超声引导下射频消融肝蒂毁损在精准肝切除中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、背景与目的
     基于现代综合医学模式倡导的全新肝脏外科理念和技术体系,为进一步实现彻底去除病灶、最大肝脏保护和最小创伤侵袭三者的统一,董家鸿教授提出了精准肝切除这一新的肝脏外科理念。然而,如何精确判定拟切除门脉流域的边界是实施精准肝切除的关键。目前临床上最广为应用的方法是Makuuchi提出的美兰染色法,然而这一方法需要对毫米级肝段或亚肝段血管进行精确穿刺,对穿刺技术要求极高。亦有学者应用分离肝实质探寻肝段或亚肝段血管并进行结扎,从而确定出肝段或亚肝段的缺血区域,但这一方法会进一步增加手术出血量及手术时间。最近,Navarra等人提出了通过超声引导下射频消融对目标肝段的肝蒂进行热毁损从而来确定拟切除门脉流域的缺血边界。相较于前述两种方法,该方法具有三大优势:1)穿刺技术简便;2)不增加手术出血量及手术时间;3)由于在切除前即对肝段供应血管进行热毁损,从而避免术中肿瘤细胞经门脉系统扩散,理论上更符合肿瘤学治疗原则。然而,由于射频消融可能会直接导致邻近肝段肝蒂组织不可逆的热损伤,因此目前对该项技术的临床推广应用仍存有争议。本试验通过进一步改进该项技术方法并建立活体小型猪精准肝切除模型来评估该项技术在精准肝切除中应用的可行性及可重复性,同时探索操作难点并总结经验。
     二、材料方法
     1.动物分组及模型建立:选取健康的广西巴马小型猪12头,体重25-35Kg,随机分为两组:A组:肝蒂射频消融同时未阻断肝动脉组;B组:肝蒂射频消融同时阻断肝动脉组。实验动物全身麻醉气管插管后连接呼吸机,颈动脉插管监测心率、血压变化,颈静脉插管建立输液通道。根据CourtF.G.等人报道的猪肝的肝段解剖特征,对每头试验动物均进行肝Ⅲ、Ⅴ、Ⅵ段切除。具体手术步骤如下:1).试验动物采用平卧位,右肋缘下J形切口逐层切开止血入腹;2).为避免射频消融导致胆囊损伤,常规切除胆囊;3).术中超声探查肝脏,仔细辨别供应肝Ⅲ、Ⅴ、Ⅵ段门静脉;4).超声引导下紧贴肝段血管插入冷循环电级,连接射频消融系统进行肝蒂毁损,电级插入部位距肝蒂分叉处的垂直距离至少为2cm,避免损伤邻近肝段供应血管。当拟切除肝段出现缺血边界,立即停止射频消融并记录射频消融时间;5).根据缺血边界采用钳夹法离断肝实质,完整切除肝Ⅲ、Ⅴ、Ⅵ段。对于B组试验动物,我们开腹后分离肝门部结构,游离出肝动脉,在射频消融的过程中阻断肝动脉,当拟切除肝段出现缺血边界停止射频消融后,我们即解除肝动脉阻断。其余手术过程同A组。
     2.观察指标:1).动物术中情况:术中持续监测动物血压、心率,评估出血量,记录射频消融时间。2)动物术后存活情况:所以动物均精心饲养14d,存活>14d视为长期存活。术后14d所有存活动物均在全麻下行剖腹探查术,探查是否存在手术并发症(如胆瘘、腹水、腹腔脓肿、腹腔出血等)。3).动物肝功能变化:于术前、术后1d、术后14d不同时相点采取静脉血标本测定丙氨酸氨基转移酶(ALT)、天冬氨酸氨基转移酶(AST)、γ-谷氨酰基转移酶(GGT)、碱性磷酸酶(ALP)、白蛋白(ALB)、总胆红素(TBIL)、直接胆红素(DBIL)。4).术中超声检测指标:术中探查肝脏,超声下测量各肝段门脉直径;于射频前、射频后不同时相点通过术中超声测定切除肝段(Ⅲ、Ⅴ、Ⅵ段)肝蒂门脉及动脉的血流速度;于射频前、射频后、术后14d测定保留肝段(Ⅱ、Ⅳ、Ⅶ、Ⅷ段)肝蒂门脉及动脉的血流速度;射频消融后超声下测定低回声区直径范围。5)病理情况:对切除肝段及术后14d切取保留肝段的肝组织均垂直于肝蒂血管长轴方向进行连续切片取材,每块组织厚度为0.5cm,所有组织进行HE染色,光镜下连续观察肝段胆管、门脉以及动脉的损伤情况
     3.统计学处理:计量资料以平均值±SD表示,采用SPSS16.0统计软件包进行单因素方差分析、独立样本t检验统计。以P<0.05为统计学差异。
     三、结果
     1.可行性分析:在超声引导下,冷循环电级均成功精确的穿刺到目标部位。本试验共选取了36个肝段肝蒂进行射频消融毁损,其中A组15个肝段缺血范围明显,3个肝段(1ofⅢ段,2ofⅤ段)缺血范围不明显,B组所有肝段缺血范围明显,效果明显好于A组(P<0.05)。所有肝蒂进行射频消融的时间为124.0±36.2S,其中A组射频消融时间为133.0±34.7S,B组射频消融时间为117±36.6S,两组间比较无明显差异(P>0.05)。
     2.动物手术、术后恢复及肝功能变化情况:所有动物手术过程顺利,术中无死亡。两组动物术后均健康存活14天,存活率100%。术后14天进行剖腹探查手术,腹腔探查未发现胆瘘、腹水、腹腔脓肿、腹腔出血等手术并发症。两组动物术后1dALT、AST、TBIL、DBIL水平显著升高,至术后14d血清学指标均恢复正常。
     3.术中超声检测指标:1)超声下测量各肝段门脉分支的平均直径为2.48±0.59mm;单因素方差分析组间比较无显著性差异(P>0.05)。2)射频消融后所有目标肝段门静脉的血流速度为0cm/s,动脉的血流速度较射频前显著降低(P<0.05),但大部分动脉于射频后仍可检测到血流存在。所有保留肝段的门脉及动脉于射频前、射频后、术后14d检测的血流速度无显著变化(P>0.05)。
     4.病理情况:对切除肝段标本连续切片取材HE染色后显微镜连续观察显示肝段门静脉的平均毁损长度为1.67±0.43cm,其中A组为1.64±0.38cm,B组为1.69±0.49cm,两组间无显著差异(P>0.05)。肝段动脉的平均毁损长度为1.33±0.40cm,其中A组为1.25±0.35cm,B组为1.42±0.43cm,两组间无显著差异(P>0.05)。肝段胆管的平均毁损长度为1.65±0.35cm,其中A组为1.67±0.34cm,B组为1.64±0.38cm,两组间无显著差异(P>0.05)。对于术后14天切除保留肝段标本,通过HE染色后显微镜连续观察发现其门脉、动脉及胆管组织均正常,未见损伤。进一步观察肝组织见肝细胞无浊肿,肝小叶结构完整,肝组织形态结构正常。
     四、结论
     1.本试验结合CourtF.G.报道的猪肝分段及脉管供应特征,对活体猪肝进行了详细的超声探查,明确了猪肝各肝段供应血管的超声影像特征,并选取了肝Ⅲ、Ⅴ、Ⅵ段肝蒂进行射频消融毁损,成功建立了超声引导下肝蒂射频消融肝段切除的动物模型。通过术中持续监测动物的平均动脉压及心率,统计手术出血量及手术时间,术后对动物存活状况的观察以及检测肝功能各项指标,结果证实了该肝段切除模型具有操作性强、安全性好、稳定性好、重复性高的优点。
     2.通过对比两组动物肝蒂毁损后肝段缺血边界的显示情况,结果显示在肝蒂射频消融的同时行肝动脉暂时阻断可以明显提高肝段显色的效果,同时亦能保障手术的安全性。
