四肢肿瘤的微结构与生物学行为及动态增强磁共振相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     评价四肢肿瘤微结构(微血管密度、血管内皮生长因、增殖细胞核抗原)与肿瘤生物学行为及动态增强磁共振的关系。
     材料与方法:
     1、一般资料:选择2007.9~2009.12在齐鲁医院行手术治疗的四肢肿瘤患者57例,年龄16~68岁,平均31.3岁。所有患者依次进行常规磁共振及动态增强扫描磁共振检查,穿刺活检,手术治疗和病理诊断。
     2、病理取材及免疫组化:在手术切除的标本上对照磁共振动态增强扫描图像明显强化的部分取材,对标本进行常规病理及二步法免疫组化染色。用PBS缓冲液代替一抗作为阴性对照,用正常横纹肌标本代替肿瘤标本组作为正常对照。所使用的主要试剂有①CD34鼠抗人单克隆抗体;②VEGF兔抗人单克隆抗体;③PCNA鼠抗人单克隆抗体;④即用型二步法(非生物素)检测试剂盒。MVD计数方法参照Weidner方法,先在低倍视野(HP×40)下浏览切片,寻找“热点”,再在高倍视野(×400)下计数微血管数目,取5个高倍视野下微血管数目的平均值作为MVD。VEGF着色于细胞浆,统计方法参照Vohn等的评判标准,综合评价高倍视野(×400)下着色细胞百分比和细胞着色强度,分为阴性,弱阳性和强阳性(++)。PCNA主要着色于细胞核,按PCNALI分级,0-25%为Ⅰ级,26~50%为Ⅱ级,51-75%为Ⅲ级,>75%为Ⅳ级。病理及免疫组化评价由一位病理科医师协助完成。
     将57例四肢肿瘤按照生物学行为分为良性组、中间性组、恶性组,比较三组间MVD、VEGF分级和PCNALI分级的差异。将57例四肢肿瘤按照VEGF表达分为VEGF弱阳性组和VEGF强阳性组,比较两组间MVD及PCNALI的差异。
     3、磁共振动态增强扫描:动态增强磁共振成像(dynamic contrast-enhanced magnetic resonance imaging, DCE-MRI)使用3D FSPGR序列,对比剂使用马根维显(Magnevist,钆喷酸葡胺,0.1mmol/kg),不间断扫描16个时相。应用GE AW4.2软件分析骨骼及软组织肿瘤感兴趣区的时间~信号强度曲线(time-intensity curve,TIC)及动态增强参数(最大上升斜率(MSI)、信号增强幅度(SEE)),测量病变强化达峰值时的信号强度(SIpeak)和达峰值的时间(Tpeak),相对Tpeak,强化早期信号增强幅度(ΔSI)和相对强化早期信号增强幅度(相对ΔSI%)。
     将57例四肢肿瘤按照TIC曲线类型分为三组,比较三组间MVD的差别。对磁共振动态增强扫描参数与MVD进行相关性分析。将57例肿瘤按照EGF表达分为VEGF弱阳性组和VEGF强阳性组,比较两组间TIC类型及各动态增强扫描参数的差异。
     4、统计方法:
     所有数据利用SPSS17.0软件进行处理。对定性资料进行行×列表资料的Fisher精确检验。对各磁共振量化参数及MVD进行正态分布检验,如果参数满足正态分布采用独立样本t检验和单因素方差分析,组间两两比较若方差齐用LSD法,若方差不齐用Dunnett's T3法。如果参数不满足正态分布则采用两个或多个独立样本的非参数检验,对两个独立样本的差异显著性检验用Mann-Whitney U检验,对多个独立样本的差异显著性检验用Kruskal-Wallis H检验。相关性检验用Kendall's tau-b和Spearman分析。检验水准双侧α=0.05。
     结果:
     1.病理结果来自山东大学齐鲁医院病理科的诊断报告,根据2002年WHO软组织肿瘤分类和WHO骨肿瘤分类,本研究中57例骨骼及软组织肿瘤包括良性肿瘤6例、中间性肿瘤13例、恶性肿瘤38例。
     2.所有标本CD34染色均有阳性表达,MVD为24.5±11.6,其中良性肿瘤为8.5±6.2,中间性肿瘤为34.0±9.5,恶性肿瘤为27.8±14.1。MVD良性组、中间性组、恶性组间有统计学差异,两两间比较显示MVD在良性组与中间性组、良性组与恶性组间有统计学差异,在中间性组与恶性组间无统计学差异。VEGF在所有肿瘤中都有表达,积分范围为3-6分,良性肿瘤的VEGF表达呈弱阳性的3例,强阳性的3例,中间性肿瘤的VEGF表达呈弱阳性的5例,强阳性的8例,恶性肿瘤的VEGF表达呈弱阳性的3例,强阳性的35例,良性组与恶性组、中间性组与恶性组间VEGF表达的构成比有统计学差异,良性组与中间性组无统计学差异。PCNA在所有肿瘤细胞的细胞核均有阳性表达,且以Ⅲ级和Ⅳ级为主,PCNA在良性、中间性、恶性组间无统计学显著性差异。VEGF弱阳性组和强阳性组间MVD有统计学差异;PCNA LI II级组、Ⅲ级组和Ⅳ级组间肿瘤MVD无统计学差异。VEGF弱阳性组和强阳性组间PCNALI的构成比无统计学差异。
     3.动态增强磁共振检查结果:57例四肢肿瘤的DCE MRI均表现强化。TIC曲线类型包括三型:慢升型,快升型,快升快降型,TIC类型构成在良性组、中间性组、恶性组间有统计学差异。动态增强磁共振半定量参数(Tpeak,相对Tpeak、相对ΔSI%)在良性组、中间性组、恶性组间有统计学差异。
     4.动态增强磁共振结果与肿瘤免疫组化指标的相关性:MVD在TIC曲线类型Ⅱ型组、Ⅲ型组和Ⅳ型组间有统计学差异。达峰时间(Tpeak)、相对Tpeak及相对强化早期信号增强幅度(相对ASI%)与MVD有显著相关性。TIC曲线类型、相对Tpeak、Tpeak、相对ΔSI%在VEGF弱阳性组和强阳性组间有统计学差异。各DCE-MRI参数在PCNALIⅡ级组、Ⅲ级组和Ⅳ级组均无统计学差异。
     结论:
     1、四肢肿瘤的微结构与肿瘤的生物学行为有关,MVD及VEGF可用于判断良恶性肿瘤生物学行为及估计预后,PCNA对肿瘤的生物学行为评价可能没有帮助。
     2、动态增强磁共振扫描能反映肿瘤的的形态特征和功能改变,对于四肢肿瘤的鉴别诊断有价值,且与肿瘤血管生成免疫组化指标(MVD、VEGF)有显著相关性,但与细胞增殖指标(PCNALI)无相关性。动态增强磁共振可用来判断肿瘤生物学行为及预后,从而可实现在体、无创、可重复地研究病变的微观结构,追踪肿瘤治疗过程中的生物学变化。
Objectives
     To evaluate the correlations of limb's musculoskeletal tumors microstructure (microvessel density, vascular endothelial growth factor, proliferating cell nuclear antigen) and tumor biological behavior by immunohistochemistry, to evaluate the ability of dynamic contrast enhanced MRI in assessing microstructure of limb's tumors.
