稀土掺杂类普鲁士蓝化学修饰电极在CE-ECL分析技术中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毛细管电泳电致化学发光技术,是当今国际分析化学前沿领域中一种极具潜力的微量分离检测技术,它集成了电泳分离的高效、电化学发光检测的灵敏等特点,主要优势在于:费用低廉、快速分离、样品用量少、污染小。Ru(bpy)32+是电致化学发光分析中应用最广的发光试剂之一,作为一种重要的发光探针分子,Ru(bpy)32+具有水溶性好、化学性质稳定、氧化还原可逆等优点,被广泛应用于环境有害污染物、各种药物成分分析和各种生物活性物质的标记和快速定量检测等方面。然而,在CE-ECL检测中所用电极的表面状况对发光探针分子Ru(bpy)32+的发光效率影响极大,尤其是工作电极被吸附物毒化会严重降低检测的灵敏度和稳定性。类普鲁士蓝类无机多核过渡金属氰化物既具有导体性质又具有聚合物的三维网状结构,而且有极高的化学稳定性、电催化性能、机械强度高、易制备和低成本等特点,以稀土离子代替部分或全部高自旋三价铁离子合成的类普鲁士蓝化学修饰电极仅有极少量报道。
     因此本工作的主要内容是利用电化学沉积法制备了掺铕的类普鲁士蓝化学修饰铂电极,实验发现该修饰电极对Ru(bpy)32+有良好的催化氧化作用,并在此基础上建立了以Eu-PB修饰电极为工作电极,基于Ru(bpy)32+发光体系上的CE-ECL新分析方法,实现了对中、西药有效成分中一些含有叔胺基团化合物的高灵敏测定。
     论文的主要研究内容包括以下四部分:
     第一章综述
     第一节简单回顾了毛细管电泳(CE)的发展历史、现状和发展趋势,对CE的基本原理、分离模式和检测技术进行了简单介绍。第二节对电致化学发光检测法(ECL)进行了较为全面的综述,重点介绍了Ru(bpy)32+的电致化学发光模式。
     第三节综述了CE-ECL技术的研究现状以及在中、西药分析中的应用。第四节对化学修饰电极进行了简介,并重点综述了化学修饰电极在提高Ru(bpy)32+的发光效率中的应用。最后介绍了本论文的研究目的和意义。这部分共引用文献124篇。
     第二章用PB-Eu修饰铂电极改善CE-ECL分析灵敏度的效果评价研究
     本文探索了将化学修饰电极应用于毛细管电泳-电致化学发光检测法(CE- ECL)以及提高该方法灵敏度的可行性。制备了掺铕的类普鲁士蓝化学修饰(Eu-PB)的铂电极作为工作电极,实验发现该修饰电极在相对较低的检测电位(1.20V vs. Ag/AgCl)对Ru(bpy)32+有良好的催化氧化作用,并呈现出很好的重现性和稳定性。以三丙胺(TPA)和脯氨酸(Pro)为标示分子,对使用Eu-PB/Pt电极后CE-ECL法检测灵敏度的改善效果进行了评价。相比使用裸铂电极的情况,将Eu-PB修饰铂电极应用于CE-ECL体系后,TPA和Pro的发光强度均增加了4倍,线性范围拓宽1个数量级,分别为5×10-10 ~1×10-5 M和1×10-7~1×10-5M。按3倍的信噪比计算,TPA和Pro的检测限分别降至1.29×10-10M和5.30×10-8M。实验结果表明,将化学修饰电极应用于CE-ECL检测系统能明显提高原方法的灵敏度、扩展其适用范围,为基于Ru(bpy)32+发光体系的毛细管电泳电致化学发光检测法拓展了更广阔的应用领域。
     第三章毛细管电泳-电致化学发光法测定西药洛贝林的研究
     基于稀土掺杂类普鲁士蓝化学修饰电极对Ru(bpy)32+的电催化氧化可增敏电致发光信号,建立了一种毛细管电泳-电致化学发光测定西药成分洛贝林的新方法。研究了工作电极电位、缓冲液的酸度及其浓度、分离电压和进样时间等实验参数对洛贝林测定的影响。在优化的实验条件下,其浓度线性范围为1.5×10-7 M~1.5×10-4 M,检出限(3σ)为5.0×10-8 M。本法可直接用于注射液和人尿中洛贝林含量的测定,回收率为98.3 %~101.2 %,结果令人满意。
     第四章毛细管电泳-电致化学发光检测法分离测定中药马尿泡中的托烷类生物碱成分
     以铕离子掺杂类普鲁士蓝(Eu-PB)化学修饰铂电极为工作电极,采用毛细管电泳-电致化学发光联用法对四种托烷类生物碱成分(如山莨菪碱、东莨菪碱、阿托品和樟柳碱)进行了分离检测。考察了氧化电位值、运行缓冲液酸度、盐浓度和甲醇含量等实验条件对电泳分离效果、检测灵敏度的影响。在优化的实验条件下,以20 mM的磷酸盐(pH 8.0)-7 %甲醇(体积分数)为运行液,各组分在6 min内可达到基线分离,其峰面积测量值的相对标准偏差小于5.0 %,迁移时间的相对标准偏差小于1.1 % ( n= 12)。并将该法成功地应用于测定中药马尿泡根茎中的山莨菪碱和东莨菪碱的含量,其总体平均含量分别为27.8 g/kg、4.43 g/kg。样品的加标回收率为97.8~102 %。
Capillary electrophoresis (CE) with electrochemiluminescence detection (ECL) is a micro-quantity separation detection technology having greatest application potential in international analytical chemistry nowadays. It combines the high separative efficiency of CE with the high sensitivity of ECL detection. The main advantages of CE-ECL technique include decreased cost, fast separation, small consumption of samples and less pollution. Tris(2,2’-bipyridyl)ruth enium(II) (Ru(bpy)32+) is one of the most widely used electrochemiluminescence reagents. As an important luminescent probe, Ru(bpy)32+ has some advantages, such as good water soluble, good chemical stability and reversible oxidation-reduction behavior et al. So it has been widely applied to the labelling of environmentally pollutants, various medicines and bioactive substances and fast quantitative determination. However, the surface conditions of working electrode in the CE-ECL detection procedure impact greatly on the luminescence efficiency of Ru(bpy)32+. Especially the sensitivity and stability of determination greatly decreased, when the surface of working electrode was contaminated by adsorbing other substances. Prussian blue analogue not only has conductor nature and three-dimensional network structure of the polymer but also possesses higher chemical stability, finer electrocatalytic performance, higher mechanical strength, easily preparation and lower cost and so on. A few reports about prussian blue analogy chemically modified electrodes are available that are synthesized by rare-earth ions partial or entire instead of high-spin trivalent iron ions in PB analogy crystal lattic.