     3.为了可以通过术中超声定位对靶目标进行精准的穿刺,同时考虑到本技术方法需要对肝蒂血管进行毁损,本试验选用冷循环电极。实验中为充分利用射频消融能量,达到最理想的毁损的模式,我们紧贴目标肝蒂插入冷循环电级进行射频消融。结果证实穿刺成功率为100%,操作简单,对穿刺技术要求较低。通过连续切片取材观察毁损肝蒂血管以及胆管病理变化情况,我们认为为避免损伤邻近重要结构电极插入部位应距肝蒂分叉处的垂直距离至少为1.5cm。
     4.超声引导下射频消融肝蒂毁损是安全、可靠的,该项技术在精准肝切除领域中具有广阔的应用前景,值得在临床上进一步推广。
BACKGROUND
     With people's deeper understanding of liver anatomy, physiology and pathology as well as the further improvement of surgical technique, the concept of precision liver resection has been promoted recently. It pursues the result of the complete removal of the lesions, maximum preservation of functional liver, minimum blood loss and trauma invasiveness. For the hepatic lesions distributed by segmental-base, such as HCC and hepatolithiasis, anatomic segmentectomy is the most optimum surgical option to achieve the objectives of precision liver resection. The technique of segmentectomy was originally introduced by Makuuchi et al. It has been achieved equivalent long term survival to more radical resection techniques. Control of the inflow vessels and delineation of the relevant segment prior to resection has been achieved by several techniques. The most widely used technique is the puncture technique proposed by Makuuchi et al in1981. Indigo-carmine is injected into the vessel under IOUS-guidance, and the demarcated area for resection becomes evident on the liver surface. Other methods proposed include balloon catheters inserted transhepatically to occlude the feeding portal branch, or, more recently, through the mesenteric vein. The main limitation of these techniques is the high standard of skill required to puncture and occlude small vessels. Mazziotti et al proposed an intraparenchymal approach and ligation of the segmental Glissonian pedicle.This technique may be associated with intra operative blood loss and lengthy operation time. Navarra et al have recently suggested ablation of the segmental Glissonian pedicle by applying radiofrequency under ultrasound guidance. This was performed using the Habib sealer, a rectangular instrument using two rows of RFA probes. This technique however has certain limitations. It does not allow precise location of the target vessels and may be associated with inadvertent damage to other structures. The technique described is a modification of the Navarre procedure. It uses a single cooled-tip electrode, allowing precise targeting of the segmental vessels under IOUS guidance. It has several potential advantages:it is easy to operate and able to be performed by most HPB surgeons or radiologists familiar with intra operative ultrasound and liver anatomy; it minimizes intra operative blood loss and operative times; it may theoretically avoid tumour dissemination through the portal venous system by occlusion of the segmental vessels prior to parenchymal resection. This article reports an assessment of this technique in a preclinical study using a porcine animal model.