     Materials and Methods
     1. Both DCE MRI and immunohistochemistry were abtained in fifty seven patients with musculoskeletal tumors from September 2007 to December 2009.
     2. The positive expression of microvessel density (MVD), vascular endothelial growth factor (VEGF), proliferating cell nuclear antigen (PCNA) in tumors were shown by immunohistochemical test (two step method). PBS buffer was used instead of the primary antibody as a negative control and a skeletal muscle specimen was used instead of tumor samples as a normal control. The specimen was observed totally in at a low power lens (×40) to find a 'hot spots' at first, and then at a high power lens (×400) to counting the number of vessels. The VEGF positive stained cells were counted per hundred of cells at a high power lens (×400), the percentage of positive stained cells were classified into 4 degrades, the degree of stain were also classified into 4 degrades, the combination of the positive percentage grade and the staining degree grade was serve as VEGF grade. The PCNA positive stained cells were counted per hundred of cells at a high power lens (×400), and classified into 4 grades serving as PCNALI. The MVD, VEGF grade and PCNALI were compared among the benign, intermediate and malignant limbs' tumors, the correlation of MVD and PCNALI with VEGF grade were assessed.
     3. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was carried out on the 57 patients by using 3.0T MR scanner. DCE-MRI scan with 16 phases was performed consecutively. The contrast material was injected at the rate of 3ml/s with a dose of O.lmmol/kg. The time-intensity curves, the maximum slope of increase, the signal enhancement extent, the signal of peak, the time to peak, the relative time to peak, the signal enhancement extent in early phase and the relative signal enhancement extent in early phase were obtained at AW4.2 workstation.
     4. Statistic method:SPSS17.0 was used to analyze the parameters. The Categorical dates were analyzed by using Fisher exact test. The quantitative dates were normally tested. T test and one way ANOVA were used to analyze the normally distributed dates, the rank test was used to analyze the unmorally distributed dates. Kendall's tau-b and spearman rank correlation analysis were used for correlation analysis. P<0.05 was considered to be statistically significant.
     Results
     1. There were six benign tumors, thirteen intermediate tumors and thirty eight malignant tumors in our study.
     2. All the specimen showed positive staining of CD34, VEGF and PCNA. The MVD of all the tumors, benign tumors, intermediate tumors and malignant tumors were 24.5±11.6,8.5±6.2,34.0±9.5,27.8±14.1 correspondingly. There was significant difference among the benign, intermediate and malignant tumors. VEGF staining showed weak positive in 3 benign tumors,5 intermediate tumors and 3 malignant tumors, strong positive in 3 benign tumors,8 strong tumors and 35 malignant tumors, there was significant difference among benign, intermediate and malignant tumors. There was significant difference of MVD between VEGF weak positive group and strong positive group. There was only one benign tumor showing gradeⅡstaining. There were three benign tumors, seven intermediate tumors and 20 malignant tumors showing gradeⅢstaining. There were 2 benign tumors,6 intermediate tumors and 18 malignant tumors showing gradeⅢstaining. There was no significant difference of PCNALI between VEGF weak positive group and VEGF strong positive group.
     3. There are three types of TIC could be seen in all of the 57 tumors. There were significant difference of the proportion of TIC types, Tpeak,ΔTpeak ande relative ASI% among benign, intermediate and malignant tumors.
     4. There was significant difference of MVD among TIC typeⅡgroup, typeⅢgroup and typeⅣgroup. There were negative correlation between Tpeak, ATpeak and MVD, there was positive correlation between relativeΔSI% and MVD. There were significant differences of proportion of TIC types, Tpeak, ATpeak and relative ASI% between VEGF weak positive group and VEGF strong positive group. There was no significant difference of proportion of TIC types, Tpeak, ATpeak and relative ASI% among PCNA gradeⅡstaining, gradeⅢstaining and gradeⅢstaining group.
     Conclusions
     1. There were significant differences of MVD and VEGF in the differential diagnosis of benign, intermediate and malignant tumors, while no significant difference of PCNALI. MVD and VEGF can be used to assess the biological behavior of tumors and estimate its prognosis, but not PCNA.
     2. There were correlation between dynamic contrast enhanced parameters and the microstructure of the musculoskeletal tumors in limbs.