     Hence, a platinum electrode modified with Europinum(Ⅲ)-doped prussian blue analogue (Eu-PB) film was prepared by electrochemical deposition in this paper. The experiments revealed that the Eu-PB modified platinum electrode had good catalytic oxidation effects for Ru(bpy)32+. An analytical method based on Eu-PB modified platinum electrode applied to CE-ECL has been established for the determination of active ingredients in western medicine and Chinese herbs, which contain tertiary amine groups in the studied molecular construction. This paper includes four parts: Chapter One Review
     The first section has revieved the history, current situation and future trend of capillary electrophoresis. The fundamental theory of CE and its isolation mode and detection technology are introduced simply. In the second section, the electrochemiluminescence (ECL) detection is summarized in detail, pay attention to the mode of the electrochemiluminescence of Ru(bpy)32+. The present research of CE-ECL and its application in analysis of traditional Chinese medicines and western medicines are introduced in the third section. The fourth section summarize the chemically modified electrode and pay more attention to the application of chemically modified electrode in improving the luminescence efficiency of Ru(bpy)32+. At last, the purpose and meaning of this work are discussed. Totally 124 references are cited in the chapter one.
     Chapter Two The study of evaluation on improving analytical sensitivity of CE-ECL using Eu-PB modified platinum electrode
     Our work explored the feasibility of improving the sensitivity of CE-ECL detection method by applying chemically modified electrode. An Eu-PB modified platinum electrode was prepared as working electrode, good catalytic oxidation characteristic for Ru(bpy)32+ in the relatively lower potential(1.20 V vs. Ag/AgCl) was revealed and it has shown good reproducibility and stability. Tripropylamine (TPA) and proline (Pro) were made as labelled molecular for the evaluation of CE-ECL system using Eu-PB modified platinum electrode. Compared with bare platinum electrode, the absolute ECL intensity of TPA and Pro increased 3 times and linear range widened one order of magnitude, 5×10-10~1×10-5 M for TPA and 1×10-7~1×10-5M for Pro respectively, when Eu-PB modified platinum electrode was used in CE-ECL system. Based on three times the signal to noise ratio, the detection limits reduced to 1.29×10-10 M for TPA and 5.30×10-8 M for Pro. All experimental datas indicated that the sensitivity of CE-ECL detection system was significantly improved using Eu-PB modified platinum electrode and the CE-ECL detection method could be expanded a broader analytical area.
     Chapter Three Determination of Lobeline Hydrochloride by Capillary Electrophoresis with Electrochemiluminescence Detection
     A new capillary electrophoresis electrochemiluminescence (CE-ECL) method had been developed for the determination of lobeline hydrochloride, which was based Abstract on the fact that the Eu-PB modified platinum electrode exhibited higher electrocatalytic characteristic for Ru(bpy)32+. The effects of several factors such as the applied potential, the acidity and concentration of running buffer, separation voltage and injection time on CE-ECL were investigated. Under the optimum conditions, the ECL intensity was linear with the lobeline hydrochloride concentration in the range of 1.5×10-7 mol/L~1.5×10-4 mol/L. The detection limit (S/N=3) was 5.0×10-8 mol/L and the RSD was 1.3 % for 5.0×10-8 mol/L lobeline ( n = 11). The method had been successfully applied to the determination of lobeline hydrochloride in human urine and injections with satisfactory results. The recoveries were 98.3%~101.2%.
     Chapter Four Determination of tropane alkaloid components in Przewalskia tangutica Maxim. by capillary electrophoresis with electrochemiluminescence detection
     Based on an Eu-PB modified platinum electrode as the working electrode, a method for the simultaneous determination of four tropane alkaloids: anisodamine, scopolamine, atropine and anisodine, by capillary electrophoresis with electrochemiluminescence detection was established. The effects of several factors such as the detection potential, acidity and concentration of running buffer, and concentration of additive methanol for CE-ECL were investigated for the improvement of separation ability and detective limit. Under the optimum conditions, these four components could be separated each other fully in a 20 mmol/L phosphate + 7 % (V /V) methanol within 6 min. The relative standard deviations of peak area and migration time were less than 5.0 % and 1.1 % (n = 12) respectively for all four compounds. Thus, the method had been successfully applied to the determination of anisodamine, scopolamine in Przewalskia tangutica Maxim.. The overall average amount of 27.8 g/kg anisodamine and 4.43 g/kg scopolamine were found in the herbal rootstalk sample. The recoveries of two tropane alkaloids were 97.8~102 %.
引文
[1]韩素琴,刘二保,李华.流动注射-毛细管电泳联用及应用进展.理化检验-化学分册,2005,41(6):447.
    [2] Liu E B, Liu Y M, Cheng J K. Ultrasensitive chemiluminescence detection of aM vanadium(IV) by capillary electrophoresis. Anal Chim Acta, 2002, 456(2):177.
    [3] Liu E B, Liu Y M, Cheng J K. Separation of niobium(V) and tantalum(V) by capillary electrophoresis with chemiluminescence detection. Anal Chim Acta, 2001, 443(1):101.
    [4] Liu Y M, Liu E B, Cheng J K. Ultrasensitive chemiluminescence detection of sub-fM level Co(II)in capillary electrophoresis. J Chromatogr A, 2001, 939 (1-2):91.
    [5]刘彦明,刘二保,程介克.毛细管电泳场放大进样化学发光检测钴(Ⅱ).高等学校化学学报,2001,22 (12):2005.
    [6]刘彦明,刘二保,程介克.检测溶液中单分子.分析化学,2002,30 (8):1000.
    [7] Tiselius A. Protein chromatography on calcium phosphate columns. Trans Faraday Soc, 1937, 33(3): 524.
    [8] Hjerten S. Immunoabsorption of membrane-specific antibodies for determination of exposed and hidden proteins in human erythrocyte membranes. Chromatogr Rev, 1967, 9(2):122.
    [9] Virtanen R. An evaluation of some commercial lead(II)-selective electrodes. Acta Polytech Scand, 1974,123:1.