     MATERIALS AND METHODS
     1. Animals and Groups:The study was carried out on12Bama miniature pigs, with an average weight of25-35kg. The animals were divided into2groups. Group A: precise ablation of segmental glissonian pedicle by ultrasound-guided radiofrequency (6pigs); Group B:precise ablation of segmental glissonian pedicle by ultrasound-guided radiofrequency while the hepatic artery was clamped (6pigs).
     2. Surgical Procedure and Intraoperative Monitoring:According to the segmental nature of the porcine liver as delineated by Court F. G. et al, resections of segment Ⅲ, V and VI were performed.1)A J-shaped right subcostal incision was performed.2)Cholecystectomy was done routinely to eliminate the potential of radiofrequency induced injury.3)Intraoperative ultrasound (IOUS) was used to scan the intrahepatic vascular anatomy and identify the target liver segmental arterial and portal branches. Coagulative destruction of the feeding vessels was induced with the application of a "cooled-tip" RF with a500kHz-RF Generator. The target radiofrequency point in the segmental portal branch was chosen to be at least2cm distance from the segmental bifurcation. The radiofrequency was ceased when ischemic demarcation of the liver segment was observed. We took down the radiofrequency time and then measured the diameter of the hypoechoic region and the flow rate of the segmental arterial and portal branches which we had ablated and the adjacent liver segmental arterial and portal branches by ultrasound.4)The liver parenchyma is resected by the clamp-crush method without any form of hepatic inflow occlusion.For group B, the hepatic artery was identified and clamped temporarily during application of the RFA.
     3. Postoperative Monitoring:The animals were kept in boxes on-site14days after operation. Plasma samples were withdrawn from a central venous catheter on the first and14th postoperative days. Hepatocellular injury was assessed by standard laboratory assays of aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Other recorded serum parameters were y-glutamyltransferase (y-GT), alkaline phosphatase(ALP), bilirubin, albumin.In the14th postoperative day, Laparotomy was done to explore any procedure related complications such as biliary fistula, ascites, hepatic abscess, peritoneal haemorrhage. The flow rate of the arterial and portal branches of the remnant segments was documented. A total hepatectomy was then done to observe the histological change of the remnant segmental arterial, portal and biliary tract branches.
     4. Histology:all of the segments including the target segments and the remnant segments which were resected in the14th postoperative day were sliced into thin sections of5-mm thick perpendicular to the glissonian pedicle long axis. Hematoxylin and eosin (H&E) staining was done to observe the pathologic changes of segmental arterial, portal and biliary tract branches.
     5. Data Analysis:The One-Way ANOVA test and the χ2test were used for the continuous and the categorical data, respectively. The significance level for all tests was fixed at P≤0.05. The statistical analyses were performed using spss16.0.2software.
     RESULTS
     1. Feasibility:In the12pigs, the precise puncture of the electrode was successfully applied without any technically-related inconvenience. A total of36hepatic segments were resected (18of group A,18of group B). In group A,15areas of marked discoloration on the surface of liver were obvious,3areas (1of segment Ⅲ,2of segment V) were not obvious (Fig.7). In group B, all of the areas of marked discoloration were obvious, the effect of demarcation was significantly better than that in group A (P=0.000). Radiofrequency time was set at300seconds for the3 unobvious areas. Except these3areas, the average radiofrequency time was124.0±36.2seconds. The radiofrequency time was similar between the2groups (133.0±34.7versus117±36.6seconds; P>0.05).
     2. General Clinical and Biological Tolerance:Tolerance of the procedure was excellent and recovery was uneventful. No septic or cardiovascular, respiratory complications. Postoperative mortality was nil. In the14th postoperative day, laparotomy was performed, with no evidence of complications such as biliary fistula, ascites, hepatic abscess and peritoneal haemorrhage. Immediately after resection, all serum parameters of hepatocellular injury were elevated. Peak values were observed in all groups on the first postoperative day, and all parameters had normalized by day14.
     3. Blood Flow of the Target and Remnant Segmental Vessels:The flow rate of the target segmental portal branches was0cm/s after radiofrequency. The flow rate of the arterial branches was significantly reduced compared to before radiofrequency. However, most of the arterial branches blood flow could still be detected after radiofrequency. There was only1segmental arterial branch (segment V) with a flow rate of Ocm/s in group A versus6segmental arterial branches (3of segment Ⅲ,1of segment V and2of segment VI) in group B after radiofrequency. The flow rate of the arterial branches after radiofrequency in group B was lower than that in group A. In all groups, there was no significant difference in the flow rate of the segmental arterial and portal branches (remnant segments) among pre-radiofrequency, post-radiofrequency and14days after operation.