     Objective To investigate the clinical significance of MRI in limb salvage surgery on osteosarcoma around the knee joint. Methods 21 patients with osteosarcoma were examined by X-ray and MRI, and were staged by Enneking surgical staging system. Based on the tumor extent in the medullary cavity and the surrounding soft tissues, the operative plans were formulated and the custom artificial prostheses were made. After chemotherapy, tumors were removed and custom2made prostheses were put on. Postoperatively the histopathological results were compared with the MR images. Followed up for 10 to 55 months (mean 38 months), the function of the involved knee joints was evaluated. Results Of the 21 cases,6 were in stageⅡa and 15 in stageⅡb, all were successfully operated on. The functional recovery rate was 76.7%. MRI was of little diagnostic value in manifesting osteosarcoma, but was of great value in demonstrating intramedullary extension, skip metastasis, the relationship of bone tumor to vessel, nerve, muscle and adjacent joints, bleeding and necrosis in osteosarcoma. Conclusion MRI has great values in making operative plans and ensuring the operative outcome in limb salvage surgery on osteosarcoma.
     Background:osteosarcoma is one of the most common primary malignant bone tumors after myeloma. It is characterized by the direct formation of immature bone or osteoid tissue by the tumor cells, occurring with greatest frequency in the long tubular bones. Historically, treatment in patients diagnosed with osteosarcoma consisted of amputation, and with a cure rate of 10%, most patients died within a year after the initial diagnosis. The surgeon's goal was to resect the tumor using a procedure that would maximize patients' cosmetic and functional outcome without jeopardizing the long-term prognosis.
     Currently, limb-salvage surgery often is undertaken. In most cases, limb-salvage surgery offers an improved functional outcome without compromising survival and avoids the need for external prosthetic devices, which have their own secondary complications. These techniques have been made possible with the introduction of
引文
1 Singer S, Demetri GD, Baldini EH, et al. Management of soft tissue sarcomas. Lancet Oncol,2000,1:75-85.
    2柳剑,郭卫,杨荣利等.骨肉瘤术前化疗效果的MRI评估.中国骨肿瘤骨病,2008,7,(3):133-138.
    3杨强,李建民,杨志平等.MRI在骨肉瘤保肢术中应用的评价.山东大学学报医学版,2009,47,(4):94-98.
    4李振峰,李建民,李传福等.骨与软组织肿瘤的磁共振氢质子波谱分析.实用放射学杂志,2007,23,(3):368-370.
    5 Liu PT, Chivers FS, Roberts CC, et al. Imaging of ostema with dynamic gadolinium-enhanced MR imaging. Radiology,2003,227,691-700.
    6 Raica M, Cimpean AM, Ribatti D. Angiogenesis in pre-malignant conditions. Eur J Cancer.2009 Jul; 45(11):1924-1934.
    6 Okamoto H, Ohigashi H, Nakamori S, et al. Reciprocal funcions of liver tumor cells and endothelial cells. Involvement of endothelial cell migration and tumor proliferation at a primary site in distant metastasis. Eur Surg Res,2000,32:374-379.
    7 Maniotis A J, Folberg R, Hess A, et al. Vascular channel formation by human melanoma cells in vivo and in vitro:vasculogenic mimicy. Am J Pathol,1999, 155:739-752.
    8 Folberg R, Maniotis A J. Vasculogenic mimicy (Review). APMIS,2004, 112:508-525.
    9 Folkman J, Shing Y. Angiogenesis (Review). J Bilo Chem,1992,267: 10931-10934.
    10 Weidner N. Intratumor microvessel density as a prognostic factor in cancer. Am J Pathol,1995,147:9-19.
    11 Volm M, Koomagi R, Matem J. Prognosis value of vascular endothelial growth factor and its receptor Flt-1 in squamous cell lung cancer. Int Cancer,1997, 74(1):64-68.
    12 Mattern J, Koomagi R, Vlom M. Assotiation of vascular endothelial growth factor expression with intratumoral microvessel density and tumor cell proliferation in human epidermoid lung carcinoma. Br J Cancer,1996,73:931-943.
    13姬涛,郭卫,沈丹华等.骨肿瘤病理活检有效性的影响因素分析.中国矫形外科杂志,2007,15(17):1296-1301.
    14 Folkman J. What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst,1990,82:4-6.
    15 Weidner N, Folkma J, pozza F, et al. Tumor angiogenesis:A new significant and independent prognostic indicator in early-stage breast carcinoma.J Natl Cancer Inst.1992:84(4):1875-1887.
    16 Martin L, Green B, Renshaw C, et al. Examing the technique of angiogenesis assessment in invasive breast cancer. Br J Cancer,1997,76(8):1046-1054.
    17 Lee Y H, Tokunaga T, Oshika Y, et al. Cell-retained isoforms of vascular endothelial growth factor are correlated with poor prognosis in osteosarcoma. Eur J Cancer,1999,35(7):1089-1093.
    18赵宇,邱贵兴.骨肉瘤微血管密度与血管内皮生长因子表达的关系[J].中国医学科学院学报,2001,23(6):619-622.
    19蒋华,陈建红,王卫东等.PEDF和VEGF在膀胱移行细胞癌中的表达及临床意义.江苏医药,2010,36(1):15-17.
    20师恩,江晓菁,李玉等.肺癌组织中肿瘤血管生成的检测及其意义.中华外科杂志,2000,38(11):841-843.
    21 White JD, Hewett PW, Kosuge D, et al. Vascularendothelial growth factor-D expression is an independent prognostic marker for survival in colorectal carcinoma [J]. Cancer Res,2002,62(6):1669-1675.
    22李军,范清宇,张伟等.骨肉瘤血管内皮生长因子表达及微血管密度与肿瘤预后.第四军医大学学报,1999,20(12):1065-1067.