    [10] Mikkers F, Everaerts F. Concentration distributions in free zone electrophoresis. J.Chromatogr,1979, 169(1):111.
    [11] Jellum E, j?rnsonI B, Nesbakken R. Classification of human cancer cells by means of capillary gas chromatography and pattern recognition analysis. Journal of Chromatography, 1981, 218(2):209.
    [12] Hjerten S. High-performance electrophoresis: the electrophoretic counterpart of high-performance liquid chromatography. Chromatogr.1983, 270:1.
    [13] Hjerten S, Zhu M D. Adaptation of the equipment for high-performance electrophoresis to isoelectric focusing. Chromatogr, 1985, 346: 265.
    [14] Hjerten S. High-performance electrophoresis: Elimination of electroendosmosisand solute adsorption. J.Chromatogr, 1985, 347: 191.
    [15] Cohen A, Karger B. High-performance sodium dodecyl sulfate polyacrylamide gel capillary electrophoresis of peptides and proteins. J Chromatogr, 1987,397: 409.
    [16]张玉奎.现代生物样品分离分析方法.北京:科学出版社,2003.
    [17] Yin X B, Wang E K. Capillary electrophoresis coupling with electrochemiluminescence detection: a review. Analytica Chimica Acta, 2005, 533(1):113.
    [18]胡之德.高效毛细管电泳,兰州:兰州大学出版社,1997.
    [19]陈义.毛细管电泳技术及应用,北京:化学与应用化学出版中心,2006.
    [20] Gebauer P, Pantuckova P, Bocek P. Analytical Expediency of Acidic and Alkaline Background Electrolytes in Capillary Zone Electrophoresis: Role of System Zones in Single-Co-Ion Systems. Anal Chem, 1999, 71(16):3374.
    [21] Moini M, Bard A J. Hydroquinone as a Buffer additive for suppression of bubbles formed by electrochemical oxidation of the CE buffer at the outlet electrode in capillary electrophoresis/electrospray ionization-mass spectrometry. Anal.Chem, 1999, 71(8): 1658.
    [22] Li D, Fu S, Luoy C A. Prediction of electrophoretic mobilities effect of ionic strength in capillary zone electrophoresis. Anal.Chem, 1999, 71(3): 687.
    [23] Teresa G D, María A V, Nielene M D, Antonio S R. Response surface methodology in the development of a stacking-sensitive capillary electrophoresis method for the analysis of tricyclic antidepressants in human serum. Electrophoresis, 2005, 26(8):3518.
    [24] Zhang Y, Cheng J K. On-column chemiluminescence detection of rare earth ions with capillary electrophoresis. Journal of Chromatography A, 1998, 813(5):361.
    [25] Yin X B, Wang E K. Capillary electrophoresis coupling with electrochemilumin escence detection: a review. Anal Chim Acta, 2005, 533(1): 113.
    [26]任吉存,邓延倬,程介克.氨基酸的毛细管电泳分离及激光干涉检测的研究.分析化学,1995,23(6):644.
    [27]许鹏翔,袁东星,陈猛.高效毛细管电泳的光学检测.分析科学学报,1999,15(6):516.
    [28]王荣,贾正平,阮金秀.毛细管电泳-激光诱导荧光法测定缺氧缺血新生大鼠脑组织中氨基酸.分析化学,2006,34(4):543.
    [29]林伟丰,吴小林,陈缵光,李全文,蔡沛祥,莫金垣.毛细管电泳高频电导法测定几种中药中的丁香酚.高等学校化学学报,2006,27(11):2070.
    [30] Weena S, Orawon C, Rawiwan L, Joseph W. Microchip capillary electrophoresis electro chemical detection of hydrazine compounds at a cobalt phthalocyanine modified electro chemical detector. Talanta, 2005, 67(2):903.
    [31]吴友谊,林金明.芯片毛细管电泳电化学检测.化学通报,2004 (3):170.
    [32] Cao Y H, Wang Y, Ji C, Ye J N. Determination of liquiritigenin and isoliquiritigenin in Glycyrrhiza uralensis and its medicinal preparations by capillary electrophoresis with electrochemical detection. Journal of Chromatography A, 2004, 1042(4):203.
    [33] Shama N, Bai S W, Chung B C, Jung B H. Quantitative analysis of 17 amino acids in the connective tissue of patients with pelvic organ prolapse using capillary electrophoresis–tandem mass spectrometry. Journal of Chromatography B, 2008, 865(1-2):18.
    [34] Hu S S, Xu C L, Wang G P et al. Voltammetric determination of 4-nitrophenol at a sodium montmorillonite-anthraquinone chemically modified glass carbon electrode. Talanta, 2001, 54(1): 115.
    [35] Harvey N. Electrogenerated chemiluminescence of luminol using low-cost electrodes. Phys.Chem, 1929, 33:1456.
    [36] Zweig N. Electrochemiluminescence of aryl-substituted isobenzofurans tsoindoles and related substances. J.Am.Chem.Soc, 1967, 89(16):4091.
    [37] Faulkner L R, Brard A J. Micro-enzyme sensors with osmium complex as mediator for and amino acids. J.Electroananl.Chem, 1977, 79(2):211.
    [38] Kankare J J. Apparatus for mechanistic and analytical studies of the electrogenerated chemiluminescence of luminal. Anal.Chem.Acta, 1982 ,138(1-2):253.
    [39]王鹏,张文燕,周乱,朱果逸.免疫电化学发光.分析化学,1998,26(7):595.
    [40] Dodeigne C, Thunns L, Lejeune R. Chemiluminescence as diagnostic tool: areview. Talanta, 2000, 51(4):415.
    [41] Klieka L J. Monoclonal Antibody-based part-per-billion determination of polycyclic aromatic hydrocarbons: effects of haptens and formats on sensitivity and specificity. Anal.Chem, 1999, 71(2):305.
    [42] Jesus M G, Gillian M G, Tom M, Song Q J. Determination of morpholine fungicides using the tris(2,2′-bipyridine)ruthenium(II) chemiluminescence reaction. Analyst, 2000, 125(1): 765.
    [43] Yi X, Fiona G B, Jan C T, Andreas M. On-line monitoring of chromium(III) using a fast micromachined mixer/reactor and chemiluminescence detection. Analyst, 2000, 125(1): 677.
    [44] Wang X, Bobbitt D R. In situ cell for electrochemically generated Ru(bpy)32+-based chemiluminescence detection in capillary electrophoresis. Anal Chim Acta, 1999,383 (3):213.