     4. Ultrasound Imaging: All of ablation zones in the liver were seen as a hypoechoic region with a central hyperechoic zone. The mean diameter of the hypoechoic regions measured by ultrasound was1.52±0.17cm (1.49±0.19versus1.55±0.14cm;P>0.05).
     5. Histology:Using standard hematoxylin and eosin staining, histologic evaluation of formalin fixed paraffin-embedded sections of the target segments revealed evidence of damage to the segmental glissonian pedicle. There was prominent heat injury in the tunica media and tunica intima of the portal veins. The injured portal veins measured1.67±0.43cm (group A:1.64±0.38versus group B:1.69±0.49cm;P>0.05). There was prominent heat injury in the tunica adventitia and the outer portion of tunica media of the hepatic artery, and there was mild injury in the endothelium. The damaged arteries measured1.33±0.40cm (group A:1.25±0.35versus group B:1.42±0.43cm; P>0.05). Severe injury was identified in the out portion of the tunica media and the epithelium of the bile duct; and less severe injury was identified in the inner portion of the tunica media. The injured bile ducts measure1.65±0.35cm (group A:1.67±0.34versus group B:1.64±0.38cm;P>0.05). Histologic evaluation of sections of the remnant segments which were resected on the14th postoperative day revealed that there was no injury to other adjacent arterial, portal and biliary tract branches.
     CONCLUSIONS
     1. The technique described in this article was evaluated on a porcine model. The feasibility and safety of the technique was confirmed. No mortality or morbidity occurred, Liver function tests of hepatocellular injury recovered by day14in both groups. There was no histological damage nor any significant change to the flow rate of the non targeted segmental arterial, portal or biliary duct structures observed to day14.
     2. Temporary occlusion of the hepatic artery adds further benefit in the effect of demarcation and there was no significant difference in the volume of ablation zones or hepatocellular damage between the two groups.
     3. Careful attention to technical details is essential. Considering mechanism of radiofrequency ablation, precise location of the tip using IOUS adjacent to the target vessel to make maximal use of the radiofrequency energy is essential and avoids the technically demanding intra luminal access as described by Makuuchi et al. Histologic evaluation of5-mm thick continuous sections revealed the mean ablated length of segmental arterial, portal and biliary tract branches was less than2cm. The probe in fact needs to be at least1.5cm away from vessels feeding segments not to be resected or structures that need to be left intact to avoid thermal injuries that can lead to postoperative vascular or biliary complications.
     4. The herein proposed technique of precise ablation of the segmental glissonian pedicle by ultrasound-guided radiofrequency has been used with success in experimental animals so far, confirming the technique to be quick, safe and effective. We believe that the technique could have a wide implication and potential in liver surgery.
引文
1.董家鸿,黄志强.精准肝切除—21世纪肝脏外科新理念.中华外科杂志.2009;47(21):1601-1605.
    2.董家鸿,杨世忠,段伟东,等.精准肝脏外科技术在复杂肝脏占位性病变切除中的应用.中华外科杂志.2009;47(21):1611-1615.
    3.窦科峰,刘卫辉.肝切除技术的进展.中华外科杂志.2010;48(3):193-195.
    4.黄志强黄晓强张文智,等.肝切除术治疗肝内胆管结石20年的演变.中华外科杂志.2008;46(19):1450-1452.
    5.董家鸿,黄志强,蔡景修,等.规则性肝段切除术治疗肝内胆管结石病.中华普通外科杂志.2002;17(7):418-420.
    6刘允怡,余俊豪.肝段为本的肝切除手术.中华普通外科杂志,2003,18(2):123-125.
    7.Ochiai T, Sonoyama T, Kikuchi S, et al. Anatomic wide hepatectomy for treatment of hepatocellular carcinoma[J]. J Cancer Res Clin Oncol,2007,133(8):563-569
    8.Hasegawa K, Kokudo N, Imamura H, et al. Prognostic impact of anatomic resection for hepatocellular carcinoma[J]. Ann Surg,2005,242(2):252-259
    9.Ziparo V, Balducci G, Lucandri G, et al. Indications and results of resection for hepatocellular carcinoma[J]. Eur J Surg Oncol,2002,28(7):723-728.
    10.Poon RT, Fan ST, Lo CM, et al. Improving survival results after resection of hepatocellular carcinoma:a prospective study of377patients over10years. Ann Surg,2001,234(1):63-70.