    23 Yonenaga Y, Mofi A, Onodera H, et al. Absence of smooth muscle actin—positive pericyte coverage of tumor vessels correlates with hematogenous metastasis and prognosis of colorectal cancer patients. Oncology,2005,69(2):159-66.
    24 Folberg R, Herdix MJC, Maniotis AJ. Vasculogenic mimicry and tumor angiogenesis (Review). Am J Pathol,2000,156(2):361-381.
    25 Toshinon, Sanae I, Mashide T, et al. Expression of VEGF-A, B, C, D and their relationships to lymph node status in lung adenocarcinoma. Clin Cancer Res, 2000,6(6):2431-2439.
    26 Tuncbilek N, Uulu E, Karakas HM, et al. Evaluation of tumor angiogenesis with contrast-enhanced dynamic magnetic resonance mammography. Breast J,2003, 9(5):403-408.
    27 Hoang BH, Dyke JP, Koutcher JA, et al. VEGF expression in osteosarcoma correlates with vascular permeability by dynamic MRI. Clin Orthop Relat Res,2004; (426):32-38.
    28 Nakamura Y, Yasuoka H, Tsujimoto M, Flt-4-positive vessel density correlates with vascular endothelial growth factor-d expression, nodal status, and prognosis in breast cancer. Clin Cancer Res,2003,9(14):5313-5317.
    29 Dvorak AM, Feng D. The vesiculo-vacuolar organelle (VVO):a new endothefial cell permeability organelle. J Histochem Cytochem,2001,49(4):419-432.
    30 Bizet M, Opitz H, Popp J, et al.Angiogenesis and brain edema in intracranial meningeomas:influence of vascular endothelial growth factor. Acta Neurochir,1998, 140(4):333-340.
    31 Schoeffner D J, Matheny S L, Akahane T, et al. VEGF contributes to mammary tumor growth in transgenic mice through paracrine and autocrine mechanisms.Lab Invest,2005,85(5):608-623.
    32 Kaya M, Wada T, Akatsuka T, et al. Vascular endothelial growth factor expression in untreated osteosarcoma is predictive of pulmonary metastasis and poor prognosis. Clin Cancer Res,2000,6(2):572-577.
    33 Asai T, VadaT, Hoh K, et al. Establishment and characterization of a muring osteosarcomas cell line with high metastic potential to the lung. Ins J Cancer,1998, 76:3418-3425.
    34曾海滨,戴晓明,张忠等.骨巨细胞瘤组织中VEGF和MMP-2表达及意义.第四军医大学学报,2007,28(22):2088-2090.
    35 Mori S, Vada T, Kruatsn S, et al. Suppression of pulmonary metastasis by angiogenesis inhibitor TNP-470 in murine osteosarcoma. Ins J Cancer,1995, 61:1148-1153..
    36 Godon M, Margolin K, Talpaz M, et al. Phase 1 safety and pharmacoketic study of recombinant human antivascular growth factor in patients with advanced cancer. J Clin Oncol,2001,19(3):843-850.
    37徐卫国,陈安民.反义血管内皮生长因子基因对骨肉瘤新生血管的抑制作用.中华试验外科杂志,2004,21(2):168-170.
    38李颖嘉,王东,高奉浔.血管内皮生长因子抗体治疗骨肉瘤的实验研究.中华外科杂志,2002,40(3):225-230.
    39 Brown L F, Brase B, Jackman R W, et al. Expression of vascular permeability factor (vascular endothelium growth factor) and its receptor in breast cancer. Anticancer Res,1998,18:441-450.
    40 Volm M, Koomagi R, Mattern J. Prognostic value of vascular enthelium growth factor and its receptor FLT-1 in squmous cell lung cancer. Int J Cancer, 1997,74(1):64-68.
    41 Chen J, De S, Brainard J, et al. Metastatic properties of prostate cancer cells are controlled by VEGF. Cell Commun Adhes,2004,11(1):1-11.
    42 IchinoeM, MikamiT, ShiraishiH, et al. High microvasculardensity is correlated with highVEGF, iNOS and COX-2 expression inpenetrating growth-type early gastric carcinomas. Histopathology,2004,45(6):612-8.
    43程鑫,韩明,张仕状.VEGF-R、VEGFR-C、VEGFR-3在胃癌中的表达及临床意义[J].现代生物医学进展,2008,8(10):1921-3.
    44郑璐,梁平,李靖.HDGF、VEGF在人肝细胞癌中的表达及其与肿瘤血管生成的关系.第三军医大学学报,2010,23(7):680-683.
    45 Merritt WM, Kamat AA, Hwang JY, et al. Clinical and biological impact of EphA2 overexpression and angiogenesis in endometrial cancer. Cancer Biol Ther, 2010,10(12), Epub ahead of print.
    46 Gombos Z, Xu X, ChuC S, et al. Peritumoral lymphatic vesseldensity and vascular endothelial growth factorC expression in early-stagesquamous cell carcinoma of the uterine cervix. Clin Cancer Res,2005,11(23):8364-8371.
    47李英,张冬娅,王艳芳等.结直肠腺癌中D2-40、CD34、VEGF的表达及临床意义.临床与实验病理学杂志,2010,26(2):231-233.
    48逢利博,陈丽英,李连宏等.软组织肿瘤血管生成因素初步研究.中国医科大学学报,2007,36(5):613-615.
    49杨曙光,杨惠林,梅炯.骨肉瘤VEGF和PCNA表达与微血管密度的关系 研究,苏州大学学报(医学版),2003,23(4):435-438.
    50王东,仲召阳,李增鹏等.骨肉瘤VEGF表达及VEGF抗体抑制血管生成的实验研究.重庆医学,2006,35(15):1369-1372.
    51 Akagi K, Ikeda Y, Miyazaki M, et al. Vascular endothelial growth factor-C(VEGF-C)expression in human colorectal cancer tissues. Br J Cancer,2000, 83(7):887-891.