    [45]陈国南,林荣儿,谢增鸿,段建平,张林. [Ru(bpy)2(L-Trp)]ClO4-KCl水溶液体系得电致化学发光特性研究.化学学报,1998,56(2):433.
    [46] Richard D G, Neil W B, Simon W L. Analytical applications of tris(2,2′-bipyridyl)ruthenium(III) as a chemiluminescent reagent. Anal Chim Acta, 1999, 378(1):1.
    [47] Juris A, Balzani B, Barigelletti F, Campagna S, Belser P, Vonzelewsky A. Ru( II ) polypyridine complexes-photophysics, photochemistry, electrochemistry, and chemiluminescence. Coord Chem Rev, 1988, 84(1):85.
    [48] Wallace W L, Bard A J. Electrogenerated chemiluminescence temperature dependence of the ECL efficiency of Ru(bpy)32+ in acetonitrile and evidence for very high excited state yields from electrontransfer reactions. J.Phys.Chem, 1979, 83(4):1350.
    [49] Tokel N E, Bard A J. Electrogenerated chemiluminescence. IX.electrochemistry and emission from systems containing tris(2,2'-bipyridine)ruthenium(II) dichloride. Am.Chem.Soc, 1972, 94(8):2862.
    [50] Fiaccabrin G C, Koudelka M, Hsueh Y T. Electrochemilumine scence of tris(2,2'-bipyridine)ruthenium in water at carbon microelectrodes. Anal.Chem, 1998, 70(19): 4157.
    [51] Chiang M T, Whang C W. Tris(2,2′-bipyridyl)ruthenium(III)-based electrochemiluminescence detector with indium/tin oxide working electrode for capillary electrophoresis. Journal of Chromatography A, 2001, 934(1-2):59.
    [52] Nonidez W K, Leyden D E. Effect of reducing agents of pharmacological importance on the chemiluminescence of tris(2,2'-bipyridine)ruthenium(II). Anal Chim Acta, 1978, 96(2): 401.
    [53] Noffsinger J B, Danielson N D. Electrochemical oxidation and reduction of thin films of Prussian blue. Anal Chem, 1987, 59(3):865.
    [54]陈曦.联吡啶钌电致化学发光原理及其在流动注射分析和高效液相色谱法中的应用.色谱,1998,16(4):301.
    [55]徐国宝,董绍俊.电致化学发光及其应用.分析化学,2001,29(1):103.
    [56] Cao W D, Xu G, Zhang Z. A novel tris(2,2′-bipyridyl) ruthenium(II) cathodic electrochemil uminescence in aqueous solution at glassy carbon electrode. Chem.Commun, 2002, 14(1):1540.
    [57] Forbes G A, Nieman T A, Sweedler J V. On-line electrogenerated Ru(bpy)33+ chemilumen escent detection ofβ-blockers separated with capillary electrophoresis. Anal.Chim.Acta, 1997, 347(3):289.
    [58] Tsukagoshi K, Miyamoto K, Saiko E. High-sensitivity determination of emetine dithiocar bamatecopper(II) complex using electrogenerated chemiluminescence detection of tris(2,2'-bipyridine)ruthenium(II). Anal.Sci, 1997, 13(2):639.
    [59] Tao Y, Lin Z J, Chen X M, Chen X, Wang X R. Tris(2,2′-bipyridyl)ruthenium(II) electrochemiluminescence sensor based on carbon nanotube/organically modified silicate films. Anal Chim Acta, 2007, 594(1):169.
    [60] Tsukagoshi K, Okuzono N, Nakajima R. Separation and determination of emetine dithiocarbamate metal complexes by capillary electrophoresis with chemiluminescence detection of the tris(2,2′-bipyridine)ruthenium(II) complex. Journal of Chromatography A, 2002,958 (1):283.
    [61] Bobbitt D R, Jackson W A, Hendrickson H P. Chemiluminescent detection of amines and amino acids using in situ generated Ru(bpy)33+ following separation by capillary electrophoresis. Talanta, 1998, 46(7):565.
    [62] Fang L, Yin X, Sun X, Wang E K. Determination of disopyramide in humanurine by capillary electrophoresis with electrochemiluminescence detection of tris(2,2′-bipyridyl)ruthenium(II). Analytica Chimica Acta, 2005, 537(1):25.
    [63] Yin X B, Dong S J, Wang E K. Analytical applications of the electrochemil umin escence of tris (2,2'-bipyridyl)ruthenium and its derivatives. Trends in Analytical Chemistry, 2004, 23(6):432.
    [64] Liu J F, Cao W D, Yang X R, Wang E K. Determination of diphenhydramine by capillary electrophoresis with tris(2,2'-bipyridyl)ruthenium(II) electrochemilum inescence detection. Talanta, 2003, 59(3):453.
    [65] Huang X J, Wang S L, Fang Z L. Combination of flow injection with capillary Electrophoresis Miniaturized capillary electrophoresis system with flow injection sample introduction and electrogenerated chemiluminescence detection. Anal Chim Acta, 2002, 456(1):167.
    [66] Yin X B, Qiu H, Sun X. Capillary electrophoresis coupled with electrochemilumi nescence detection using porous etched joint. Anal Chem, 2004, 76(13):3846.
    [67] Wang X, Bobbitt D R. Electrochemically generated Ru(bpy)33+-based chemiluminescence detection in micellar electrokinetic chromatography. Talanta, 2000, 53(3):337.
    [68] Kulmala S, Suomi J. Current status of modern analyticalluminescence methods. Analystical Chimica Acta, 2003, 500(1):21.
    [69]陈曦,李梅金,李真,易长青,王小如,王波.某些含氮神经药物的流动注射联吡啶钌电致化学发光研究.分析化学,2002,30(5):513.
    [70] Liu J F, Cao W D, Yang X R, Wang E K. Determination of diphenhydramine by capillaryelectrophoresis with tris(2,2′-bipyridyl)ruthenium(II) electrochemilumi nescence detection. Talanta, 2003, 59(2):453.
    [71] Yan J L, Liu J F, Cao W D, Sun X H, Yang X R, Wang E K. Determination of ben zhexol hydrochloride by capillary zone electrophoresis with an end-column electrochemiluminescence detection. Microchemical Journal, 2004, 76(1):11.
    [72] Fang L Y, Yin X B, Sun X H, Wang E K. Determination of disopyramide in human urine by capillary electrophoresis with electrochemiluminescence detection of tris(2,2′-bipyridyl)ruthenium(II). Anal Chim Acta, 2005, 537(1):25.
