549细胞含有不同浓度(10-7M,10-5M)的Ang II培养基培养,用Western blotting分析不同浓度Ang II对A549细胞ENaC蛋白表达的作用。
     结果内源性Ang II研究中:气道内滴入LPS诱导肺组织及血浆中Ang II水平显著升高,并伴随AFC降低。LPS的作用时间与Ang II升高和AFC的降低程度相关(血浆:ALI2h组2.53±0.4μg/l,ALI4h组3.78±1.15μg/l,ALI6h组4.91±1.1μg/l;肺组织:ALI2h组190.2±38.23μg/l,ALI4h组305±72.99μg/l,ALI6h组580.4±129.16μg/l)。预先给予ZD7155作用后,能显著抑制ALI诱导的AFC降低作用(7.8±1.61%vs4.4±1.14%),同时逆转ALI诱导的对β及γ-ENaC蛋白表达的下调作用,但却进一步下调α-ENaC蛋白表达(P<0.05)。ZD7155还显著改善ALI诱导的间质水肿及炎症细胞浸润的病理改变。外源性AngII研究中:给予外源性高浓度(10及100μg/kg·min)Ang II显著抑制AFC并呈剂量依赖效应(P<0.05)。Ang II泵入导致对α-ENaC和β及γ-ENaC表达的非协同调节作用,上调α-ENaC和下调β及γ-ENaC表达。给予ZD7155干预后,能显著拮抗外源性Ang II对AFC(10.8±1.483%vs6.2±2.683%)及ENaC表达的调控作用(P<0.05)。在A549细胞研究中,也显示Ang II对ENaC表达的非协同调节作用,并呈浓度依赖的方式调控ENaC表达(P<0.05)。外源性Ang II显著抑制肺组织内cAMP水平,给予罗利普兰后则缓解Ang II对AFC的抑制作用(9.8±3.033%vs6.2±2.683%)。
     结论内外源性Ang II都能够通过激活AT1受体抑制肺泡液体清除,导致肺水含量增加,诱导肺水肿形成。
     Ang II对ENaC三个亚基的表达呈非协同的调节作用,可能导致了ENaC中HSC与NSC通道比例的失调,从而影响了肺泡内液体的清除。
     AT1受体阻滞剂及cAMP降解抑制均能够对Ang II诱导的肺泡液体清除降低具有保护作用。
Objective Acute lung injury (ALI) is characterized by uncontrolledinflammatory reponse, increased permeablility pulmonary edema, alveolarfilling and respiratory failure. Angiotensin II (Ang II) is the main effector ofrennin-angiotensin system (RAS), and exerts its effect in maintainingsodium balance and extracellular fluid volume. Ang II has beendemonstrated a pro-inflammatory effect in acute lung injury, however,studies of the effect of Ang II on the formation of pulmonary edema andalveolar filling remains unclear. Epithelial sodium channel (ENaC) is therate-limiting step for sodium absorption in alveoli, which in turn regulatesthe alveolar fluid volume. There is mounting evidence form renal andcolonic studies demonstrating that Ang II regulates ENaC expression andits electrogenous activity. However, the effect of Ang II on ENaCexpression in lung is still unknown. Therefore, in this study was verified theregulation of alveolar fluid clearance (AFC) and the expression of epithelialsodium channel (ENaC) by endogenous and exogenous Ang II. The effect ofAng II on ENaC expression was still verified in A549cells.
