间接原子吸收光谱法药物分析研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
原子吸收光谱法是一种传统的分析方法,由于其灵敏、简便、快速、准确和选择性高,使其在金属元素分析中得到了广泛应用和发展。但其不能直接应用于有机化合物的测定,这就限制了原子吸收光谱法的应用范围。本文研究建立了流动注射-在线固相萃取-原子吸收光谱法测定盐酸左氧氟沙星、加替沙星等药物的分析方法,探讨了分析测定条件,并应用于药物制剂等样品的测定,获得满意的结果。
     本研究论文内容包括综述和研究报告两部分内容。
     第一部分:综述
     对近年来所发表的有关间接原子吸收光谱法在药物分析中的应用及进展作了详细的综述。内容包括:间接原子吸收光谱法的方法原理及其应用,流动注射-间接原子吸收光谱法在药物分析中的应用与发展,原子吸收联用技术的发展展望。
     第二部分:研究报告
     1流动注射-在线固相萃取-间接原子吸收光谱法测定药物中盐酸左氧氟沙星的含量
     本文建立了一种简单快速的检测药物制剂中盐酸左氧氟沙星含量的流动注射-在线固相萃取-火焰原子吸收间接测定法。该方法是基于左氧氟沙星与Fe(Ⅲ)在线定量连续生成阳离子络合物后,再与离子对试剂NH_4ClO_4中ClO_4~-结合形成中性离子对缔合物,由于C_(18)对反应生成的离子对缔合物有吸附,而对剩余未反应的Fe(Ⅲ)无吸附,因此可将二者分离,然后用乙醇溶液(60%)洗脱吸附的离子对缔合物,以FAAS法测定洗脱液中离子对缔合物中Fe(Ⅲ)的含量来间接测定左氧氟沙星的含量。当吸附时间为60s,采样速率为8.0mL·min~(-1)时,左氧氟沙星浓度在0.2-10.0μg·mL~(-1)范围内与原子吸收的吸光度值呈良好的线性关系,相关系数为0.9980,检出限为0.08μg·mL~(-1),相对标准偏差(RSD)为1.6%(c=5.0μg·mL~(-1)左氧氟沙星,n=11)。该方法应用于药物制剂中盐酸左氧氟沙星的含量测定,结果令人满意。
     2流动注射-在线离子对固相萃取-间接原子吸收光谱法测定药物中加替沙星的含量
     提出了一个流动注射在线离子对固相萃取火焰原子吸收光谱法间接分析加替沙星的测定体系。在这个体系中,加替沙星在适当的酸度条件下与Fe(Ⅲ)形成2:1的阳离子络合物,再与离子对试剂ClO_4~-结合形成中性离子对缔合物,通过C_(18)固相萃取柱吸附反应生成的离子对缔合物,剩余未反应的Fe(Ⅲ)用水清洗后,再用乙醇、水和乙腈的混合液(48:32:20)洗脱吸附在C_(18)固相萃取柱上的离子对缔合物送至原子吸收检测器中加以测定。在最优化条件下,当反应萃取时间为60s时,加替沙星浓度在0.05-12.50μg·mL~(-1)范围内与原子吸收的吸光度呈良好的线性关系,检出限为0.02μg·mL~(-1),采样频率为24次/小时,对5.0μg·mL~(-1)的加替沙星进行11次测定,其相对标准偏差(RSD)为2.0%。该方法用于胶囊和片剂中加替沙星含量的测定,其结果与紫外分光光度法结果一致,回收率为95%-106%。
The atomic absorption spectrometry is a traditional analytical method.Flame atomic absorption spectrometry (FAAS), which is frequently used for thedetermination of metal ions because of relatively high sensitivity and selectivity, is lessused for indirect determination of organic species. This thesis has studied the analyticalmethod of determination of levofloxacin, gatifloxacin by flow injection on-line solidphase extraction flame atomic absorption spectrometry. The method has been applied tothe analysis of pharmaceutical samples with satisfactory results.
     There are two parts in this thesis: review and study reports.
     Part One: review
     The application and progress of indirect flame atomic absorption spectrometry(FAAS) is reviewed, including analysis principle, application of indirect AAS inpharmaceutical analysis, application and development of FIA-AAS indirect method andprogress of AAS coupling technique.
     Part Two: study reports
     1. Flow Injection On-line Solid Phase Extraction Flame Atomic AbsorptionSpectrometry for Indirect Analysis of Levofloxacin.