    [73] Cao W D, Liu J F, Qiu H B, Yang X R, Wang E K. Simultaneous determinationof tramadol and lidocaine in urine by end-column capillary electrophoresis with electrochemiluminescence detection. Electroanalysis, 2002, 14(22):1571.
    [74] Pan W, Liu Y J, Huang Y, Yao S Z. Determination of difenidol hydrochloride by capillary electrophoresis with electrochemiluminescence detection. Journal of Chromatography B, 2006, 831(2):17.
    [75] Li Y H, Wang C Y, Suna J Y, Zhoub Y C, You T Y, Wang E K. Determination of dioxopromethazine hydrochloride by capillary electrophoresis with electrochemilumine scence detection. Anal Chim Acta, 2005, 550(1):40.
    [76] Zhao X C, You T Y, Qiu H B, Yan J L, Wang E K. Electrochemiluminescence detection with integrated indium tin oxide electrode on electrophoretic microchip for direct bioanalysis of lincomycin in the urine. Journal of Chromatography B, 2004, 810(1):137.
    [77] Liu S C, Liu Y J, Li J, Guo M, Pan W. Determination of mefenacet by capillary electrophoresis with electrochemiluminescence detection. Talanta, 2006, 69(2):154.
    [78]苏彩娜,康艳辉,邓必阳.毛细管电泳-电致化学发光测定诺氟沙星的研究.分析化学,2006,34(3):135.
    [79]陈宏丽,张玉霞,程玉桥,等.微流控毛细管电泳-流动注射联用技术在分离和测定中药制剂中麻黄碱与伪麻黄碱的应用.兰州大学学报(自然科学版),2007,43(3):74.
    [80] Li J G, Zhao F J, Ju H X. Simultaneous determination of psychotropic drugs in human urine by capillary electrophoresis with electrochemiluminescence detection. Anal Chim Acta, 2006, 575(1):57.
    [81] Hsieh Y C, Whang C W. Analysis of ethambutol and methoxyphenamine by capillary electrophoresis with electrochemiluminescence detection. Journal of Chromatography A, 2006, 1122 (2):279.
    [82] Li J G, Zhao F J, Ju H X. Simultaneous electrochemiluminescence determination of sulpiride and tiapride by capillary electrophoresis with cyclodextrin additives. Journal of Chromatography B, 2006, 835(1):84.
    [83] Gao Y, Tian Y L, Sunb X H, Yin X B, Wang E K. Determination of ranitidine in urine by capillary electrophoresis-electrochemiluminescent detection. Journal ofChromatography B, 2006, 832(2):236.
    [84] Yin X B, Kang J Z, Fang L Y, Wang E K. Short-capillary electrophoresis with electro chemiluminescence detection using porous etched joint for fast analysis of lidocaine and ofloxacin. Journal of Chromatography A, 2004, 1055(2):223.
    [85] Yuan J P, Yin J Y, Wang E K. Characterization of procaine metabolism as probe for the butyrylcholinesterase enzyme investigation by simultaneous determination of procaine and its metabolite using capillary electrophoresis with electrochemiluminescence detection. Journal of Chromatography A, 2007, 1154(2):368.
    [86] Deng B Y, Kang Y H, Li X F, Xu Q M. Determination of erythromycin in rat plasma with capillary electrophoresis electrochemiluminescence detection of tris(2,2′-bipyridyl)ruthenium(Ⅱ). Journal of Chromatography B, 2007, 857(1): 136.
    [87]汪敬武,彭志兵,杨佳.毛细管电泳-电致化学发光法测定维C银翘片中的马来酸氯苯那敏.分析实验室,2007,26(4):26.
    [88] Wu Y Y, Li T, Xue J. Separation and determination of bupivacaine in plasma by capillary electrophoresis with tris(2,2′-bipyridyl)ruthenium(II) electrochemilumi nescence detection. Luminescence, 2005, 20(2):352.
    [89] Tao L, Yuan J P, Yin J Y, Zhang Z W, Wang E K. Capillary electrophoresis with electrochemiluminescence detection for measurement of aspartate aminotransferase and alanine aminotransferase activities in biofluids. Journal of Chromatography A, 2006, 1134 (2):311.
    [90] Cao Y, Lou C, Fang Y, Ye J. Determination of active ingredients of Rhododendron dauricum L.by capillary electrophoresis with electrochemical detection. J. Chromatogr. A, 2001, 943 (1): 153.
    [91] Gao Y, Tian Y L, Wang E K. Simultaneous determination of two active ingredients in Flosdaturae by capillary electrophoresis with electrochemilumines cence detection. Anal Chim Acta, 2005, 545 (1):137.
    [92] Zhou M, Ma Y J, Ren X N, Zhou X Y. Determination of sinomenine in Sinomenium acutum by capillary electrophoresis with electrochemiluminescence detection. Anal Chim Acta, 2007, 587(1):104.
    [93] Chen X, Yi C Q, Li M J, Wang X R. Determination of sophoridine and related lupin alkaloids using tris(2,2′-bipyridine)ruthenium electrogenerated chemiluminescence. Anal Chim Acta, 2002, 466(1):79.
    [94]虞科,林中营,程翼宇.粒子群算法优化中药化学成分的毛细管电泳分离条件.分析化学,2006,30(7):963.
    [95] Watkins B F, Behling J R, Kariv E. An evaluation of a spectrophotometrie scanning technique for measurement of plasma hemoglobin. J Am Chem Soc, 1975, 97(12):3549.
    [96] Moses P R, Wier L, Murray R W. Chemically modified tin oxide electrode. Anal Chem, 1975,47(12):1882.
    [97] Yin X B, Dong S J, Wang E K. Analytical applications of the electrochemiluminescence of tris(2,2′-bipyridyl)ruthenium and its derivatives. Trends in Analytical Chemistry, 2004, 23(6):432.
    [98]董绍俊,车广礼,谢远武.化学修饰电极.北京科学出版社,2003年.
    [99] Tucceri R. The change of the electron scattering at the gold film–poly-(o-amin ophenol) film interface after partial degradation of the polymer film: its relation with the electron transport process within the polymer film. J.Electroanal.Chem, 2004, 562(2):173.
    [100] Mart?′nez V. Mart?′nez, Arbeloa F. Lo′pez, Prieto J. Ban? uelos, Characterization of Supported Solid Thin Films of Laponite Clay. Intercalation of Rhodamine 6G Laser Dye. Langmuir, 2004, 20(14):5709.