    52 Yamamura T, Tsukikawa S, Yamada K, et al. Morphologic analysis of microvessel in colorectal tumors with respect to the formation of liver metastases. J Surg Oncol,2001,78(4):259-264.
    53冯仕庭,孙灿辉,彭振鹏等.结直肠癌MVD和VEGF与临床及病理诸因素的相关性研究.中山大学学报(医学科学版),2009,30:234-238.
    54 Mei J, Gao Y, Zhang L, et al.VEGF-siRNA silencing induces apoptosis, inhibits proliferation and suppresses vasculogenic mimicry in osteosarcoma in vitro. Exp Oncol,2008,30(1):29-34.
    55 Favier J, Plouin PF, Corvol P, et al. Angiogenesis and vascular architecture in pheochromocytomas:distinctive traits in malignant tunors. Am J Pathol,2002, 161(4):1235-1246.
    56 Yang CC, Jiang HY, Huang WG. PCNA and cancer. Med Message,2000, 13(7):413.
    57 Kitamoto M, Nakanishi T, Kira S, et al. The assessment of proliferating cell nuclear antigen immunohistochemical staining in small hepatocelhlar carcinoma and its relationship to histologic characteristics and prognosis. Cancer,1993,72(6): 1859-1865.
    58 Salven P, Mustjoki S, Alitalo R, et al. VEGFR-3 and CD133 identify a population of CD34+ lymphatic/vascular endothefial precursor cells. Blood.2003, 101(1):168-172.
    59雷南伟,潘秀杰,齐亚灵等.P16和PCNA在骨肉瘤中的表达及临床意义.吉林大学学报(医学版),2009,35(3):519-521.
    60 Takano S, Kamiyama H, Tsuboi K, et al. Angiogenesis and antiangiogenic therapy for malignant gliomas. Brain Tumor Pathol,2004,21:69-73
    61 Ellis LM. Preclinical data targeting vascular endothelial growth factor in colorectal cancer. Clin Colorectal Cancer,2004,4:S55
    62 Kamiya K, Konno H, Tanaka T, et al. Antitumor effect on human gastric cancer and induction of apoptosis by vascular endothelial growth factor neutralizing antibody. Jpn J Cancer Res,1999,90(7):794-800.
    63 Jung YD, Mansfield PF, Akagi M, et al. Effects of combination anti-vascular endothelial growth factor receptor and anti-epidermal growth factor receptor therapies on the growth of gastric cancer in a nude mouse model. Eur J Cancer,2002, 38(8):1133-1140.
    64 Rennel E, Waine E, Guan H, et al. The endogenous anti-angiogenic VEGF isoform, VEGF 165b inhibits human tumour growth in mice[J]. Br J Cancer,2008, 98(7):1250-1257.
    65 Sakayama K, Mashima N, Kidani T,et al. Effect of cortisol on cell proliferation and the expression of lipoprotein lipase and vascular endothelial growth factor in a human osteosarcoma cell line. Cancer Chemother Pharmacol,2008, 61(3):471-479.
    66 Anonymous Bevacizumab. Anti-VEGF Monoclonal Antibody, Avastin, rhumab-VEGF. Drugs R D,2002,3(1):28-30.
    67 Zheng WQ, Zhan RZ. Quantitative comparision to cell proliferation and p53 protein in breast cancer. Anal Quant Cytol Histol,1998,20:1
    68 Huh JI, Calvo A, Stafford J, et al. Inhibition of VEGF receptors significantly impairs mammary cancer growth in C3(1)/Tag transgenic mice through antiangiogenic and non-antiangiogenic mechanisms. Oncogene,2005,27 (24):790
    69 Bergsland E K.Vascular endothelial growth factor as a therapeutic target in cancer. Am J Health SystPharm,2004,61(21 Suppl5):S4-11.
    70 Dubois S, Demetri G Markers of angiogenesis and clinical features in patients with sarcoma. Cancer,2007,109(5):813-819.
    71 Bergers G,Benj amin LE. Tumorigenesis and the angiogenic switch. Nat Rev Cancer,2003,3:401-410.
    72 Geirnaerdt M J, Hogendoorn P C, Bolem J L, et al. Cartilaginous tumors:fast contrast enhanced MR imaging. Radilolgy,2000,214(2):539-546.
    73 Van Rijswijk CSP, Kunz P, Hogendoorn PCW, et al. Diffusion-weighted MR1 in the characterization of soft-tissue tumors. JMRI,2002,15:302-307.
    74 Sotak CH. Nuclear magnetic resonance(NMR)measurement of the apparent diffusion coefficient(ADC) of tissue water and its relationship to cell volume changes in pathological states. Neurochem Int,2004,45:569-582.
    75 Nagata S, Nishimura H, Uchida M. Usefulness of diffusion-weighted MRI in differentiating benign from malignant musculoskeletal tumors. Nippon Igaku Hoshasen Gakkai Zasshi,2005,65:30-36.
    76 Ozgur O, Ebru O, Zehra H, et al. SSH-EPI diffusion-weighted MR imaging of the spine with low b values:is it useful in differentiating malignant metastatic tumor infiltration from benign fracture edema? Skeletal Radiol,2009.,39(7): 651-658.
    77 Park S, Lee J, Ehara S, et al. Single shot fast spin echo diffusion-weighted MR imaging of the spine:is it useful in differentiating malignant metastatic tumor infiltration from benign fracture edema? Clin Imaging.2004.28:102-108.
    78 Baur A, Huber A, Durr HR, et al. Differentiation of benign osteoporotic and neoplastic vertebral compression fractures with a diffusion-weighted, steady-state free precession sequence. Rofo,2002,174:70-75.