     A novel approach for the indirect analysis of levofloxacin was developed withflame atomic absorption spectrometry (FAAS) coupled to flow injection (FI) on-linesolid-phase extraction (SPE). The method is based on the adsorbing preconcentrationand separation of levofloxacin as an ion-pair complex of levofloxacin-Fe(Ⅲ)-ClO_4 on aC_(18) extraction column and FAAS detection of Fe(Ⅲ) in the ion-pair complex elutedsubsequently with ethanol. The effects of various experimental conditions wereinvestigated. At a 60 s adsorption time and 8.0 mL.min~(-1) sample consumption rate, thecalibration curve was linear over the range of 0.2-10.0μg.mL~(-1) with with a linear correlation of 0.9980. The detection limit was 0.08μg·mL~(-1). The precision (%RSD) for11 replicate measurements of 5.0μg·mL~(-1) levofloxacin was 1.6%. The proposedmethod was applied to the analysis of levofloxacin in pharmaceutical formulations withsatisfactory results.
     2. On-line ion-pair solid phase extraction flow injection flame atomic absorptionspectrometry for indirect determination of gatifloxacin.
     A flow injection flame atomic absorption spectrometry (FAAS) with on-lineion-pair solid phase extraction (IP SPE) was developed for indirect determination ofgatifloxacin. In a flow injection system, gatifloxacin reacted first with ferric to form a2:1 complex cation, then the cation reacted with ClO_4~- to form a neutral ion-paircomplex of gatifloxacin-Fe (Ⅲ)-ClO_4 and adsorbed on C_(18) solid phase extractioncolumn, while excessive ferric was washed with H_2O to waste. The ion-pair complexadsorbed was eluted with the mixture of ethanol, water and acetonitrile (48:32:20, v/v/v)and Fe (Ⅲ) in the complex was determined with FAAS. The optimization of variousexperimental conditions was investigated. When the reaction and extraction time was 60s, the calibration curve was linear in the range from 0.05 to12.50μg.mL~(-1) with a relativestandard deviations of 2.0% (n=11, c=5.0μg·mL~(-1)), and the detection limit was 0.02μg.mL~(-1) of gatifloxacin. The analytical frequency was 24 per hour. The method wasvalidated by analysis of gatifloxacin in capsules and tablets, and the results agreed wellwith those obtained by the UV method. The recoveries obtained were 95%-106%.
引文
[1] M.G. Vargas, M. Milla, P.J.A. Bustamante. Atomic-absorption spectroscopy as a tool for the determination of inorganic anion sand organic compounds [J]. Analyst, 1983, 108: 1417-1449.
    [2] E.R. Clark, E-S.A.K. Yacoub. Indirect determination of organic compounds by atomic absorption spectrophotometry [J]. Talanta, 1984, 31(1): 15-27.
    [3] 陈恒武,刘劲松,流动注射在线沉淀共沉淀预富集分离富集与原子光谱联用的进展[J].理化检验·化学分册,1999,35(1):42-45.
    [4] A.V. Kovatsis. Indirect atomic absorption in toxicology [J]. Human Toxicology, 1985, 1: 193-215.
    [5] 徐伯兴,徐通敏,方禹之.间接原子吸收法在分析中的应用(一)[J].化学世界,1985,3:115-117.
    [6] 徐伯兴,徐通敏,方禹之.间接原子吸收法在分析中的应用(二)[J].化学世界,1985,4:155-156.
    [7] 徐伯兴,徐通敏,方禹之.间接原子吸收法在分析中的应用(三)[J].化学世界,1985,5:196-197.
    [8] 徐伯兴,徐通敏,方禹之.间接原子吸收法在分析中的应用(四)[J].化学世界,1985,6:235-237.
    [9] 李力争.原子吸收法测定环境样品中无机阴离子的进展[J].光谱实验室,1991,8(1/2):101-106.
    [10] 李力争.原子吸收光谱法在测定环境中无机阴离子和有机物的应用(Ⅲ)[J].化工环保,1991,11(6):359-363.
    [11] 李力争.原子吸收光谱法在测定环境中无机阴离子和有机物的应用(Ⅱ)[J].化工环保,1991,11(5):269-275.
    [12] 李力争.原子吸收光谱法在测定环境中无机阴离子和有机物的应用(Ⅰ)[J].化工环保,1991,11(4):227-230.
    [13] 李力争.原子吸收光谱法测定环境样品中有机物的进展[J].分析实验室,1990,9(1):46-51.
    [14] 陈浩,江祖成.原子光谱分析中的间接测定法[J].光谱学与光谱分析,1992,12(3):65-70.
    [15] 郎惠云,谢志海,程颖,等.原子吸收光谱法在有机分析中的应用及进展[J].西北大学学报(自然科学版),1993,23(1):83-88.