     Methods In study on endogenous Ang II effects, SD rats wereanesthetized and intratracheally injected with1mg/kg lipopolysaccharide (LPS), whereas control rats received only saline vehicle. Angiotensin type1(AT1) receptor antagonist ZD7155(10mg/kg) was injected intraperitoneally30min before administration of LPS. Then lungs were isolated en bloc. Theleft lungs were separated to measure lung water volume and bronchoalveolarlavage fluid (BALF). The right lungs were prepared to assess alveolar fluidclearance. The lungs were processed histological analysis andimmunological studies with HE stain and immunocytochemistry. Ang IIlevels in plasma and lung tissue were determined by ELISA. The proteinexpression of ENaC was detected by Western blot. In study on exogenousAng II effects, SD rats were anesthetized and were given Ang II withincreasing doses (1,10and100μg/kg-1·min-1) via osmotic minipumps,whereas control rats received only saline vehicle. AT1receptor antagonistZD7155(10mg/kg) and inhibitor of cAMP degeneration rolipram (1mg/kg)were injected intraperitoneally30min before administration of Ang II. Thenlungs were isolated en bloc. The left lungs were separated to measure lungwater volume and bronchoalveolar lavage fluid (BALF). The right lungswere prepared to assess alveolar fluid clearance. The lungs were processedhistological analysis and immunological studies with HE stain andimmunocytochemistry. TNF-α, IL-1β and cAMP levels in lung tissue weredetermined by ELISA and RIA, respectively. The mRNA and proteinexpression of ENaC were detected by RT-PCR and Western blot. A549cellswere treated with different doses (10-7M and10-5M) of Ang II and the change in protein level caused by Ang II was determined by Western blot.
     Results In study on endogenous Ang II effects, ALI induced by LPScaused an increase in Ang II levels in plasma and lung tissue, but adecrease in alveolar fluid clearance. The time-course of the Ang II levelsparalleled that of the alveolar fluid clearance (In plasma: ALI2h2.53±0.4μg/l, ALI4h3.78±1.15μg/l, ALI6h4.91±1.1μg/l; In lung: ALI2h190.2±38.23μg/l, ALI4h305±72.99μg/l, ALI6h580.4±129.16μg/l).Pretreatment with ZD7155prevented ALI-induced reduction of alveolarfluid clearance (7.8±1.61%vs4.4±1.14%). ZD7155also reversed theALI-induced reduction of the abundance of β and γ-ENaC, whereas furtherdecreased the abundance of α-ENaC (P<0.05), and ameliorated interstitialedema and inflammatory cell infiltration induced by ALI. In study onexogenous Ang II effects, Exposure to higher doses of Ang II reduced AFCin a dose-dependent manner and resulted in a non-coordinate regulation ofα-ENaC versus the regulation of β-and γ-ENaC, however Ang II type1(AT1) receptor antagonist ZD7155prevented the Ang II-induced inhibitionof fluid clearance (10.8±1.483%vs6.2±2.683%) and dysregulation ofENaC expression (P<0.05). The similar non-coordinate regulation ofα-ENaC versusβ-and γ-ENaC by Ang II was still observed in A549cells,and Ang II dysregulated ENaC expression in a concentration-dependentmanner (P<0.05). In addition, exposure to inhibitor of cAMP degradationrolipram blunted the Ang II-induced inhibition of fluid clearance (9.8± 3.033%vs6.2±2.683%).
     Conclusions Endogenous and exogenous Ang II promotes pulmonaryedema and alveolar filling by inhibition of alveolar fluid clearance throughactivation of AT1receptor. Ang II regulates α-ENaC expresson versus β-and γ-ENaC expression in a non-coordinate manner, which may lead tochanges in proportion of HSC channels and NSC channels, and results inreduction of AFC. AT1receptor antagonist and inhibitor of cAMPdegeneration can protect from Ang II-induced reduction of AFC.
引文
[1] Worthen GS, Haslett C, Rees AJ, Gumbay RS, Henson JE, Henson PM.Neutrophil-mediated pulmonary vascular injury. Synergistic effect of trace amountsof lipopolysaccharide and neutrophil stimuli on vascular permeability and neutrophilsequestration in the lung. Am Rev Respir Dis1987;136(1):19-28.
    [2] Wang F, Xia ZF, Chen XL, Jia YT, Wang YJ, Ma B. Angiotensin II type-1receptorantagonist attenuates LPS-induced acute lung injury. Cytokine2009;48(3):246-53.
    [3] Hassoun PM, Yu FS, Cote CG, et al. Upregulation of xanthine oxidase bylipopolysaccharide, interleukin-1, and hypoxia. Role in acute lung injury. Am JRespir Crit Care Med1998;158(1):299-305.