    11.Hanazaki K, Kajikawa S, Shimozawa N, et al. Perioperative blood transfusion andsurvival following curative hepatic resection for hepatocellular carcinoma. Hepatogastroenterology,2005,52(62):524-529
    12.Yeh CN, Lee WC, Jeng LB, et al. Hepatic resection for hepatocellular carcinoma in Taiwan. Eur J Surg Oncol,2002,28(6):652-656
    13.Kwon AH, Matsui Y, Kamiyama Y. Perioperative blood transfusion in hepatocellular carcinomas:influence of immunologic profile and recurrence free survival. Cancer,2001,91(4):771-778
    14.Uchida H, Tanaka H, Kitoh Y, et al. Mechanisms of immunomodulation induced by blood transfusion:identification of humoral factors. Transplant Proc,2000,32(2):255-256
    15.Wong IH, Yeo W, Leung T,et al. Circulating tumor cell mRNAs in peripheral blood from hepatocellular carcinoma patients under radiotherapy, surgical resection or chemotherapy:a quantitative evaluation. Cancer Lett,2001,167(2):183-191.
    16.Kishi Y, Saiura A, Yamamoto J, Koga R, Seki M, Morimura R, et al. Significance of anatomic resection for early and advanced hepatocellular carcinoma. Langenbecks Arch Surg.2012;397(1):85-92.
    17.Cho YB, Lee KU, Lee HW, et al. Anatomic versus non-anatomic resection for small single hepatocellular carcinomas. Hepatogastroenterology,2007,54(78):1766-1769.
    18.Jing-Dong L, Yun-Hong T, Kanduri HK, et al. Prognosis in patients with small hepatocellular carcinoma: a meta-analysis. Hepatogastroenterology.2011;58(110-111):1708-12.
    19. Mazziotti A, Maeda A, Ercolani G, et al. Isolated resection of segment8for liver tumors:a new approach for anatomical segmentectomy. Arch Surg.2000;135:1224-1229.
    20.Makuuchi M, Hasegawa H, Yamazaki S,et al. Ultrasonically guided subsegmentectomy.Surg Gynecol Obstet.1986;161:346-350.
    21.Castaing D, Garden OJ, Bismuth H. Segmental liver resection using ultrasound-guided selective portal venous occlusion[J]. Ann Surg,1989,210:20-23.
    22.Guido Torzilli, Tadatoshi Takayama, Ai-Min Hui,et al. A New Technical Aspect of Ultrasound-guided Liver Surgery [J]. THE AMERICAN JOURNAL OF SURGERY,1999,178(9):341-343.
    23.Shimamura Y, Gunve'n P, Takenaka Y, Shimizu H, Akimoto H, Shima Y, et al. Selective portal branch occlusion by balloon catheter during liver resection. Surgery.1986;100:938-941.
    24.Ou JR, Chen W, Lau WY. A new technique of hepatic segmentectomy by selective portal venous occlusion using a balloon catheter through a branch of the superior mesenteric vein. World J Surg.2007;31:1240-1242.
    25. Jean H.D. Portal venous territories within the human liver:an anatomical reappraisal. THE ANATOMICAL RECORD.2008;291:636-642
    26.Cervone A, Sardi A, Conaway GL. Intraoperative ultrasound (IOUS) is essential in the management of metastatic colorectal liver lesions. Am Surg.2000;66:611-615.
    27.Cho A, Okazumi S, Makino H, et al. Relation between hepatic and portal veins in the right paramedian sector: proposal for anatomical reclassification of the liver. World J Surg.2004;28:8-12.
    28.Clavien PA, Petrowsky H, DeOliveira ML, et al. Strategies for safer liver surgery and partial liver transplantation. N Engl J Med.2007;356:1545-1559.
    29.Te-Chang Wu, Rheun-Chuan Lee, Gar-Yang Chau, et al.Reappraisal of right portal segmental ramification based on3-dimensional Volume rendering of computed tomography during arterial portography. J Comput Assist Tomogr.200731(3):475-480
    30. Jean H. D. Fasel, Pietro E. Majno, Heinz-Otto Peitgen. Liver segments:an anatomical rationale for explaining inconsistencies with Couinaud's eight-segment concept. Surg Radiol Anat.2010;32:761-765
    31.Baba Y, Hokotate H, Nishi H, et al. Intrahepatic portal venous variations: demonstration by helical CT during arterial portography. J Comput Assist Tomogr.2000;24:802-808.
    32.Arora J, Kapur V, Kakkar A, et al. Ramification pattern of portal vein in right lobe of liverVa corrosion cast study. J Anat Soc India.2003;52:12-14.
    33. Marcel Autran C, Machado, Paulo Herman, et al. Intrahepatic glissonian access for segmental liver resection in cirrhotic patients. The American Journal of Surgery.2006;192:388-392
    34.Navarra G, Bartolotta M, Scisca C, et al. Ultrasound-guided radiofrequency-assisted segmental arterioportal vascular occlusion in laparoscopic segmental liver resection. Surg Endosc.2008;22:1724-1728.
    35.Curro G, Bartolotta M, Barbera A, et al. Ultrasound-guided radiofrequency-assisted segmental liver resection:a new technique. Ann Surg.2009;250:229-233.