    [16] 王吉德,田笠卿.原子吸收光谱法在有机分析中的应用[J].分析科学学报, 1995,11(2):74-79.
    [17] 焦更生.原子吸收光谱法在药物分析中的应用和发展[J1.渭南师范学院学报,2002,17(2):36-38.
    [18] 杨光,郎惠云.原子吸收光谱法在药物分析中的应用及进展[J].分析科学学报,2002,16(1):76-81.
    [19] 霍广进,葛春艳.间接原子吸收分析技术[J].河北师范大学学报(自然科学版),2003,27(4):393-396.
    [20] 张勇,潘景浩,王天壮.原子吸收法间接测定益母草注射液中总生物碱含量的研究[J].山西大学学报(自然科学版),1997,20(1):73-75.
    [21] 郗英欣,郎惠云,谢志海,等.原子吸收光谱法间接测定烟酸含量的研究[J].西安交通大学学报,1997,31(4):87-92.
    [22] 李媛,郎惠云,谢志海.间接原子吸收法测定药物中盐酸洛美沙星含量[J].西北大学学报(自然科学版),2000,20(1):39-42.
    [23] 焦更生,李媛,郎惠云.间接原子吸收法测定硫酸庆大霉素[J].分析试验室,2001,20(6):55-57.
    [24] 郎惠云,杨光,谢志海.间接原子吸收法测定硫酸小诺霉素[J].西北大学学报(自然科学版),2003,33(4):431-434.
    [25] 宋雅茹,王尚芝,等.火焰原子吸收光谱法测定环丙沙星[J].北京师范大学学报(自然科学版),2002,38(1):80-83.
    [26] 郭子英,王尚芝,等.火焰原子吸收光谱法间接测定诺氟沙星[J].化学分析计量,2003,12(1):22-24.
    [27] 张胜花,詹国庆,成凤桂.Ca~(2+)沉淀-原子吸收光度法间接测定甘草酸含量[J].中南民族大学学报(自然科学版),2003,22(4):25-27.
    [28] 郎惠云,廖晓玲,董发昕,等.间接原子吸收法测定茶叶中茶多酚的含量[J].西北大学学报(自然科学版),2003,33(6):683-685.
    [29] 王伟,孙为德.间接原子吸收光谱法测定甲基硫酸新斯的明[J].分析试验室,2003,22(4):62-63.
    [30] 王伟,孙为德.间接原子吸收光谱法测定氢溴酸山莨菪碱[J].光谱学与光谱分析,2003,23(4):825-826.
    [31] 张旭龙,王吉德,赵雅,等.原子吸收光度法间接测定甲基托布津的含量[J].分析试验室,2003,22(2):45-47.
    [32] 上官小东,郎惠云,马亚军.原子吸收法间接测定银杏黄酮[J].分析试验室,2004,23(12):48-50.
    [33] 马亚军,郎惠云,董发昕.间接原子吸收法测定葡萄籽提取物中的原花青素[J].分析化学,2005,33(1):120-122.
    [34] 张颖,张立木,杨志孝,等.原子吸收光度法间接测土茯苓中单宁含量[J].中国现代应用药学杂志,2006,23(1):55-57.
    [35] 刘咏,任凤莲,蔡震峰.间接原子吸收法测定黄姜中的薯蓣皂甙元[J].广州化学,2006,31(4):32-36.
    [36] 张继伦,姚延伸,李华斌.火焰原子吸收法间接测定曲通-100[J].光谱学与光谱分析,1996,16(1):121-124.
    [37] 张勇,晋淑媛,潘景浩.原子吸收法间接测定感冒通片中双氯灭痛含量的研究[J].山西临床医药,1997,6(1):42-44.
    [38] 杨光,郎惠云,杨德玉,等.原子吸收光谱法间接测定盐酸布比卡因[J].分析化学,1998,26(9):1105-1107.
    [39] 周俊明,龚育,程向红,艾军.火焰原子吸收法测定麦迪霉素的含量[J].武汉化工学院学报,1998,20(6):28-31.
    [40] 孙智敏,张德强,孙汉文.火焰原子吸收法间接测定调味品中的谷氨酸[J].分析仪器,2000,(3):33-35.
    [41] 张茂林,夏河山,阎素清,韩立瑞.原子吸收分光光度法间接测定双氯芬酸胆碱含量[J].郑州大学学报(医学版),2004,39(5):797-798.
    [42] 焦更生,陈养民,王淑荣.间接原子吸收法测定药物制剂中布洛芬的含量[J].分析化学,2004,32(10):1420.