    [101] Protiva R R, Takeyoshi O, Ohsaka T. Simultaneous electrochemical detection of uric acid and ascorbic acid at a poly(N,N-dimethylaniline) film-coated GC electrode. J Electroanal Chem, 2004, 561(1):75.
    [102] Imisides M D, John R, Riley P J, Wallace G.. The use of electropolymerization to produce new sensing surfaces: A review emphasizing electrode position of heteroaromatic compounds. Electroananlysis, 1991, 3(3):879.
    [103] Valber A P, Thiago R L C P, Renato S F. Studies on the electrochemical behavior of a cystine self-assembled monolayer modified electrode using ferrocyanide as a probe. Anal.Chem, 1980, 52(2): 315.
    [104] Lee J G, Yun K, Lim G S, Lee S E, Kim S, Park J K. DNA biosensor based onthe electrochemiluminescence of Ru(bpy)32+ with DNA-binding intercalators. Bioelect Rochemi stry, 2007, 70 (1):228.
    [105] Shultz L L, Stoyanoff J S, Nieman T A. Temporal and spatial analysis of electrogenerated Ru(bpy)33+ chemiluminescent reactions in flowing streams. Anal Chem, 1996, 68 (2):349.
    [106] Hendrik E, Günther W. Analytical in situ characterization of chemical reactivities at interfaces in aqueous systems. Marine Chemistry, 1996, 53(1-2):17.
    [107] Martin A F, Nieman T A. Glucose quantitation using an immobilized glucose dehydrogenase enzyme reactor and a tris(2,2′-bipyridyl)ruthenium(II) chemiluminescent sensor. Anal Chim Acta, 1993, 281(3):475.
    [108] Qi B, Yin X B, Du Y, Yang X R. Unique electrochemiluminescence behavior of Ru(bpy)32+ in a gold/Nafion/Ru(bpy)32+ composite. Materials Letters, 2008, 62(3): 458.
    [109] Ding S N, Xu J J.Tris(2,2′-bipyridyl)ruthenium(II)–Zirconia–Nafion composite modified electrode applied as solid-state electrochemiluminescence detector on electrophoretic microchip for detection of pharmaceuticals of tramadol, lidocaine and ofloxacin. Talanta, 2006, 70(3):572.
    [110] Wang H Y, Xu G B, Dong S J. Electrochemiluminescence sensor using tris(2,2′-bipyridyl)ruthenium(II) immobilized in Eastman-AQ55D–silica composite thin-films. Anal Chim Acta, 2003, 480(1-2):285.
    [111] Zhang L H, Dong S J. Electrogenerated chemiluminescence sensing platform using doped silica nanoparticles and carbon nanotubes. Electrochem Commun, 2006, 8(10):1687.
    [112] Choi H N, Lee J Y, Lyu Y K, Lee W Y. Tris(2,2′-bipyridyl)ruthenium(II) electrogenerated chemiluminescence sensor based on carbon nantube dispersed in sol–gel-derived titania–Nafion composite films. Anal Chim Acta, 2006, 565(1):48.
    [113] Choi H N, Lee J Y, Lyu Y K, Lee W Y. Tris(2,2′-bipyridyl)ruthenium(II) electrogenerated chemiluminescence sensor based on carbon nantube dispersed in sol–gel-derived titania–Nafion composite films. Talanta, 2006, 70(1):111.
    [114] Wang H Y, Xu G B, Dong S J. Electrochemistry and electrochemiluminescence of stable tris(2,2′-bipyridyl)ruthenium(II) monolayer assembled on benzene sulfonic acid modified glassy carbon electrode. Talanta, 2001, 55(1):61.
    [115] Ding S N, Xu J J. Tris(2,2′-bipyridyl)ruthenium(II)-zirconia-Nafion composite films applied as solid-state electrochemiluminescence detector for capillary electrophoresis. Electrophoresis, 2005, 2(4)6:1737.
    [116] Wei H, Wang E K. Solid-state electrochemiluminescence of tris(2,2′-bipyridyl) ruthenium. Trends in Analytical Chemistry, 2008, in press.
    [117] Guo S J, Wang E K. A novel sensitive solid-state electrochemiluminescence sensor material. Electrochemistry Communications, 2007, 9(4):1252.
    [118]张丽华,徐志爱,董绍俊.一种新型电化学发光乙醇生物传感器.中国化学会第二十五届学术年会论文摘要集(下册),2006年.
    [119] Wang H Y, Xu G B, Dong S J. Electrochemiluminescence of tris(2,2′-bipyridyl)ruthenium(II) ion-Exchanged in polyelectrolyte-silica composite thin-films. Electroanalysis, 2002, 14(4): 853.
    [120] Yia C Q, Tao Y, Wang B, Chen X. Electrochemiluminescent determination of meth amphetamine based on tris(2,2′-bipyridine)ruthenium(II) ion-association in organically modified silicate films. Anal Chim Acta, 2005, 541(1):75.
    [121] Neff V D. Electrochemical oxidation and reduction of thin films of Prussian blue. J.Electrochem.Soc, 1978, 125(3): 886
    [122] Deng C Y, Li M R, Xie Q J, Liu M L. New glucose biosensor based on a poly(o-phenylendiamine)/glucose oxidase-glutaraldehyde/Prussian blue/Au electrode with QCM monitoring of various electrode-surface modifications. Analytica Chimica Acta, 2006,557 (1):85.
    [123]周秀英,周敏,付周周,任小娜,宋青云.铕离子掺杂类普鲁士蓝化学修饰电极对三联吡啶钌(II)的电催化氧化研究.西北师范大学学报(自然科学版)),2007,43(1):54.
    [124]宋青云,马永钧,周秀英,任小娜.铕离子掺杂普鲁士蓝复合汞膜电极上替硝唑的方波伏安法测定.西北师范大学学报(自然科学版)),2007,43(5):54.
    [1] Wang X, Bobbitt D R. In situ cell for electrochemically generated Ru(bpy)32+-based chemiluminescence detection in capillary electrophoresis. Anal Chim Acta, 1999,383 (3):213.
    [2] Swinney K, Bornhop J D. Detection in capillary electrophoresis. Electrophoresis, 2000, 21 (14):1239.