    [4] Sato K, Suga M, Akaike T, et al. Therapeutic effect of erythromycin on influenzavirus-induced lung injury in mice. Am J Respir Crit Care Med1998;157(3):853-857.
    [5] Kelleher ZT, Potts EN, Brahmajothi MV, et al. NOS2regulation of LPS-inducedairway inflammation via S-nitrosylation of NF-{kappa}B p65. Am J Physiol LungCell Mol Physiol2011;301(3):327-333.
    [6] Lucas R, Verin AD, Black SM, Catravas JD. Regulators of endothelial and epithelialbarrier integrity and function in acute lung injury. Biochem Pharmacol2009;77(12):1763-1772.
    [7] Ware LB, Matthay MA. Alveolar fluid clearance is impaired in the majority ofpatients with acute lung injury and the acute respiratory distress syndrome. Am JRespir Crit Care Med2001;163(6):1376-1383.
    [8] Beutler KT, Masilamani S, Turban S, et al. Long-term regulation of ENaCexpression in kidney by angiotensin II. Hypertension2003;41(5):1143-1150.
    [9] Imai Y, Kuba K, Penninger JM. The discovery of angiotensin-converting enzyme2and its role in acute lung injury in mice. Exp Physiol2008;93(5):543-548.
    [10]Suzuki Y, Ruiz-Ortega M, Lorenzo O, Ruperez M, Esteban V&Egido J.Inflammation and angiotensin II. Int J Biochem Cell Biol2003;35(6):881-900.
    [11]Abdi R, Dong VM, Lee CJ, Ntoso KA. Angiotensin II receptor blocker-associatedangioedema: on the heels of ACE inhibitor angioedema. Pharmacotherapy2002;22(9):1173-1175.
    [12]Kiely DG, Cargill RI, Wheeldon NM, Coutie WJ, Lipworth BJ. Haemodynamic andendocrine effects of type1angiotensin II receptor blockade in patients withhypoxaemic cor pulmonale. Cardiovasc Res1997;33(1):201-208.
    [13]Xu ZH, Shimakura K, Yamamoto T, Wang LM, Mineshita S. Pulmonary edemainduced by angiotensin I in rats. Jpn J Pharmacol1998;76(1):51-56.
    [14]Yamamoto T, Wang L, Shimakura K, Sanaka M, Koike Y, Mineshita S.Angiotensin II-induced pulmonary edema in a rabbit model. Jpn J Pharmacol1997;73(1):33-40.
    [15]W sten-van Asperen RM, Lutter R, Specht PA, et al. Acute respiratory distresssyndrome leads to reduced ratio of ACE/ACE2activities and is prevented byangiotensin-(1-7) or an angiotensin II receptor antagonist. J Pathol2011;225(4):618-627.
    [16]Jain L, Chen XJ, Ramosevac S, Brown LA, Eaton DC. Expression of highlyselective sodium channels in alveolar type II cells is determined by cultureconditions. Am J Physiol Lung Cell Mol Physiol2001;280(4):646-658.
    [17]Johnson MD, Bao HF, Helms MN, et al. Functional ion channels in pulmonaryalveolar type I cells support a role for type I cells in lung ion transport. Proc NatlAcad Sci USA2006;103(13):4964-4969.
    [18]Matalon S, O'Brodovich H. Sodium channels in alveolar epithelial cells: molecularcharacterization, biophysical properties, and physiological significance. Annu RevPhysiol1999;61:627-661.
    [19]Randrianarison N, Clerici C, Ferreira C, et al. Low expression of the beta-ENaCsubunit impairs lung fluid clearance in the mouse. Am J Physiol Lung Cell MolPhysiol2008;294(3):409-416.
    [20]Tanemoto M, Uchida S. Angiotensin II-induced phosphorylation of the sodiumchloride cotransporter. Kidney Int2011;79(12):1381-1382.
    [21]Sakuma T, Zhao Y, Sugita M, et al. Malnutrition impairs alveolar fluid clearance inrat lungs. Am J Physiol Lung Cell Mol Physiol2004;286(6):1268-1274.