    [43] 焦更生,曹惠兰,祝宝林.间接原子吸收法测定尼可刹米[J].分析试验室,2004,23(5):71-73.
    [44] 李媛,郎惠云,谭峰,等.盐酸苯海拉明的原子吸收法测定[J].分析试验室,2000,19(5):9-11.
    [45] 熊强,郎惠云,郗英欣,等.原子吸收光谱法在药物分析中的应用(Ⅱ)—维生素B_2的新分析方法研究[J].西北大学学报,1997,27(4):316-319.
    [46] 张正奇,曹祉祥.原子吸收分光光度法测定异烟肼[J].分析科学学报,1996,12(1):52-54.
    [47] 杨小红,光晓元.原子吸收法间接测定果蔬中维生素C含量的研究[J].安徽农业科学,2005,33(1):72.
    [48] 焦更生,郎惠云,董发昕,等.间接原子吸收法测定药物制剂中利血生的含量[J].分析化学,2002,30(1):72-74.
    [49] 谢志海,王亚亭,郎惠云.间接原子吸收法测定头孢菌素的方法研究[J].西北 大学学报(自然科学版),2002,32(1):23-25.
    [50] 王尚芝,关翠林,任玉荣.火焰原子吸收光谱法间接测定青霉素V钾[J].化学分析计量,2004,13(4):24-26.
    [51] 钟爱国.原子吸收光谱法间接测定绿茶叶中叶绿素总量[J].理化检验·化学分册,2005,41(12):892-893.
    [52] 焦更生,曹会兰.原子吸收法间接测定呋哺唑酮[J].分析试验室,2006,25(8):88-90.
    [53] 詹国庆.水解-Cu(Ⅱ)沉淀间接原子吸收法测定头孢氨苄[J].中南民族大学学报(自然科学版),2005,24(3):27-28.
    [54] S.J. Simon, D.E Boltz. The indirect atomic absorption spectrometric determination of several organic bases using molybdophosphoric acid [J]. Microchemical Journal, 1975, 20(4): 468-475.
    [55] 欧阳津.流动注射.原子吸收法测定苦杏仁甙[J].分析化学,1993,21(11):1361-1363.
    [56] 田笠卿,王吉德,王连生,等.原子吸收法在有机分析中的应用(Ⅰ)—油菜籽中硫代葡萄糖苷的测定[J].高等学校化学学报,1988,9(4):328.
    [57] 胡欣,周新伟.原子吸收光谱法测定维生素B_(12)及注射液的含量[J].中国现代应用药学,1989,(3):35-37.
    [58] 李海涛,汤鋆,于村,俞莎,马冰洁,应英.浊点萃取.原子吸收法间接检测食品中维生素B_(12)方法的研究[J].中国卫生检验杂志,2005,15(7):821-822.
    [59] 安登魁主编.《药物分析》[M].济南:济南出版社,1992:890.
    [60] B. Karlberg, S. Thelander. Extraction based on the flow-injection principle: Part Ⅰ. Description of the extraction system [J]. Analytica Chimica Acta, 1978, 98(1): 1-7.
    [61] F.H. Bergamin, J.X. Medeiros, B.E Reis, E.A.G. Zagatto. Solvent extraction in continuous flow injection analysis: Determination of molybdenum in plant material [J]. Analytica ChimicaActa, 1978, 101(1): 9-16.
    [62] R. Montero, M. Gallego, M. Valcarcel. Determination of amphetamines by use of a liquid-liquid extractor coupled on-line to an atomic absorption spectrometer [J]. Analytica Chimica Acta, 1991, 252 (1/2): 83-88.
    [63] R.E. Santelli, M. Gallego, M. Valcaircel. Determination of bromazepam by coupling a continuous liquid-liquid extractor to an atomic-absorption spectrometer [J]. Talanta, 1991, 38(11): 1241-1245.
    [64] M. Eisman, M. Gallego, M. Valcarcel. Coupling of a continuous liquid-liquid extractor to a flame atomic absorption spectrometer for the determination of alkaloids [J]. Journal of Analytical Atomic Spectrometry, 1992, 7 (8): 1295-1298.
    [65] M. Eisman, M. Gallego, M. Valcarcel. Automatic continuous-flow method for the determination of cocaine [J]. Analytical Chemistry, 1992, 64: 1509-1512.
    [66] M. Eisman, M. Gallego, M. Valcarcel. Automatic determination of amylocaine and bromhexine by atomic absorption spectrometry [J]. Journal of Pharmaceutical and Biomedical Analysis, 1993, 11 (4/5): 301-305.