    [3] Fahnrich K A, Pravda M, Guilbault G G. Recent applications of electrogenerated chemiluminescence in chemical analysis. Talanta, 2001, 54(4):531.
    [4] Arora A, Eijkel J C T, Morf W E, Manz A A. Electrochemiluminescence Detector Applied to Direct and Indirect Detection for Electrophoresis on a Microfabricated Glass Device. Anal Chem, 2001, 73(8):3282.
    [5] Gerardi R D, Barnett N W, Lewis S W. Analytical applications of tris(2,2′-bipyridyl)ruthenium(III) as a chemiluminescent reagent. Anal Chim Acta, 1999, 383 (1):1.
    [6] Chen X, Tao Y, Zhao L. Preliminary electrochemiluminescence study of allantoin in the presence of tris(2,2′-bipyridine)ruthenium (II). Luminescence, 2005, 20 (2):109.
    [7] Gonzalez J M, Greenway G M, Creedy T M, Song Q J. Determination of morpholine fungicides using the tris(2,2′-bipyridine)ruthenium(II) chemiluminescence reaction. Analyst, 2000, 125(4):765.
    [8] Bobbitt D R, Jackson W A, Herdrickson H P. Chemiluminescent detection of amines and amino acids using in situ generated Ru(bpy)33+ following separation by capillary electrophoresis. Talanta, 1998, 46 (4):565.
    [9] Yin X, Dong S J, Wang E K. Analytical applications of the electrochemiluminescence of tris(2,2′-bipyridyl)ruthenium and its derivatives. Trends in Analytical Chemistry, 2004, 23 (3):432.
    [10] Liu J, Yan J, Yang X, Wang E K. Miniaturized tris(2,2′-bipyridyl)ruthenium(II) electrochemiluminescence detection cell for capillary electrophoresis and flow injection analysis. Anal Chem, 2003, 75(9):3637.
    [11] Huang X, Fang Z, Chemiluminescence detection in capillary electrophoresis.Anal Chim Acta, 2000,414 (1-2):1.
    [12] Forbes G A, Nieman T A, Sweedler J V. On-line electrogenerated Ru(bpy)33+ chemiluminescent detection of P-blockers separated with capillary electrophoresis. Anal Chim.Acta, 1997, 347(2):289.
    [13] Liu J, Zhou W, You T, Li F. Detection of hydrazine methylhydrazine and isoniazid by capillary electrophoresis with a palladium-modified microdisk array electrode. Anal Chem, 1996, 68 (6):3350.
    [14] Cao W D, Jia J B, Yang X R, Dong S J, Wang E K. Capillary electrophoresis with solid-state electrochemiluminescence detector.Electrophoresis, 2002, 23(7):3692.
    [15] Cao W, Liu J, Yang X, Wang E K. New technique for capillary electrophoresis directly coupled with end-column electrochemiluminescence detection. Electrophoresis, 2002, 23 (5):3683.
    [16] Fang L, Yin X, Sun X, Wang E K. Determination of disopyramide in human urine by capillary electrophoresis with electrochemiluminescence detection of tris(2,2′-bipyridyl)ruthenium(II). Analytica Chimica Acta, 2005,537(1):25.
    [17] Choi H, Cho S, Park Y, Lee D W. Sol–gel-immobilized tris(2,2′-bipyridyl)ruthenium(II) electrogenerated chemiluminescence sensor for high-performance liquid chromatography. Anal Chim Acta, 2005, 541(1):49.
    [18] You T, Niu L, Gui J, Dong S J, Wang E K. Detection of hydrazine, methylhydrazine and isoniazid by capillary electrophoresis with a 4-pyridyl hydroquinone self-assembled microdisk platinum electrodeournal of Pharmaceutical and Biomedical. Analysis, 1999, 19 (1):231.
    [19] Zu Y, Bard A J. Electrogenerated chemiluminescence dependence of light emission of the tris(2,2′-)bipyridylruthenium(II)/tripropylamine system on electrode surface hydrophobicity. Anal Chem, 2001, 73(4):3960.
    [20] Neff V D. Electrochemical oxidation and reduction of thin films of Prussian blue, J.Electrochem.Soc, 1978, 125(5):886.
    [21] Wu P, Lu S, Cai C X. Electrochemical preparation and characterization of a samarium hexacyanoferrate modified electrode. J of Electroanalytical Chemistry, 2004, 569(1):143.
    [22] Wang H, Xu G, Dong S J. Electrochemiluminescence sensor usingtris(2,2′-bipyridyl)ruthenium(II) immobilized in Eastman-AQ55D–silica composite thin-films. Anal Chim Acta, 2003, 480(3):285.
    [23] Yin X, Qiu H, Sun X, Yan J, Liu J, Wang E K. Capillary electrophoresis coupled with electrochemiluminescence detection using porous etched joint. Analytical Chemistry, PAGE EST: 4.8.
    [24] Qiu H, Yan J, Sun X, Liu J, Cao W, Yang X, Wang E K. Microchip capillary electrophoresis with an integrated indium tin oxide electrode-based electrochemiluminescence detector. Anal Chem, 2003, 75(7):5435.
    [25] Chiang M. Tris(2,2′-bipyridyl)ruthenium(III)-based electrochemiluminescence detector with indium/ tin oxide working electrode for capillary electrophoresis. J of Chromatography A, 2001, 934(1):59.
    [1]中华人民共和国医药管理局科技教育司组织编写.药物化学.北京:中国医药科技出版社,1996,50.
    [2]中华人民共和国卫生部药典委员会编.中华人民共和国药典(二部).北京:化学工业出版社,2000,659.
    [3] Org N, Cairo E. Journal of Liquid Chromatography & Related Technologies,1998,21(5):741.
    [4]唐国风.流动注射化学发光测定盐酸洛贝林.四川教育学院学报,2005,21(3):81.
    [5] WANG X, Bobbitt D R. In situ cell for electrochemically generated Ru(bpy) 33+ -based chemiluminescence detection in capillary electrophoresis. Anal Chim Acta, 1999, 383(3):213.
    [6] Swinney K, Bornhop D J. Capillary electrophoretic separation and quantification of flavone-Oand C-glycosides. Electrophoresis, 2000, 21(7):1239.
    [7] Fahnrich K A, Pravda M, Guilbault G G. Recent applications of electrogenerated chemiluminescence in chemical analysis. Talanta, 2001, 54(4):531.
    [8] Aru A, Jan C T, et al. Capillary electrophoresis coupling with electrochemilumine scence detection. Anal Chem, 2001, 73(14):3282.