    [22]Sangalli F, Carrara F, Gaspari F, et al. Effect of ACE inhibition on glomerularpermselectivity and tubular albumin concentration in the renal ablation model. Am JPhysiol Renal Physiol2011;300(6):1291-1300.
    [23]Li C, Wang W, Rivard CJ, Lanaspa MA, Summer S, Schrier RW. Molecularmechanisms of angiotensin II stimulation on aquaporin-2expression and trafficking.Am J Physiol Renal Physiol2011;300(5):1255-1261.
    [24]Hatch M, Freel RW. Increased colonic sodium absorption in rats with chronic renalfailure is partially mediated by AT1receptor agonism. Am J Physiol GastrointestLiver Physiol2008;295(2):348-56.
    [25]Jernigan NL, Speed J, LaMarca B, Granger JP, Drummond HA. Angiotensin IIregulation of renal vascular ENaC proteins. Am J Hypertens2009;22(6):593-597.
    [26]Benos DJ, Saccomani G, Sariban-Sohraby S. The epithelial sodium channel.Subunit number and location of the amiloride binding site. J Biol Chem1987;262(22):10613-10618.
    [27]Wang Q, Horisberger JD, Maillard M, Brunner HR, Rossier BC, Burnier M.Salt-and angiotensin II-dependent variations in amiloride-sensitive rectal potentialdifference in mice. expression and activity of NKCC2, NCC, and ENaC in the obeseZucker rat. Am J Physiol Clin Exp Pharmacol Physiol2000;27(1):60-66.
    [28]Nakada TA, Russell JA, Boyd JH, et al. Association of angiotensin II type1receptor-associated protein gene polymorphism with increased mortality in septicshock. Crit Care Med2011;39(7):1641-1648.
    [29]Medzhitov R, Horng T. Transcriptional control of the inflammatory response. NatRev Immunol2009;9(10):692-703.
    [30]Rateri DL, Moorleghen JJ, Balakrishnan A, et al. Endothelial cell-specificdeficiency of Ang II type1a receptors attenuates Ang II-induced ascending aorticaneurysms in LDL receptor-/-mice. Circ Res2011;108(5):574-581.
    [31]Yamagata T, Yamagata Y, Nishimoto T, et al. The regulation of amiloride-sensitiveepithelial sodium channels by tumor necrosis factor-alpha in injured lungs andalveolar type II cells. Respir Physiol Neurobiol2009;166(1):16-23.
    [32]Roux J, Kawakatsu H, Gartland B, et al. Interleukin-1beta decreases expression ofthe epithelial sodium channel alpha-subunit in alveolar epithelial cells via a p38MAPK-dependent signaling pathway. J Biol Chem2005;280(19):18579-18589.
    [33]Boncoeur E, Tardif V, Tessier MC, et al. Modulation of epithelial sodium channelactivity by lipopolysaccharide in alveolar type II cells: involvement of purinergicsignaling. Am J Physiol Lung Cell Mol Physiol2010;298(3):417-426.
    [1] Kim S, Iwao H. Molecular and cellular mechanisms of angiotensin II-mediatedcardiovascular and renal diseases. Pharmacol Rev2000;52(1):11-34.
    [2] Paul M, Poyan MA, Kreutz R. Physiology of local renin-angiotensin systems.Physiol Rev2006;86(3):747-803.
    [3] Beutler KT, Masilamani S, Turban S, et al. Long-term regulation of ENaCexpression in kidney by angiotensin II. Hypertension2003;41(5):1143-1150.
    [4] Hatch M, Freel RW. Increased colonic sodium absorption in rats with chronic renalfailure is partially mediated by AT1receptor agonism. Am J Physiol GastrointestLiver Physiol2008;295(2):348-56.
    [5] Jernigan NL, Speed J, LaMarca B, Granger JP, Drummond HA. Angiotensin IIregulation of renal vascular ENaC proteins. Am J Hypertens2009;22(6):593-597.
    [6] Wiberg-J rgensen F, Klausen NO, Hald A, Qvist J, Giese J, Damkjaer Nielsen M.Pulmonary angiotensin II production in respiratory failure. Clin Physiol1983;3(1):59-67.