    [67] S.L. Lin, H.P. Huang. The design of an on-line flow injection system with a gravitational phase separator for flame atomic absorption spectrometry and its analytical performance [J]. Talanta, 1993, 40(7): 1077-1083.
    [68] M.C. Yebra, R.M. Cespon. Automatic determiantoin of quinine by atomic absorption spectrometry [J]. Microchemical Journal, 2000, 65(1): 81-86.
    [69] M.C. Yebra, R.M. Cespon. Indirect atomic absorption spectrometric determination of citric acid by continuous precipitation [J]. Fresenius' Journal of Analytical Chemistry, 1999, 365(4): 370-373.
    [70] M.C. Yebra, P. Bermejo. Indirect determination of cyclamate by an on-line continuous precipitation-dissolution flow system [J]. Talanta, 1998, 45(6): 1115-1122.
    [71] 李亚荣,郎惠云,魏永峰,等.流动注射-间接原子吸收法测定乌拉地尔[J].分析试验室,2003,22(3):16-18.
    [72] 谢志海,王亚婷,郎惠云.流动注射.原子吸收法间接测定呋喃妥因[J].分析化学,2003,31(1):66-69.
    [73] 谢志海,王亚婷,袁红安,郎惠云.流动注射.原子吸收法间接测定扑尔敏[J].分析化学,2004,32(11):1421-1425.
    [74] 张维平,杨光,郎惠云.流动注射梯度稀释.原子吸收光谱法间接测定异烟肼[J].分析试验室,2003,22(6):26-29.
    [75] 汪海涛,王延东.流动注射在线沉淀原子吸收法测定盐酸苯海拉明[J].仪器仪表学报,2004,25(4):1026-1027.
    [76] M.C. Yebra, M. Gallego, M. Valcarcel. Automatic determination of reducing sugars by atomic absorption spectrometry [J]. Analytica Chimica Acta, 1993, 276(2): 385-391.
    [77] M. Valcarcel, M. Gallego. Automatic precipitation-dissolution in continuous flow systems [J]. Trends in Analytical Chemistry, 1989, 8(1): 34-40.
    [78] M.C. Yebra, M. Gallego, M. Valcarcel. Precipitation flow-injection method for the determination of saccharin in mixtures of sweeteners [J]. Analytica Chimica Acta, 1995, 308 (1-3): 275-280.
    [79] S. Laredo Ortiz, J. Garcia Mateo, J. Martinez Calatayud. Indirect determination of levamisole by AAS and precipitation in a continuous-flow assembly [J]. Microchemical Journal, 1993, 48 (1): 112-117.
    [80] R. Montero, M. Gallego, M. Valcarcel. Indirect atomic absorption spectrometric determination of sulphonamides in pharmaceutical preparations and urine by continuous precipitation [J]. Journal of Analytical Atomic Spectrometry, 1988, 3(5): 725-730.
    [81] R. Montero, M. Gallego, M. Valcarcel. Indirect atomic absorption spectrometric determination of local anaesthetics in pharmaceutical preparations with a flow-injection precipitation technique [J]. Analytica Chimica Acta, 1988, 215: 241-248.
    [82] J. Martinez Calatayud, J.V. Garcia Mateo. FIA determination of chlorhexidine by means of the precipitation with Cu (II) [J]. Journal of Pharmaceutical and Biomedical Analysis, 1989, 7 (12): 1441-1445.
    [83] M. Eisman, M. Gallego, M. Valcarcel. Indirect flame atomic absorption spectrometric determination of papaverine, strychnine and cocaine by continuous precipitation with Dragendorffs reagent [J]. Journal of Analytical Atomic Spectrometry, 1993, 8 (8): 1117-1120.
    [84] M. Eisman, M. Gallego, M. Valcarcel. Determination of papaverine and cocaine by use of a precipitation system coupled on-line to an atomic absorption spectrometer [J]. Journal of Pharmaceutical and Biomedical Analysis, 1994, 12 (2) 179-184.
    [85] M.C. Yebra, M. Gallego, M. Valcarcel. Indirect flow-injection determination of tannins in wines and tea by atomic absorption spectrometry [J]. Analytica Chimica Acta, 1995, 308 (1-3): 357-363.
    [86] R. Montero, M. Gallego, M. Valcarcel. Determination of chlordiazepoxide by zinc or cadmium reduction in a continuous system followed by atomic absorption spectrometric detection [J]. Analyst, 1990,115(7): 943-946.
    [87] R. Montero, M. Gallego, M. Valcarcel. Indirect flow-injection determination of methadone by atomic absorption spectrometry [J]. Analytica Chimica Acta, 1990, 234: 433-437.