    36. Elijah Dixon, MScTerry Leung, Anthony Roderick MacLean. Concerns about ultrasound-guided radiofrequency-assisted segmental liver resection. Annals of Surgery.2010;251(6):1191-1193
    37.冷建军,董家鸿,韩本立.巴马小型猪肝脏应用解剖学观察.消化外科.2004;3(3):181-184
    38.蒲淼水,钟世镇,石瑾.猪活体肝脏移植的应用解剖.中国临床解剖学杂志.2003,21(1):74-75,83
    39.Court FG, Wemyss-Holden SA, Morrison CP, et al. Segmental nature of the porcine liver and its potential as a model for experimental partial hepatectomy Br J Surg.2003;90:440-444
    40.Kahn D, Hickman R, Terblanche J, et al. Partial hepatectomy and liver regeneration in pigs-the response to different resection sizes. J Surg Res.1988;45:176-180
    41.Lim HK. Radiofrequency thermal ablation of hepatocellular carcinomas. Korean J Radiol.2000;1(4):175-184.
    42.Bhardwaj N, Strickland AD, Ahmad F, et al. Liver ablation techniques:a review. Surg Endosc.2010;24:254-265.
    43.Shiina S. Image-guided percutaneous ablation therapies for hepatocellular carcinoma. J Gastroenterol.2009;44:122-131
    44.Jiao LR, Hansen PD, Havlic R, et al. Clinical short-term results of radiofrequency ablation in primary and secondary liver tumors. Am J Surg.1999;177:303-306.
    45.Curley SA. Radiofrequency ablation of malignant liver tumors. Ann Surg Oncol.2003;10:338-347.
    46.Curley SA, Izzo F, Delrio P, et al. Radiofrequency ablation of unresectable primary and metastatic hepatic malignancies:results in123patients. Ann Surg.1999;230:1-8.
    47.Mulier S, Ni Y, Jamart J, et al. Local recurrence after hepatic radiofrequency coagulation:multivariate meta-analysis and review of contributing factors.Ann Surg,2005,242(2):158-171.
    48.Wright AS, Sampson LA, Warner TF, et al.Radiofrequency versus microwave ablation in a hepatic porcine model.Radiology.2005:236:132-139.
    49.Weber JC,Navarra G,Jiao LR,et al.New technique for liver resection using heat coagulative necrosis.Ann Surg.2002:236:560-563.
    50.Navarra G, Spalding D, Zacharoulis D, et al. Bloodless hepatectomy technique.HPB.2002:4:95-97.
    51.Yao P,Chu F,Daniel S,et al.A multicentre controlled study of the InLine radiofrequency ablation device for liver transection.HPB (Oxford),2007,9(4):267-271.
    52.P ai M,Jiao LR,Khorsandi S,et al.Liver resection with bipolar radiofrequency device:Habib trade mark4X.HPB (Oxford),2008,10(4):256-260.
    53.Kamimura R, Ishizaki N, Suzuki S.et al.Division of donor liver for successful split liver transplantation in pigs.ExP Anim,1997,46(4):315—317
    54.王爱德,兰干球,郭亚芬.巴马小型猪的选育.中国实验动物学杂志,1995,5(3):148-151
    55.王爱德.广西巴马小型猪的选育研究.中国比较医学杂志,2004,14(3):160
    56.Van Vledder MG,Assumpcao L,Munireddy S,et al.Development of hepatic pseudotumors for image-guided interventional and surgical research in a large animal model.J Vasc Interv Radiol.2011:22(10):1452-1456.
    57.Goldberg SN.Radiofrequency tumor ablation:principles and techniques.Eur J Ultrasound2001:13:129-47.
    58.Teratani T,Yoshida H,Shiina S,Obi S,Sato S,Tateishi R,et al.Radiofrequency ablation for hepatocellular carcinoma in socalled high-risk locations.Hepatology2006:43:1101-8.
    59.de Baere T,Alban Denys,Bradford Johns Wood,et al.Radiofrequency liver ablation:experimental comparative study of water-cooled versus expandable systems. AJR Am J Roentgenol.2001:176(1):187-92.
    1.Bismuth H. Surgcal anatomy and anatomical surgery of the liver. World J Surg.1982;6:3-9
    2.董家鸿,黄志强.精准肝切除—21世纪肝脏外科新理念.中华外科杂志.2009;47(21):1601-1605.
    3.刘允怡,余俊豪.肝段为本的肝切除手术.中华普通外科杂志,2003,18(2):123-125.115
    4. Healey JE Jr, Schroy PC. Anatomy of the biliary ducts within the human liver: analysis of the prevailing pattern of branchings and the major variations of the biliary ducts.Arch Surg,1953,66:599-616.
    5. Healey JE. Clinical anatomic aspects of radical hepatic surgery. J Int Coll Surg,1954,22:542-550.
    6. Couinaud C,Le foi ed.[TiEtudes Anatomiques et Chirurgicales,Masson,Paris,1957.
    7. Couinaud C. Anatomy of the Liver Revisited Ch4. Anatomy of the Dorsal Sector of theLiver. New considerations on liver anatomy. Paris:Pers Ed,1989.26-39.