    [9] Wang Y, Zhu G Y, Wang E K. Electrochemical quartz crystal microbalance study for vanadium hexacyanoferrates: monitoring of film growth and ion effects during redox reactions. Journal of Electroanal Chem, 1997, 430(1-2):127.
    [10] Reddy S J, Dostal A, Scholz F. Solid state electrochemical studies of mixed nickel-iron hexacyanoferrates with the help of abrasive stripping voltammetry. Journal of Electroanal Chem, 1996, 403(1-2):209.
    [11]薄爱丽,林祥钦.循环伏安和现场红外光谱电化学研究镉(Ⅱ)在普鲁士蓝/铂修饰电极上的反应.分析化学,1999,27(4):392.
    [12] Joseph J, Gomathi H, Rao G P. Modification of carbon electrodes with zinc hexacyanoferrate. Journal of Electroanal Chem, 1997, 431(2):231.
    [13] Liu S Q. Platinum hexacyanoferrate: a novel prussian blue analogue with stable electroactive properties. Journal of Electroanal Chem, 1997, 426(1):27.
    [14]周秀英,周敏,付周周等.铕离子掺杂类普鲁士蓝化学修饰电极对三联吡啶钌(Ⅱ)的电催化氧化研究.西北师范大学学报(自然科学版), 2007,43(1):54.
    [15] Min Z, Ma Y J, Ren X N. Determination of sinomenine in sinomenium acutum by capillary electrophoresis with electrochemiluminescence detection. Anal Chim Acta, 2007, 587(1):104.
    [1]程庆春,李学仁,王洪,顾峻岭,傅若农.高效毛细管电泳法研究合成山莨菪碱的手性分离.药物分析杂志,1998,18(3):149.
    [2] Fan G R, Hong Z Y, Lin M, Yin X P, Wu Y T. Study of stereoselective pharmacokinetics of anisodamine enantiomers in rabbits by capillary electrophoresis. Journal of Chromatography B, 2004,809 (1):265.
    [3] Tao B, Ke A L, Hu W L. Investigation of the effect of space environment on the contents of atropine and scopolamine in Datura metel by capillary zone electrophoresis. Journal of Pharmaceutical and Biomedical Analysis, 2003, 31(3): 88.
    [4]扬意生,初称江措等.《迪庆藏药(下册)》,迪庆藏族自治区民族事务委员会编.云南民族出版社,1989年7月.
    [5]王伟,孙为德.电感耦合等离子体-原子发射光谱法间接测定氢溴酸山莨菪碱注射液.中国医药工业杂志,2003,34(4):183.
    [6]王伟,孙为德.间接原子吸收光谱法测定氢溴酸山莨菪碱.光谱学与光谱分析,2003,23(4):825.
    [7]王伟,孙为德.间接原子发射光谱法测定氢溴酸山莨菪碱.分析科学学报,2003,19(6):534.
    [8]冯素玲,时惠敏,樊静.曙红Y与消旋山莨菪碱的相互作用及其分析应用.分析化学,2006,34(8):1157.
    [9]林梅,张正行,安登魁,范国荣,胡晋红.莨菪类生物碱毛细管电泳分析.分析化学,1998,26(4):457.
    [10]于文静,姜茁松,张哲,刘庆波.高效液相色谱法测定痛安宁胶囊中东莨菪碱的含量.分析化学,2003,31(4):507.
    [11]朱若华,苏文斌,叶能胜,杨海英,谷学新.薄层扫描法测定洋金花中3种莨菪生物碱的研究.分析试验室,2003,22(4):56.
    [12]杨玉林,温忆敏,芮振荣,沈朝烨.气相色谱-质谱联用技术分析中毒样品中四种生物碱.中国卫生检验杂志,2004,14 (3):272.
    [13]韦寿莲,莫金垣,郑一宁.一种简单快速的高效毛细管电泳分离检测山莨菪碱和多沙唑嗪的方法.分析化学,2003,31(2):225.
    [14]饶毅,魏惠珍,王义明,罗国安.毛细管电泳法同时测定复方苦参注射液中三种生物碱含量.分析科学学报,2003 ,19(3):225.
    [15]李伟,李洪霞,柴金玲,谷学新.区带毛细管电泳法分离测定洋金花中莨菪烷类生物碱.分析实验室,2006,25(5):56.
    [16]李利军,冯军等.电堆集富集非水毛细管电泳同时测定水杨酸、肉桂酸、阿魏酸和香草酸.分析化学,2007,35(3):401.
    [17]张国华,王严琮,张永友,王磊,张玉奎.高效毛细管电泳测定黄连及成药中小蘖碱型生物碱的含量.色谱,1995,13(4):247.
    [18]王实强,首弟武.高效毛细管电泳法测定罂粟壳中生物碱的含量.色谱,1997,15(5):438.
    [19]尹学博,杨秀荣,汪尔康.毛细管电泳-电化学/电化学发光及其微芯片技术.化学进展,2005,17(2):181.
    [20] Yin X B, Wang E K. Capillary electrophoresis coupling with electrochemiluminescence detection: a review.Analytica Chimica Acta, 2005, 533(1):113.
    [21]周秀英,周敏,付周周等.铕离子掺杂类普鲁士蓝化学修饰电极对三联吡啶钌(Ⅱ)的电催化氧化研究.西北师范大学学报(自然科学版). 2007,43(1):54.
    [22] Zhou M, Ma Y J, Ren X N. Determination of sinomenine in Sinomenium acutum by capillary electrophoresis with electrochemiluminescence detection. Anal Chim Acta, 2007, 587 (1):104.
    [23] Simo P P, Ernst K. Capillary zone electrophoresis in non-aqueous n solutions: pH of the background electrolyte. Journal of Chromatography A, 2004, 1037(6):455.
    [24]吴俊森,林秀丽.手性药物山莨菪碱的毛细管电泳拆分研究.分析科学学报,21(3):277.
    [25]陈曦,李梅金,李真,易长青,王小如,王波.某些含氮神经药物的流动注射联吡啶钌电致化学发光研究.分析化学,2002,30(5):513.
    [26] Noffsinger J B. Electrochemical oxidation and reduction of thin films of Prussian blue, J Electrochem Soc, 1978, 125: 886.
    [27]陈曦,易长青,李梅金,李真,王小如.取代基对胺化合物联吡啶钌电致化学发光影响的研究.化学学报,2002,60(9):1662.