    79 Bhugaloo A, Abdullah BJ, Siow Y, et al. Diffusion-weighted MR imaging in acute vertebral compression fractures:differentiation between malignant and benign causes. Biomed Imaging Interv J,2006,2:e12.
    80 Herneth A, Philipp M, Naude J, et al. Vertebral metastases:assessment with apparent diffusion coefficient. Radiology.2002.225:889-894.
    81 Einarsdottir H, Karlsson M, Wejde J, et al. Diffnison-weighted MRI of soft tissue tumours. Eur Radiol,2004,14:959-963.
    82曹金凤,林祥涛,王光彬等.DWI及DCE-MRI在良恶性骨病鉴别诊断中的应用.山东大学学报(医学版),2010,48(3):144-149.
    83 Chan J H, Peh W C, Tsui E Y,et al. Acute vertebral body compression fractures:discrimination between benign and malignant causes using apparent diffusion coefficients. Br J Radiol 2002; 75(891):207-214
    84 Lang P, Wendland MF, Saeed M, et al. Ostergenic sarcoma:noninvasive in vivo assessment of tumor necrosis with diffusion-weighted MR imaging. Radiology, 1998,206(1):227-235.
    85 Baur A, Huber A, Arbogast S, et al. Diffusion-weighted imaging of tumor recurrencies and posttherapeutical soft-tissue changes in humans. Eur Rediol,2001,1 1:828-833.
    86郭雪梅,王霄英,李飞宇等.3.0T MR扩散加权成像对前列腺癌的诊断价值.中国医学影像技术,2007,23(8):1205-1207.
    87 Issa B. In vivo measurement of the apparent diffusion coefficient in normal and malignant prostatic tissues using echo-planar imaging. J Magn Reson Imaging, 2002,16(2):196-200.
    88吴道清,陈自谦.DCE-MRI与DWI对良恶性前列腺疾病诊断的价值.临床放射学杂志,2010,29(2):211-215.
    89刘侃,周纯武,欧阳汉等.3.0T MR扩散加权成像鉴别鼻咽癌患者颈部转移淋巴结.中国医学影像技术2010,26(3):468-471.
    90 Vandecaveye V, De Keyzer F, Vander Poorten V, et al. Head andneck squamous cell carcinoma:value of diffusion weighted MR imaging for nodal staging. Radiology,2009,251 (1):134-146.
    91余小多,林蒙,欧阳汉.3.0T MR扩散加权成像诊断肾脏恶性肿瘤.中国医学影像技术,2010,26(3):538-542.
    92马婉玲,宦怡,魏丽春等.3.0 TMR及DWI在宫颈癌放射治疗中的应用研究.临床放射学杂志,2009,28(12):1651-1654
    93 Folkman J, Beckner K. Angiogenesis imaging. Acad Radiol,2000,7:783-785.
    94 Li WW. Tumor angiogenesis:molecular pathology, therapeutic targeting and imaging. Acad Radiol,2000,7:800-813.
    95 Delorme S, Knopp MV. Non-invasive vascular imaging:assessing tumour vascularity. Eur Radiol,1998,8:517-527.
    96 Orel S G Differentiating benign from malignant enhancing lesions identified at MR imaging of the breast:are time-signal intensity curves an accurate predictor? Radiology,1999,211:5-7.
    91 Zhang M, KonoM. Solitary pulmonary nodules:evaluation of blood flow patterns with dynamic CT. Radiology,1997,205:471-478.
    98张敏鸣,邹煜,商德胜等.孤立性肺结节动态增强MRI的定量研究.中华放射学杂志,2002,36:592-597.
    99 Van Vliet M, Van Dijke CF, Wielopolski PA, et al. MR angiography of tumor related vasculature:from the clinic to the micro-environment. Radiographics, 2005,25 Suppl 1:85-97.
    100 Miles KA. Tumour angiogenesis and its relation to contrast enhancement on computed tomography:a review [J].Eur J Radiol,1999,30(3):198-205.
    101 Taylor JS, Toffs PS, Port R, et al. MR imaging of tumor microcirculation: promise for the new millennium. J Magn Reson Imaging.1999,10(6):903-907.
    102 Choyke P L, Dwyer A J, Knopp W V. Funtional tumor imaging with dynamic contrast-enhanced magnetic resonance imaging. J Magn Resonc imaging, 2003,17:509-520.
    103 Mirowitz S A, Totty W G, Lee J K, et al. Characterization of musculoskeletal masses using dynamic Gd-DTPA enhanced spine cho MRI. J Compt Assist Tomogr,1992,16:120-125.
    104郁万江,杜湘珂.动态多层面MR T1WI灌注成像鉴别良恶性肌骨病变,中国医学影像技术,2005,21(6):937-940.
    105 Nagele T, Ptersen D, Klose U, et al, Dynamic contrast enhancement of intracranial tumors with snapshot-LASH MR imaging, AJNR,1993,14:89-98.
    106 Kuhl C K, Mielcareck P, Klaschik S, et al. Dynamic breast MR imaging:are signal intensity time course data useful for differential diagnosis of enhensing lesion? Radiology,1999,211(1):101-110.
    107郁万江,杜湘珂.MR T2W与T1W灌注对良恶性肌骨病变鉴别的价值.福建医科大学学报,2008,42:136-139.
    108张亭,刘爱莲,汪禾清等.MRI动态增强扫描对宫颈癌的诊断价值.中华放射学杂志,2009,43:973-977.
    109高莉,蒋学祥,周元春等.动态增强MRI对软组织肿块良恶性的鉴别诊 断价值.中华放射学杂志,2003,37:264-267.
    110连海英,张雪林.磁共振灌注成像在肝硬化的应用.国外医学临床放射学分册,2006,19:36-39.
    111于德新,马祥兴,魏华刚.3.0 T动态增强MR评价肝细胞癌血管生成及其成熟度的价值.临床放射学杂志,2009,28(3):355-359.