    [88] R. Montero, M. Gallego, M. Valcarcel. Determination of chloramphenicol by coupling a continuous reduction system to an atomic absorption spectrometer [J]. Talanta, 1990, 37 (12): 1129-1132.
    [89] L. Lahuerta Zamora, J.V. Garcia Mateo, J. Martinez Calatayud. Entrapment of reagents in polymeric materials. Indirect atomic absorption spectrometric determination of isoniazid by oxidation with manganese dioxide incorporated in polyester resin beads in a flow-injection system [J]. Analytica Chimica Acta, 1992, 265 (1): 81-86.
    [90] L. Lahuerta Zamora, J. Martinez Calatayud. Immobilization of reagents by polymeric materials determination of metamizol [J]. Talanta 1993, 40(7): 1067-1071.
    [91] L. Lahuerta Zamora, J. Martinez Calatayud. Continuous flow injection-atomic absorption spectrometric method for the determination of ondansetron [J]. Analytica Chimica Acta, 1995, 300(1-3): 143-148.
    [92] M. Noroozifar, M. Khorasani-Motlagh, K. Akhavan. Atomic absorption spectrometry for the automatic indirect determination of ascorbic acid based on the reduction of manganese dioxide [J]. Analytical Sciences, 2005, 21(6): 655-659.
    [93] M. Khorasani-Motlagh, S.N. Hosseini. Indirect determination of cyanide by single-line flow injection analysis-flame atomic absorption spectrometry using zinc carbonate solid-phase reactor [J]. Chemia Analityczna, 2006, 51(2): 285-293.
    [94] M. Noroozifar, M. Khorasani-Motlagh, S.N. Hosseini. Flow injection analysis-flame atomic absorption spectrometry, system for indirect determination of cyanide using cadmium carbonate as a new solid-phase reactor [J]. Analytica Chimica Acta, 2005, 528(2): 269-273.
    [95] J.V. Garcia Mateo, J. Martinez Calatayud. Entrapped copper (II) carbonate for indirect determination of glycine by flow injection atomic absorption spectrometry [J]. Analytica Chimica Acta, 1993, 274(2): 275-281.
    [96] J. Martinez Calatayud, J.V. Garcia Mateo. High-pressure flow-injection assembly. Indirect determination of glycine by atomic absorption spectrometry [J]. Analyst, 1991,116(3): 327-330.
    [97] G.A. Rivas, J. Martinez Calatayud. FIA-AAS determination of salicylic acid by a solid-phase reactor of copper carbonate incorporated in polyester resin beads [J]. Talanta, 1995, 42 (9): 1285-1289.
    [98] E.B. Milosavljevic, L. Solujic, J.L. Hendrix, J.H. Nelson. Determination of ethylenediaminetetraacetic acid by flame atomic absorption spectrometry with a chelating ion-exchange flow injection conversion system [J]. Analyst, 1989, 114(7): 805-808.
    [99] Z.Q. Zhang, Y.C. Jiang. Flame atomic absorption spectrometry for the automatic indirect determination of ascorbic acid based on flow injection and reduction of chromate [J]. Atomic Spectroscopy, 2000, 21(3): 100-104.
    [100] Y.C. Jiang, Z.Q. Zhang, J. Zhang. Flow-injection on-line concentrating and flame atomic absorption spectrometry for indirect determination of ascorbic acid based on the reduction of iron (Ⅲ) [J]. Analytica Chimica Acta, 2001, 435(2): 351-355.
    [101] Z.Q. Zhang, Y.C. Jiang. Flow injection flame atomic absorption spectrometry for the indirect analysis of noffloxacin [J]. Atomic Spectroscopy, 2001, 22(6): 429-432.
    [102] Z.Q. Zhang, Y.C. Jiang, H.T. Yah. Indirect determination of ciprofloxacin by flow injection flame AAS based on forming complex with Fe (Ⅲ) [J]. Atomic Spectroscopy, 2003, 24(1): 27-30.
    [103] M.C. Yebra-Biurrun, R.M. Cesp6n-Romero, P. Bermejo-Barrera. Indirect flow-injection determination of ascorbic acid by flame atomic absorption spectrometry [J]. Mikrochimca Acta, 1997, 126 (1-2): 53-58.
    [104] M.C. Yebra-Biurrun, A. Moreno-Cid, R.M. Cespon-Romero. Flow injection flame AAS determination of ascorbic acid based on permanganate reduction [J]. Atomic Spectroscopy, 2001, 22(4): 346-349.
    [105] 严秀平主编.《原子光谱联用技术》[M],北京:化学工业出版社,2005:18-26,91-96.