    [7] Marshall RP, Gohlke P, Chambers RC, et al. Angiotensin II and thefibroproliferative response to acute lung injury. Am J Physiol Lung Cell MolPhysiol2004;286(1):156-164.
    [8] Miyoshi M, Miyano K, Moriyama N, Taniguchi M, Watanabe T. Angiotensin type1receptor antagonist inhibits lipopolysaccharide-induced stimulation of rat microglialcells by suppressing nuclear factor kappaB and activator protein-1activation. Eur JNeurosci2008;27(2):343-351.
    [9] Yao S, Feng D, Wu Q, Li K, Wang L. Losartan attenuates ventilator-induced lunginjury. J Surg Res2008;145(1):25-32.
    [10]Richardson MA, Gupta A, O'Brien LA, et al. Treatment of sepsis-induced acquiredprotein C deficiency reverses Angiotensin-converting enzyme-2inhibition anddecreases pulmonary inflammatory response. J Pharmacol Exp Ther2008;325(1):17-26.
    [11]Ware LB, Matthay MA. Alveolar fluid clearance is impaired in the majority ofpatients with acute lung injury and the acute respiratory distress syndrome. Am JRespir Crit Care Med2001;163(6):1376-1383.
    [12]Bhalla V, Hallows KR. Mechanisms of ENaC regulation and clinical implications. JAm Soc Nephrol2008;19(10):1845-1854.
    [13]Kobori H, Ozawa Y, Acres OW, Miyata K, Satou R. Rho-kinase/nuclearfactor-κβ/angiotensinogen axis in angiotensin II-induced renal injury. Hypertens Res2011;34(8):976-979.
    [14]Musch MW, Li YC, Chang EB. Angiotensin II directly regulates intestinalepithelial NHE3in Caco2BBE cells. BMC Physiol2009;9:5.
    [15]Harris PJ, Young JA. Dose-dependent stimulation and inhibition of proximaltubular sodium reabsorption by angiotensin II in the rat kidney. Pflugers Arch1977;367(3):295-297.
    [16]Nakada TA, Russell JA, Boyd JH, et al. Association of angiotensin II type1receptor-associated protein gene polymorphism with increased mortality in septicshock. Crit Care Med2011;39(7):1641-1648.
    [17]Medzhitov R, Horng T. Transcriptional control of the inflammatory response. NatRev Immunol2009;9(10):692-703.
    [18]Rateri DL, Moorleghen JJ, Balakrishnan A, et al. Endothelial cell-specificdeficiency of Ang II type1a receptors attenuates Ang II-induced ascending aorticaneurysms in LDL receptor-/-mice. Circ Res2011;108(5):574-581.
    [19]Benos DJ, Saccomani G, Sariban-Sohraby S. The epithelial sodium channel.Subunit number and location of the amiloride binding site. J Biol Chem1987;262(22):10613-10618.
    [20]Wang Q, Horisberger JD, Maillard M, Brunner HR, Rossier BC, Burnier M.Salt-and angiotensin II-dependent variations in amiloride-sensitive rectal potentialdifference in mice. expression and activity of NKCC2, NCC, and ENaC in the obeseZucker rat. Am J Physiol Clin Exp Pharmacol Physiol2000;27(1-2):60-66.
    [21]Madala Halagappa VK, Tiwari S, Riazi S, Hu X, Ecelbarger CM. Chroniccandesartan alters Renal Physiol2008;294(5):1222-12231.
    [22]Li XC, Carretero OA, Navar LG, Zhuo JL. AT1receptor-mediated accumulation ofextracellular angiotensin II in proximal tubule cells: role of cytoskeletonmicrotubules and tyrosine phosphatases. Am J Physiol Renal Physiol2006;291(2):375-383.
    [23]Jensen AM, Bae EH, Fenton RA, et al. Angiotensin II regulates V2receptor andpAQP2during ureteral obstruction. Am J Physiol Renal Physiol2009;296(1):127-134.
    [24]Saha S, Li Y, Anand-Srivastava MB. Reduced levels of cyclic AMP contribute tothe enhanced oxidative stress in vascular smooth muscle cells from spontaneouslyhypertensive rats. Can J Physiol Pharmacol2008;86(4):190-198.