    112马霄虹,赵心明,欧阳汉.3.0T MR动态增强扫描对正常胰腺及胰腺癌的定量分析.中国医学影像技术,2010,26(1):10-13.
    113杜铁桥,丁宝芝,桑春玉.乳腺MRI动态增强对良恶性病变的鉴别价值.放射学实践.2009,24(2):170-174.
    114 Ma L D, Frassica F G, McCarthy E F, et al. Benigh and malignant musculoskeletal messes:MR imaging differenciation with rim-to-center defferential enhancement ratios. Radiology,1997,202:739-744.
    115孟悛飞,吕衍春,吕凤华等,增强MR灌注成像在骨骼-软组织肿瘤良恶性鉴别诊断中的价值.中华放射学杂志,2001,35(8):578-583.
    116靳激扬,杨世埙,许建荣等.动态增强磁共振成像对肌肉骨骼系统肿瘤性质鉴别的定量研究.中华放射学杂志,1999,33(9):588-591.
    117李勇刚,王仁法,陈文学.兔VX2软组织肿瘤在体与离体氢质子磁共振波谱特征.江苏医药,2008,34(5):500-502.
    118 Rico-Sanz J, Thomas EL,Jenkinson G, et al. Diversity in Levels of Intracellular Total Creatine and Triglycerides in Human Skeletal Muscles Observed by 1H-MRS[J]. J Appl Physiol,1999,87(6):2068-2072.
    119鱼博浪主编.中枢神经系统CT和MRI鉴别诊断(2005).陕西科学技术出版社.
    120 Wang CK, Li CW, Hsieh TJ, et al. Characterization of bone and soft tissue tumors with in vivolH MR spectroscopy:initial results. Radiology 2004, 232:599-605.
    121 Fayad LM, Bluemke DA, McCarthy EF, et al. Musculoskeletal tumors:use of proton MR spectroscopic imging for characterization. J Magn Reson Imaging 2006, 23:23-28.
    122周春香,孟俊非,陈应明等.磁共振氢质子波谱在下肢骨-软组织疾病中应用初探.临床放射学杂志,2003,22(12):1035-1038.
    123李勇刚,王仁法,陈文学等.氢质子波谱在骨肌系统肿瘤诊断中的临床应用.中国临床医学影像杂志,2007,18(10):736-740.
    124 Ross B, Michaelis T. Clinical applications of magnetic resonance spectroscopy. Magn Reson Q,1994,10:191-248.
    125 Yeung D K W, Yang W T, Tse G M K. Breast cancer:in vivo proton MR spectroscopy in the characterizatione of histopathologic subtypes and preliminary observations in axillary node metastases. Radiology,2002,225:190-197.
    128 Eshun FK, Currier MA, Gillespie RA, et al. VEGF blockade decreases the tumor uptake of systemic oncolytic herpes virus but enhances therapeutic efficacy when given after virotherapy. Gene Ther,2010,17(7):922-929.
    126 Favier J, Plouin PF, Corvol P, et al. Angiogenesis and vascular architecture in pheochromocytomas:distinctive traits in malignant tunors. Am J Pathol,2002, 161 (4):1235-1246.
    127 Yang CC, Jiang HY, Huang WG. PCNA and cancer. Med Message, 2000:13(7):413.
    1. Picci P. Osteosarcoma (osteogenic sarcoma). Orphanet J Rare Dis.2007; 2:6.
    2. Bacci G, Ferrari S, Lari S, et al. Osteosarcoma of the limb:amputation or limb salvage in patients treated by neoadjuvant chemotherapy. J Bone Joint Surg Br.2002; 84(1):88-92.
    3. Rougraff BT, Simon MA, Kneisl JS, Greenberg DB, Mankin HJ. Limb salvage compared with amputation for osteosarcoma of the distal end of the femur: a long-term oncological, functional, and quality of life study. J Bone Joint Surg Am. 1994; 76(5):649 656.
    4. Springfield DS, Schmidt R, Graham-Pole J, Marcus RB, Spanier SS, Enneking WF. Surgical treatment for osteosarcoma. J Bone Joint Surg Am.1988; 70(8):1124-1130.
    5. Faisham WI, Zulmi W, Halim AS, Biswal BM, Mutum SS. Osteosarcoma:the outcome of limb salvage surgery. Med J Malaysia.2004; 59(suppl F):24-34.
    6. Meyer JS, Mackenzie W. Malignant bone tumors and limb-salvage surgery in children [published correction appears in Pediatr Radiol. Pediatr Radiol.2004; 34(8):606-613.
    7. Simon MA, Aschliman MA, Thomas N, Mankin HJ. Limb-salvage treatment versus amputation for osteosarcoma of the distal end of the femur. J Bone Joint Surg Am. 1986;68(9):1331-1337.
    8. Muscolo DL, Ayerza MA, Aponte-Tinao LA, Ranalletta M. Partial epiphyseal preservation and intercalary allograft reconstruction in high-grade metaphyseal osteosarcoma of the knee. J Bone Joint Surg Am.2004;86(12):2686-2693.
    9. Sanders TG, Parsons TW III. Radiographic imaging of musculoskeletal neoplasia. Cancer Control.2001; 8(3):221-231.
    10. Cheng EY, Thompson RC Jr. New developments in the staging and imaging of soft-tissue sarcomas. Instr Course Lect.2000;49:443-451.
    11. Enneking WF, Dunham W, Gebhardt MC, Malawar M, Pritchard DJ.A system for the functional evaluation of reconstructive procedures after surgical treatment of tumors of the musculoskeletal system. Clin Orthop Relat Res.1993; (286):241-246.