    8. Filipponi F, Romagnoli P, Mosca F, et al. The dorsal sector of human liver:embryological, anatomical and clinical relevance[J]. Hepatogastroenterology,2000,47(36):1726-1731
    9.邢雪.肝静脉外科[M].1版.北京:人民卫生出版社,2005.95-96.
    10. Poon RT, Fan ST, Ng IO, et al. Significance of resection margin in hepatectomy for hepatocellular carcinoma:A critical reappraisal. Ann Surg,2000,231(4):544-551
    11. Shirabe K, Shimada M, Gion T, et al. Postoperative liver failure after major hepatic resection for hepatocellular carcinoma in the modern era with special reference to remnant liver volume. J Am Coll Surg,1999;188(3):304-309
    12. Cherrick GR, Stein SW, Leevy CM, et al. Indocyanine green:observations on its physical properties, plasma decay, and hepatic extraction. J Clin Invest1960;39:592-600.
    13. Imamura H, Sano K, Sugawara Y, et al. Assessment of hepatic reserve for indication of hepatic resection:decision tree incorporating indocyanine green test. J Hepatobiliary Pancreat Surg,2005;12(1):16-22.
    14. Fan ST. Methods and related drawbacks in the estimation of surgical risks in cirrhotic patients undergoing hepatectomy. Hepatogastroenterology,2002;49(43):17-20.
    15. Pugh RN, Murray-Lyon IM, Dawson JL, et al. Transection of the oesophagus for bleeding oesophageal varices. Br J Surg,1973;60(8):646-649
    16. Van Thiel DH, Wright HI, Fagiuoli S, et al. Preoperative evaluation of a patient for hepatic surgery. J Surg Oncol Suppl,1993;3:49-51.
    17. Lam CM, Fan ST, Lo CM, et al. Major hepatectomy for hepatocellular carcinoma in patients with an unsatisfactory indocyanine green clearance test. Br J Surg,1999;86(8):1012-1017
    18.戴朝六.肝脏储备功能的评估.中国实用外科杂志,2005,25(12):708-710.
    19. Paes-Barbosa FC, Ferreira FG, Szutan L A. Hepatectomy preoperative planning. Rev Col Bras Cir,2010;37(5):370-375.
    20. Clavien PA, Oberkofler CE, Raptis DA, e t al. What is critical for liver surgery and partial liver transplantation:size or quality. Hepatology,2010;52(2):715-729.
    21. Abdel-Misih SR, Bloomston M. Liver anatomy. Surg Clin North Am,2010;90(4):643-653.
    22. Reitinger B, Bornik A, Beichel R, et al. Liver s urgery plannin g using virtual reality. IEEE Comput Graph Appl,2006;26(6):36-47.
    23.王学浩,陆森.肝切除技术的现状.中国普外基础与临床杂志,2010;17(6):525-527.
    24. Mutter D, Soler L, Marescaux J. Recent advances in liver imaging. Expert Rev Gastroenterol Hepatol,2010;4(5):613-621.
    25. Togo S, Shimada H, Kanemura E, e t al. Usefulness of three-dimensional computed tomography for anatomic liver resections:sub subsegmentectomy, Surgery.1998;123(1):73-78.
    26. Selle D, Preim B, Schenk A, e t al. Analysis of vasculature f or liver surgery plan ning. IEEE Trans Med Imaging,2002;21(11):1344-1357.
    27. Jurgaitis J, Paskonis M, Pivorinas J, et al. The comparis on of2-dimensional w ith3-dimensional hepatic visualizaion in the clinical hepatic anatom y education. M edicina(Kaunas),2008;44(6):428-438.
    28. Ueno S, Sakoda M, Kurahara H, e t al. Preoperative segmentation of the liver, based on3D CT images, facilitates laparoscopic anatomic hepatic resection f or small nodular hepatocellular carcinoma in patients with cirrhosis. Hepatogastroenterology,2010;57(101):807-812.
    29. Radtke A, Sotiropoulos GC, Molmenti EP, et al. Computer assisted surgery plann ing for complex liver resections:when is it helpful? A single center experience over an8year period. Ann Surg,2010;252(5):876-883.
    30. vander Vort JR, van Dam RM, Stiphout RS, e t al. Virtual liver resection and volumetric analysis of the future liver remnant using open source image processing software. World J Surg,2010;34(10):2426-2433.
    31. Fujimoto J, Yamanaka J. Liver resection and transplantation using a novel3D hepatectomy simulation system. Adv Med Sci,2006;51:7-14.
    32. Yamanaka J, Saito S, Fujimoto J. Impact of preoperative planning using virtual segmental volumetry on liver resection for hepatoeellular carcinoma. World J Surg,2007;31:1249-1255.
    33.Kim YI, Fujita S, Hwang YJ, et al. Successful intermittent application of the pringle maneuver for30minutes during human hepateetomy:a clinical randomized study with use of a protease inhibitor. Hepatogastroenterology,2007;54:2055-2060.
    34. Belghiti J, Noun R, Malafosse R, et al. Continuous versus intermittent portal triad clamping for liver resection:a controlled study. Ann Surg,1999;22:369-375.