    [25]Chen XJ, Eaton DC, Jain L. Beta-adrenergic regulation of amiloride-sensitive lungsodium channels. Am J Physiol Lung Cell Mol Physiol2002;282(2):609-620.
    [26]Butterworth MB, Helman SI, Els WJ. cAMP-sensitive endocytic trafficking in A6epithelia. Am J Physiol Cell Physiol2001;280(4):752-762.
    [1] Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G&Turner AJ. A humanhomolog of angiotensin-converting enzyme. Cloning and functional expression as acaptoprilinsensitive carboxypeptidase. J Biol Chem2000;275(43):33238-33243.
    [2] Douglas GC, O’Bryan MK, Hedger MP, Lee DK, Yarski MA, Smith AI&Lew RA.The novel angiotensinconverting enzyme (ACE) homolog, ACE2, is selectivelyexpressed by adult Leydig cells of the testis. Endocrinology2004;145(10):4703-4711.
    [3] Dasgupta C, Zhang L. Angiotensin II receptors and drug discovery in cardiovasculardisease. Drug Discov Today2011;16(1-2):22-34.
    [4] Crackower MA, Sarao R, Oudit GY, et al. Angiotensin-converting enzyme2is anessential regulator of heart function. Nature2002;417(6891):822-828.
    [5] Yamamoto K, Ohishi M, Katsuya T, et al. Deletion of angiotensin-convertingenzyme2accelerates pressure overload-induced cardiac dysfunction by increasinglocal angiotensin II. Hypertension2006;47(4):718-726.
    [6] Imai Y, Kuba K, Rao S, et al. Angiotensin-converting enzyme2protects fromsevere acute lung failure. Nature2005;436(7047):112-116.
    [7] Johnson AD, Gong Y, Wang D, et al.Promoter polymorphisms in ACE (angiotensinI-converting enzyme) associated with clinical outcomes in hypertension. ClinPharmacol Ther2009;85(1):36-44.
    [8] Shenoy S, Tandon S, Sandhu J, Bhanwer AS.Association of Angiotensin ConvertingEnzyme gene Polymorphism and Indian Army Triathletes Performance. Asian JSports Med2010;1(3):143-150.
    [9] Marshall RP, Webb S, Bellingan GJ, et al. Angiotensin converting enzymeinsertion/deletion polymorphism is associated with susceptibility and outcome inacute respiratory distress syndrome. Am J Respir Crit Care Med2002;166(5):646-650.
    [10] Jerng JS, Yu CJ, Wang HC, Chen KY, Cheng SL&Yang PC. Polymorphism ofthe angiotensin-converting enzyme gene affects the outcome of acute respiratorydistress syndrome. Crit Care Med2006;34(4):1001-1006.
    [11]Ohkubo T, Chapman N, Neal B, et al. Effects of an angiotensin-converting enzymeinhibitor-based regimen on pneumonia risk. Am J Respir Crit Care Med2004;169(9):1041-1045.
    [12]Etminan M, Zhang B, Fitzgerald M, et al. Do angiotensin-converting enzymeinhibitors or angiotensin II receptor blockers decrease the risk of hospitalizationsecondary to community acquired pneumonia? A nested case-control study.Pharmacotherapy2006;26(4):479-482.
    [13]Mortensen EM, Pugh MJ, Copeland LA, et al. Impact of statins and angiotensin-converting enzyme inhibitors on mortality of subjects hospitalised with pneumonia.Eur Respir J2008;31(3):611-617.
    [14]Van de Garde EM, Souverein PC, Hak E, et al. Angiotensin-converting enzymeinhibitor use and protection against pneumonia in patients with diabetes. JHypertens2007;25(1):235-239.
    [15]Takahashi T, Morimoto S, Okaishi K, et al. Reduction of pneumonia risk by anangiotensin Iconverting enzyme inhibitor in elderly Japanese inpatients according toinsertion/deletion polymorphism of the angiotensin I-converting enzyme gene. Am JHypertens2005;18(10):1353-1359.