    12. Ilaslan H, Sundaram M. Advances in musculoskeletal tumor imaging. Orthop Clin North Am.2006; 37(3):375-391.
    13. Chew FS, Hudson TM. Radionuclide bone scanning of osteosarcoma:falsely extended uptake patterns. AJR Am J Roentgenol.1982;139(1):49-54.
    14. Hudson TM, Schiebler M, Springfield DS, Hawkins IF Jr, Enneking WF, Spannier SS. Radiologic imaging of osteosarcoma:role in planning surgical treatment. Skeletal Radiol.1983; 10(3):137-146.
    15. Sundaram M, McGuire MH, Herbold DR, Wolverson MK, Heiberg E. Magnetic resonance imaging in planning limb-salvage surgery for primary malignant tumors of bone. J Bone Joint Surg Am.1986; 68(6):809-819.
    16. Richardson ML, Gillespy T. Magnetic resonance imaging. In:Kricun ME, ed. Imaging of Bone Tumors. Philadelphia, PA:WB Saunders Co; 1993:358-446.
    17. Rechl H, Hof N, Gerdesmeier L. Differential diagnosis of bone and soft tissue tumors by MRI [in German]. Orthopade.2001;30(8):528-539.
    18. Saifuddin A. The accuracy of imaging in the local staging of appendicular osteosarcoma. Skeletal Radiol.2002; 31(4):191-201.
    19. Wallack ST, Wisner ER, Werner JA, et al.Accuracy of magnetic resonance imaging for estimating intramedullary osteosarcoma extent in preoperative planning of canine limb-salvage procedures. Vet Radiol Ultrasound.2002; 43(5):432-441.
    20. Meyer MS, Spanier SS, Moser M, Scarborough MT. Evaluating marrow margins for resection of osteosarcoma:a modern approach. Clin Orthop Relat Res.1999; (363):170-175.
    21. Hoffer FA. Primary skeletal neoplasms:osteosarcoma and Ewing sarcoma. Top Magn Reson Imaging.2002; 13(4):231-239.
    22. Panuel M, Gentet JC, Scheiner C, et al. Physeal and epiphyseal extent of primary malignant bone tumors in childhood:correlation of preoperative MRI and the pathologic examination. Pediatr Radiol.1993; 23(6):421-424.
    23. Schima W, Amann G, Stiglbauer R, et al.Preoperative staging of osteosarcoma: efficacy of MR imaging in detecting joint involvement. AJR Am J Roentgenol.1994; 163(5):1171-1175.
    1. Creighton JJ, Peimer CA, Mindell ER, Boone DC, Karacousis CP,Douglass HO (1985) Primary malignant tumors of the upper extremity:retrospective analysis of one hundred twenty-six cases.J Hand Surg [Am] 10:805-14
    2. Malawer MM (1991) Tumors of the shoulder girdle:technique of resection and description of a surgical classification. Orthop Clin North Am 22:7-35
    3. Sim FH, Pritchard DJ, Ivins JC (1977) Forequarter amputation. Orthop Clin North Am 8:921-31
    4. Enneking WF, Dunham W, Gebhardt M, Malawar M et al (1990)A system for the classification of skeletal resections. Chir Organi Mov 75(Suppl 1):217-40
    5. Linberg BE (1928) Interscapulo-thoracic resection for malignant tumors of the shoulder joint region. J Bone Jt Surg 10:344-9
    6. Gibbons CLMH, Bell RS, Wunder JS et al (1998) Function after subtotal scapulectomy for neoplasm of bone and soft tissue. J Bone Jt Surg [Br] 80:38-42
    7. Mayil Vahanan N, Mohanlal P, Bose JC et al (2007) The functional and oncological results after scapulectomy for scapular tumours:2-16-year results. Int Orthop 31(6):831-6
    8. Kapoor S, Tiwari A, Kapoor S (2008) Primary tumours and tumorous lesions of clavicle. Int Orthop 32(6):829-34
    9. Pritsch T, Bickels J, Wu CC et al (2007) Is scapular endoprosthesis functionally superior to humeral suspension? Clin Orthop Relat Res 456(5):188-95
    10. Getty PJ, Peabody TD (1999) Complications and functional outcomes of reconstruction with an osteoarticular allograft after intra-articular resection of the proximal aspect of the humerus. J Bone Jt Surg [Am] 81(8):1138-46
    11. Rodl RW, Ozaki T, Hoffmann C et al (2000) Osteoarticular allograft in surgery for high-grade malignant tumours of bone. J Bone Jt Surg [Br] 82(7):1006-10
    12. Kitagawa Y, Thai DM, Choong PF (2007) Reconstructions of the shoulder following tumour resection. J Orthop Surg (Hong Kong)15(2):201-6
    13. Rodl RW, Gosheger G, Gebert C et al (2002) Reconstruction of the proximal humerus after wide resection of tumours. J Bone Jt Surg [Br] 84(7):1004-8
    14. Tsukushi S, Nishida Y, Takahashi M et al (2006) Clavicula pro humero reconstruction after wide resection of the proximal humerus. Clin Orthop Relat Res 447:132-7
    15. Krieg AH, Hefti F (2007) Reconstruction with non-vascularised fibular grafts after resection of bone tumours. J Bone Jt Surg [Br]89(2):215-21
    16. Wada T, Usui M, Isu K et al (1999) Reconstruction and limb salvage after resection for malignant bone tumour of the proximal humerus. A sling procedure using a free vascularised fibular graft. J Bone Jt Surg [Br] 81(5):808-13
    17. Kassab M, Dumaine V, Babinet A et al (2005) Twenty nine shoulder reconstructions after resection of the proximal humerus for neoplasm with mean 7-year follow-up. Rev Chir Orthop Reparatrice Appar Mot 91(1):15-23
    18. Springfield DS (1997) Orthopaedic oncology. In:Sledge CB, Poss RP (eds) The year book of orthopedics. Mosby, St Louis, pp 98-100