    [106] R. Davis, H.M. Bryson. Levofloxacin. A review of its antitbateteral activity, pharmacokineties and therapeutic efficacy. Drugs, 1994, 47(4): 677-700.
    [107] D.C. Hooper, J.S. Wolfson. Fluoroquinolone antimicrobial agents [J]. The New England Journal of Medicine, 1991, 324(6): 384-394.
    [108] 黄健浩,林小毅.高效液相色谱法测定盐酸左氧氟沙星的含量[J].海峡药学, 2006, 15(6): 86-87.
    [109] H.R. Liang, M.B. Kays, K.M. Sowinski. Separation of levofloxacin, ciprofloxacin, gatifloxacin, moxifloxacin, trovafloxacin and cinoxacin by high-performance liquid chromatography: applicationto levofloxacin determination in human plasma [J]. Journal of Chromatography B, 2002, 772(1): 53-63.
    [110] F.C. Cheng, T.R. Tsai, Y.F. Chen, et al. Pharmacokinetic study of levofloxacin in rat blood and bile by microdialysis and high-performance liquid chromatography [J]. Journal of Chromatography A, 2002, 961(1): 131-136.
    [111] U. Nickel, C. Joukhadar, M. Frossard, et al. Simultaneous determination of levofloxacin and ciprofloxacin in microdialysates and plasma by high-performance liquid chromatography [J]. Analytica Chimica Acta, 2002, 463: 199-206.
    [112] S. Bottcher, H. Von-Baum, T. Hoppe-Tichy, et al. An HPLC assay and a microbiological assay to determine levofloxacin in soft tissue, bone, bile and serum [J]. Journal of Pharmaceutical and Biomedical Analysis, 2001, 25(2): 197-203.
    [113] 冯芳,马明.人血浆中盐酸左氧氟沙星的HPLC测定及药物动力学研究[J].中国医药工业杂志,2005,36(5):291-293.
    [114] 胡萍.紫外分光光度法测定盐酸左氧氟沙星片的含量[J].长江大学学报(自科版),2005,2(3)/医学18(1):88-89.
    [115] 齐菲.旋光法测定盐酸左氧氟沙星片的含量[J].药学实践杂志,2003,21(5):291-292
    [116] J.A. Ocafia Gonzalez, M. Callejon Mochon, F.J. Barragan de la Rosa. Spectrofluorimetric determination of levofloxacin in tablets, human urine and serum [J]. Talanta, 2000, 52 (6): 1149-1156.
    [117] O.J. Gong, J.L. Qiao, L.M. Du, C. Dong, W.J. Jin. Recognition and simultaneous determination of ofloxacin enantiomers by synchronization-1st derivative fluorescence spectroscopy [J]. Talanta, 2000, 53 (2): 359-365.
    [118] K. Tasev, I. Karadjova, S. Arpadjan, J. Cvetkovic, Liquid-liquid extraction and column solid phase extraction procedures for iron species determination in wines [J]. Food Control, 2006, 17: 484-488.
    [119] 朱玲仙,等.紫外分光光度法和高效液相色谱法测定乳酸左氧氟沙星胶囊的 含量[J].中国药业,1999,8(6):38-39.
    [120] S. Ashour, R. AI-Khalil. Simple extractive colorimetric determination of levofloxacin by acid-dye complexation methods in pharmaceutical preparations [J]. IL Farmaco, 2005, 60(9): 771-775.
    [121] British Pharmacopoeia [M], Vol. 1, Her Majesty's Stationary Office, London, England, 1999, pp. 369-370, 1034-1035.
    [122] F. Belal, A.A. Al-Majed, A.M. Al-Obaid. Methods of analysis of 4-quinolone antibacterials [J]. Talanta, 1999-2000, 50(4): 765-786.
    [123] J.A. Ocana, M. Callejon, F.J. Barragan de la Rosa. Terbium-sensitized luminescence determination of levofloxacin in tablets and human urine and serum [J]. Analyst, 2000, 125 (10): 1851-1854.
    [124] B. Awadallah, P.C. Schmidt, M.A. Wahl. Quantitation of the enantiomers of ofloxacin by capillary electrophoresis in the parts per billion concentration range for in vitro drug absorption studies [J]. Journal of Chromatography A, 2003, 988 (1): 135-143.
    [125] A. Radi, Z. El-Sherif. Determination of levofloxacin in human urine by adsorptive square-wave anodic stripping voltammetry on a glassy carbon electrode [J], Talanta, 2002, 58 (2): 319-324.
    [126] Z. Atkosar, G. Altiokka, B. Ergun. Pulse polarographic determination of levofloxacin in tablets [J]. Pharmazie, 2002, 57 (8): 587-589.