    [16]Devarajan P. Neutrophil gelatinase-associated lipocalin: a promising biomarker forhuman acute kidney injury. Biomark Med2010;4(2):265-80.
    [17]Wiel E, Pu Q, Leclerc J, et al. Effects of the angiotensin-converting enzymeinhibitor perindopril on endothelial injury and hemostasis in rabbit endotoxic shock.Intensive Care Med2004;30(8):1652-1659.
    [18]Lund DD, Brooks RM, Faraci FM, et al. Role of angiotensin II in endothelialdysfunction induced by lipopolysaccharide in mice. Am J Physiol Heart CircPhysiol2007;293(6):3726-3731.
    [19]W sten-van Asperen RM, Lutter R, Haitsma JJ, et al. ACE mediates ventilator-induced lung injury in rats via angiotensin II but not bradykinin. Eur Respir J2008;31(2):363-371.
    [20]Datta A, Scotton CJ, Chambers RC. Novel therapeutic approaches for pulmonaryfibrosis. Br J Pharmacol2011;163(1):141-72.
    [21]Li W, Moore MJ, Vasilieva N, et al. Angiotensin-converting enzyme2is afunctional receptor for the SARS coronavirus. Nature2003;426(6965),450-454.
    [22]Kuba K, Imai Y, Rao S, et al. A crucial role of angiotensin converting enzyme2(ACE2) in SARS coronavirus-induced lung injury. Nat Med2005;11(8):875-879.
    [23]Morrell NW, Higham MA, Phillips PG, Shakur BH, Robinson PJ, Beddoes RJ.Pilot study of losartan for pulmonary hypertension in chronic obstructive pulmonarydisease. Respir Res2005;6(1):88.
    [24]Xu ZH, Shimakura K, Yamamoto T, Wang LM&Mineshita S. Pulmonary edemainduced by angiotensin I in rats. Jpn J Pharmacol1998;76(1):51-56.
    [25]Yamamoto T, Wang L, Shimakura K, Sanaka M, Koike Y&Mineshita S.Angiotensin II-induced pulmonary edema in a rabbit model. Jpn J Pharmacol1997;73(1):33-40.
    [26]Doerschug KC, Delsing AS, Schmidt GA, Ashare A. Renin-angiotensin systemactivation correlates with microvascular dysfunction in a prospective cohort study ofclinical sepsis. Crit Care2010;14(1):24.
    [27]Benicky J, Sánchez-Lemus E, Pavel J, Saavedra JM. Anti-inflammatory effects ofangiotensin receptor blockers in the brain and the periphery. Cell Mol Neurobiol2009;29(6-7):781-792.
    [28]Warner FJ, Smith AI, Hooper NM&Turner AJ. Angiotensin-converting enzyme-2:a molecular and cellular perspective. Cell Mol Life Sci2004;61(21):2704-2713.
    [29]Marceau F&RegoliD. Bradykinin receptor ligands: therapeutic perspectives. NatRev Drug Discov2004;3(10):845-852.
    [30]Clarke NE, Turner AJ. Angiotensin-converting enzyme2: the first decade. Int JHypertens2012;2012(1):307315.
    [31]Xia H, Suda S, Bindom S, et al. ACE2-mediated reduction of oxidative stress in thecentral nervous system is associated with improvement of autonomic function. PLoSOne2011;6(7):22682.
    [32]Sakao S, Tatsumi K, Voelkel NF. Reversible or irreversible remodeling inpulmonary arterial hypertension. Am J Respir Cell Mol Biol2010;43(6):629-634.
    [33]Barst RJ, Ertel SI, Beghetti M, Ivy DD. Pulmonary arterial hypertension: acomparison between children and adults. Eur Respir J2011;37(3):665-677.
    [34]Falcetti E, Hall SM, Phillips PG, et al. Smooth muscle proliferation and role of theprostacyclin (IP) receptor in idiopathic pulmonary arterial hypertension. Am JRespir Crit Care Med2010;182(9):1161-1170.