    35.戴卫东,胡继雄,钟德,等.高选择性区域血流阻断技术治疗复杂性肝癌.中南大学学报(医学版),2007;32:1085-1088.
    36. Makuuchi M, Mori T, Gunven P, et al. Safety of hemihepatic vascular occlusion during resection of the liver. Surg Gynecol Obstet,1987;164:155-158.
    37. Heaney JP, Stanton WK, Halbert DS, et al. An improved technic for vascular isolation of the liver:experimental study and case reports. Ann Surg,1966;163:237-241
    38. Huguet C, Nordlinger B, Galopin JJ, et al. Normothermic hepatic vascular exclusion for extensive hepatectomy. Surg Gynecol Obstet,1978,147:689-693
    39. Fortner JG. SMu MH, Kinne DW. et al. Major hepatic resection using vascular isolation and hypothermic perfusion. Ann Surg,1974,180:644-652.
    40.黄洁夫,刘唐彬.改进的肝脏原位低温灌注无血切肝术.中华外科杂志,1994;32:28-30.
    41. Belghiti J, Guevara OA, Noun R, et al. Liver hanging maneuve:a safe approach to right hepatectomy without liver mobilization. J Am Coll Surg,2001;193:109-111.
    42.彭淑牖,钱浩然,李江涛,等.绕肝提拉法在正中裂劈开肝脏切除中的意义.中华外科杂志,2005;43:1239-1242.
    43. Lin TY, Tsu K, Mien C, et al. Study on lobectomy of the liver. J Formosa Med Assoc,1958;57:742-749.
    44. Lin TY. A simplified technique for hepatic resection:the crush method. Ann Surg,1974;180:285-290.
    45. Tadatoshi Takayama, Masatoshi Makuuchi, Keiichi Kubota, et al. Comparison of Ultrasonic vs Clamp Transection of the Liver. Arch Surg,2001;136:922-928.
    46. Lersutel M, Selzner M, Petrowsky S, et al. How should transection of the liver be performed? a prospective randomized study in100consecutive patients: comparing four different transection strategies. Ann Surg,2005;242:381-422.
    47. Foschi D, Cellerino P, Corsi F, et al. The mechanisms of blood vessel closure in humans by the application of ultrasonic energy. Surg Endosc,2002;16(5):814-819.
    48. Schmidbauer S, Hallfeldt KK, Sitzmann G, et al. Experience with ultrasound scissors and blades (UltraCision) in open and laparoscopic liver resection. Ann Surg 2002;235:27-30.
    49. Kim J, Ahmad SA, Lowy AM, et al. Increased biliary fistulas after liver resection with the harmonic scalpel. Am Surg,2003;69:815-819.
    50. Fan ST, Lai EC, Lo CM, et al. Hepatectomy with an ultrasonic dissector for hepatocellular carcinoma. Br J Surg,1996;83:117-120.
    51.陈年平,林木生,陈明,等.螺旋水刀切除肝门区肿瘤2例.解剖与临床,2004;9(2):109-110.
    52. Rau HG, Wichmann MW, Schinkel S, et al. Surgical techniques in hepatic resections:Ultrasonic aspirator versus Jet-Cutter:A prospective randomized clinical trial. Zentralbl Chir2001;126:586-590.
    53. H. G. RAU, A. P. DUESSEL, S. WURZBACHER. The use of water-jet dissection in open and laparoscopic liver resection. HPB,2008;10:275-280.
    54. Smith JA. Possible venous air embolism with a new water jet dissector. Br J Anaesth,1993;70:466-467.
    55.赵红川,耿小平,刘付宝,等.百克钳辅助肝切除术的临床应用.中华肝胆外科杂志.2011;17(5):429-430.
    56.苏永杰,夏峰,王曙光,董家鸿.TissueLink电刀与CUSA刀在肝细胞肝癌切除术中的应用比较.实用临床医药杂志,2007;11(6):19-22.
    57. Feng Xia, Shuguang Wang, Kuansheng Ma, et al. The use of saline-linked radiofrequency dissecting sealer for liver transection in patients with cirrhosis. Journal of Surgical Research,2008;149:110-114.
    58.彭淑牖,李海军.肝切除术中出血的控制.肝胆外科杂志,2004;12(3):161-163.
    59. Romano F, Franciosi C, Caprotti R, et al. Hepatic surgery using the Ligasure vessel sealing system. World J Surg,2005;29:110-112.
    60. ATSUSHI NANASHIMA, SYUUICHI TOBINAGA, TAKAFUMIABO, et al. Usefulness of the Combination Procedure of Crash Clamping and Vessel Sealing for Hepatic Resection. J Surg Oncol,2010;102:179-183.
    61. Weber JC, Navarra G, Jiao LR, et al. New technique for liver resection using heat coagulative necrosis. Ann Surg,2002;236:560-563.
    62. Haghighi KS, Wang F, King J, et al. In-line radiofrequency ablation to minimize blood loss in hepatic parenchymal transaction. Am J Surg,2005;190:43-47.