    [127] G. Altiokka, Z. Atkosar, N.O. Can. The determination of levofloxacin by flow injection analysis using UV detection, potentiometry, and conductometry in pharmaceutical preparations [J]. Journal of Pharmaceutical and Biomedical Analysis, 2002, 30 (3): 881-885.
    [128] C.M. Perry, J.A. Barman Balfour, H.M. Lamb, etal. Gatifloxacin [J]. Drugs, 1999, 58(4): 683-688.
    [129] D.N. Fish, D.S. North. Gatifloxacin, an advanced 8-methoxy fluoroquinolone [J]. Pharmacotherapy, 2001, 21(1): 35-59.
    [130] 李眉,左小春,赵明.抗革兰阳性耐药菌感染药物的研究进展[J].中国临床药理学杂志,1999,15(6):450-454.
    [131] R.T. Sane, S. Menon, A.R. Pathak, A.Y. Deshpande, M. Mahale. Capillary electrophoretic determination of gatifloxacin from pharmaceutical preparation [J]. Chromatographia, 2005, 61(5-6): 303-306.
    [132] J.A. Ocana Gonzalez, EJ. Barragan de la Rosa, M. Callejon Mochon. Spectrofluorimetric and micelle-enhanced spectrofluorimetric determination of gatifloxacin in human urine and serum [J]. Analytical Letters, 2005, 37(2): 327-332.
    [133] H.X. Lv, X.E Wu, Z.H. Xie, X.C. Li. Separation and determination of seven fluoroquinolones by pressurized capillary electrochromatography [J]. Journal of Separation Science, 2005, 28: 2210-2217.
    [134] 朱曼,王睿,方翼,等.人体血浆及尿液中甲磺酸加替沙星浓度的HPLC测定法[J].药物分析杂志,2003,23(1):53-57.
    [135] 周永其,徐乃玉.HPLC法测定加替沙星片的含量[J].苏州医学院学报,2001,21(5):535-536.
    [136] B.R. Overholser, M.B. Kays, K.M. Sowinski. Determination of gatifloxacin in human serum and urine by high-performance liquid chromatography with ultraviolet detection [J]. Journal of Chromatography B, 2003, 798: 167-173.
    [137] S. Al-Dgither, S.N. Alvi, M.M. Hammami. Development and validation of an HPLC method for the determination of gatifloxacin stability in human plasma [J]. Journal of Pharmaceutical and Biomedical Analysis, 2006, 41: 251-255.
    [138] K. Borner, H. Hartwig, H. Lode. Determination of gatifloxacin in human serum and urine by HPLC [J]. Chromatographia, 2000, 52, Suppl.: S-105-S-107.
    [139] H.A. Nguyen, J. Grellet, B.B. Ba, C. Quentin, M.C. Saux. Simultaneous determination of levofloxacin, gatifloxacin and moxifloxacin in serum by liquid chromatography with column switching [J]. Journal of Chromatography B, 2004, 810: 77-83.
    [140] M.L. Salazar Cavazos, L.Y. Colunga Gonzalez, G. Gallegos de Lerma, N. Waksman de Torres. Determination of gatifloxacin in semen by HPLC with diode-array and fluorescence detection [J]. Chromatographia, 2006, 63: 605-608.
    [141] H.R.N. Salgado, C.C.G.O. Lopes, M.B.B. Lucchesi. Microbiological assay for gatifloxacin in pharmaceutical ormulations [J]. Journal of Pharmaceutical and Biomedical Analysis, 2006, 40: 443-446.
    [142] 黄其春.紫外分光光度法测定加替沙星的含量[J].海峡药学,2002,14(2):34-35.
    [143] 徐勤,秦雪莲,邓立东.UV法测定加替沙星胶囊的含量[J].广东药学院学报,2003,19(3):234-235.
    [144] K. Venugopal, R.N. Saha. New, simple and validated UV-spectrophotometric methods for the estimation of gatifloxacin in bulk and formulations [J]. IL Farmaco, 2005, 60: 906-912.
    [145] 王晓玲,李东,聂中越.紫外分光光度法测定加替沙星眼凝胶中加替沙星的含量[J].中国药师,2005,81(12):1014-1015.
    [146] A.I. Drakopoulos, P.C. Ioannou. Spectrofluorimetric study of the acid-base equilibria and complexation behavior of the fluoroquinolone antibiotics ofloxacin, norfloxacin, ciprofloxacin and pefloxacin in aqueous solution [J]. Analytical Chimica Acta, 1997, 354(1-3): 197-204.