    [35]Cohen L, E X, Tarsi J, Ramkumar T, et al. Epithelial cell proliferation contributesto airway remodeling in severe asthma. Am J Respir Crit Care Med2007;176(2):138-145.
    [36]Hubloue I, Rondelet B, Kerbaul F, et al. Endogenous angiotensin II in theregulation of hypoxic pulmonary vasoconstriction in anaesthetized dogs. Crit Care2004;8(4):163-171.
    [37]Sheppard SJ, Khalil RA. Risk factors and mediators of the vascular dysfunctionassociated with hypertension in pregnancy. Cardiovasc Hematol Disord DrugTargets2010;10(1):33-52.
    [38]Van Suylen RJ, Wouters EF, Pennings HJ, et al. The DD genotype of theangiotensin converting enzyme gene is negatively associated with right ventricularhypertrophy in male patients with chronic obstructive pulmonary disease. Am JRespir Crit Care Med1999,159(6):1791-1795.
    [39]Kanazawa H, Okamoto T, Hirata K, Yoshikawa J. Deletion polymorphisms in theangiotensin converting enzyme gene are associated with pulmonary hypertensionevoked by exercise challenge in patients with chronic obstructive pulmonary disease.Am J Respir Crit Care Med2000;162(4):1235-1238.
    [40]Courboulin A, Paulin R, Giguère NJ, et al. Role for miR-204in human pulmonaryarterial hypertension. J Exp Med2011;208(3):535-548.
    [41]Elwing J, Panos RJ. Pulmonary hypertension associated with COPD. Int J ChronObstruct Pulmon Dis2008;3(1):55-70.
    [42]Van Suylen RJ, Aartsen WM, Smits JF, Daemen MJ. Dissociation of pulmonaryvascular remodeling and right ventricular pressure in tissue angiotensin-convertingenzyme-deficient mice under conditions of chronic alveolar hypoxia. Am J RespirCrit Care Med2001;163(5):1241-1245.
    [43]Morrell NW, Higham MA, Phillips PG, Shakur BH, Robinson PJ, Beddoes RJ.Pilot study of losartan for pulmonary hypertension in chronic obstructive pulmonarydisease. Respir Res2005;6(1):88.
    [44]Lawson WE, Loyd JE. The genetic approach in pulmonary fibrosis: can it provideclues to this complex disease? Proc Am Thorac Soc2006;3(4):345-349.
    [45]Korfhagen TR, Le Cras TD, Davidson CR, et al. Rapamycin prevents transforminggrowth factor-alpha-induced pulmonary fibrosis. Am J Respir Cell Mol Biol2009;41(5):562-572.
    [46]Otsuka M, Takahashi H, Shiratori M, Chiba H, Abe S. Reduction of bleomycininduced lung fibrosis by candesartan cilexetil, an angiotensin II type1receptorantagonist. Thorax2004;59(1):31-38.
    [47]Sun Y. Myocardial repair/remodelling following infarction: roles of local factors.Cardiovasc Res2009;81(3):482-490.
    [48]Datta A, Scotton CJ, Chambers RC. Novel therapeutic approaches for pulmonaryfibrosis. Br J Pharmacol2011;163(1):141-172.
    [49]Waseda Y, Yasui M, Nishizawa Y, et al. Angiotensin II type2receptor antagonistreduces bleomycin-induced pulmonary fibrosis in mice. Respir Res2008;9(1):43.
    [50]Otsuka M, Takahashi H, Shiratori M, Chiba H, Abe S. Reduction of bleomycininduced lung fibrosis by candesartan cilexetil, an angiotensin II type1receptorantagonist. Thorax2004;59(1):31-38.
    [51]Ao X, Zhao L, Davis MA, Lubman DM, Lawrence TS, Kong FM. Radiationproduces differential changes in cytokine profiles in radiation lung fibrosis sensitiveand resistant mice. J Hematol Oncol2009;2(1):6.
    [52]Bradford CN, Ely DR, Raizada MK. Targeting the vasoprotective axis of therenin-angiotensin system: a novel strategic approach to pulmonary hypertensive
    therapy. Curr Hypertens Rep2010;12(4):212-219.