氦和位错对HR-2合金力学性能影响的多尺度模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文开展了氦和位错对HR-2合金力学性能影响的多尺度模拟研究。在微观尺度上,利用修正的嵌入原子势(MEAM)与分子静力学(MS)计算了氦团簇的形成能与原子组态,利用动力学蒙特卡罗(KMC)模拟了氦团簇的演化过程。在细观尺度上,建立了三维离散位错动力学(3DDD)模型,并模拟了位错克服氦团簇的热激活滑移过程。在宏观尺度上,建立了基于位错密度演化的HR-2合金物理本构模型,并将氦团簇的热激活应力引入到本构方程以描述氦对HR-2合金力学性能的影响。在数值模拟中,对相关的模型计算方法进行了研究。并开展了HR-2合金力学性能试验研究与位错组态分析,探讨了HR-2合金力学行为的微细观机制。主要有如下一些结论:
     a) MS计算结果表明间隙He原子(HeI)在α-Fe和γ-Fe中均以四面体间隙位最稳定。氦-空位(He-V)团簇的形成能随He/V值增大而增大,空位对He-V团簇有稳定作用,而HeI的加入使He-V团簇能量上升而引发自捕陷反应。
     b) KMC模拟表明热空位与热激活能对He的演化起着不同的作用。高温时,大量的热空位捕获了大多数的HeI,使之不能充分聚集而实现自捕陷;而温度较低时,热激活能随温度升高而增大,开动了不同类型的自捕陷反应,而使团簇随之变大。
     c)建立的3DDD模型能较准确地模拟Frank-Read位错源的临界剪切应力、临界位错组态,且与试验值接近。模拟了不同应变率加载下FCC晶体的位错演化与应力-应变曲线,所建的数值计算方法能有效地模拟位错偶以低应变率加载下的力学行为。
     d)位错演化微分方程与力学状态微分方程所组成的方程组具有严重的刚性性质,即外应力的变化远高于位错密度的变化,这与真实材料的性质相一致。
     e)用Langevin力来描述温度对位错的热效应,模拟了位错克服Peierls应力的热激活滑移过程,并拟合了Peierls阻碍势垒,所得结果与试验值相当。
     f) HR-2合金具有明显的应变强化、应变率强化和温度软化效应,这是由于位错滑移的短程阻碍势垒小引起的。温度和应变率对位错组态演化有不同的作用,即温度升高位错组态逐渐从网格状位错墙向位错胞方向发展,而应变率升高则使位错运动方式以平面滑移为主,当应变率足够高时则出现孪晶,以满足变形速率要求。
     g)根据FCC晶体塑性变形的林位错切割机制,建立了基于位错密度演化的HR-2合金物理本构模型。拟合的模型参数与材料微结构特性相一致,并且模型能在较宽温度与应变率范围内描述该合金的力学行为。
     h)在KMC与位错动力学模拟基础上,拟合了氦团簇的热激活应力本构方程,并引入到HR-2合金的本构模型中以描述了氦对HR-2合金的强化效应。结果表明,利用热激活本构方程评估的强化效应比临界分切应力(CRSS)评估的更有效。
     本文将串行的多尺度模拟方法应用于模拟氦对HR-2合金力学性能的影响。通过微观模拟得到氦团簇的分布,然后利用位错动力学模拟位错与氦团簇间的相互作用得到氦团簇引起的热激活应力,最后将其引入到HR-2合金的物理本构模型中以模拟氦对宏观力学性能的影响。该方法一方面兼顾了物理本构模型对宏观力学行为描述的准确性,另一方面兼顾了微细观模拟(如位错动力学)对材料微结构特性的描述。
The multiscale simulations of the effect of helium and dislocation on the mechanical properties of HR-2 alloy are carried out in this paper. At the microscale, the modified embedded atom method (MEAM) and molecular statics (MS) are used to calculate the formation energies and the atom configurations of the helium clusters. And, the kinetic Monte Carlo (KMC) is used to simulate the evolution of helium clusters. At the mesoscale, the three-dimensional discrete dislocation dynamics (3DDD) is constructed and used to model the dislocation sweep the helium clusters. The constitutive equation for describing the thermally-activated stress of helium cluster is fitted. At the macroscale, based on the evolution of dislocation density, a physically based constitutive model of the HR-2 alloy is constructed. The thermally-activated stress of helium clusters is added into the constitutive model for describing the effect of helium on the mechanical property of HR-2 alloy. In the above simulation, the models and the numerical methods are investigated. In addition, the mechanics and the dislocation configuration of HR-2 alloy are investigated for discussing the micro-mechanism of the mechanical behavior. Main conclusions are described as following:
     a) The MS calculation results indicate that the tetrahedral interstitial position inγ-Fe orα-Fe is the most stable site for interstitial helium atom (HeI). The formation energies of the He-V clusters are increase with increasing the values of the He/V. The vacancy can stabilize the He-V cluster, but the HeI added into the cluster will increase the cluster energy and bring about the self-trap action.
     b) The KMC simulation demonstrates that thermal vacancies and thermal activation energy have different effects on the helium behavior. At the high temperature, plenty of thermal vacancies will trap the most of HeI, which make the HeI can not congregate and can carry out self-trap. At the low temperature, as the thermally-activated energy increases with elevating the temperature, the bigger He-V clusters are formed because the different self-trap actions are carried out.
     c) The 3DDD model can accurately simulate the critical shear stress and dislocation configuration of the Frank-Read dislocation source, which are consistent with the experiment. The mechanical behavior and the dislocation evolution in FCC crystal are simulated. The simulation results indicate that our numerical algorithm can efficiently simulate the dislocation dipole and mechanical behaviour under the low strain rate loading.
     d) The differential equation group consisted of dislocation evolution and mechanical state has serious stiff property, namely the external stress changes more quickly than dislocation evolution, which is consistent with the property of the real material.
     e) The Langevin force is used to describe the thermally-activated effect of temperature on the dislocation. The thermally slip of dislocation overcoming the Peierls stress is simulated, and the activation energy of Peierls stress is fitted, the result accords with experiment data.
     f) Due to the barrier energy of the dislocation slipping is relative low, HR-2 alloy has the evident strain strengthen, strain rate strengthen and temperature soften. The temperature and the strain rate have different effects on the evolution of dislocation. With the temperature elevating, the configuration of dislocation changes from the wall to the cell. While with the strain rate increasing, the dislocation mostly plane slips. If the strain rate is enough high, the deformed twins are appeared in order to satisfy the deforming rate.
     g) According to the forest dislocation cutting mechanism of FCC metal, a physically based constitutive model of HR-2 alloy is developed, based on the dislocation density evolution. The model parameters are consistent with the microstructural properties of the HR-2 alloy, and this model can accurately predict the complicated mechanical behavior of the alloy in a rather wide range of temperatures and strain rates.
     h) Based on the simulations of KMC and 3DDD,, the thermally-activated constitutive equation of the dislocation overcoming the helium clusters is fitted. Induced the thermally-activated stress caused by the helium clusters into the HR-2 constitutive equation, the hardening effect of helium on the HR-2 alloy is described. The result indicates that using the thermally-activated constitutive equation to evaluate the hardening effect is better than using the critical resolved shear stress (CRSS).
     In this paper, a serial multiscale model is used to simulate the effect of helium on the mechanical properties of HR-2 alloy. That is using the mircroscale simulation to obtain the distribution of helium clusters, and using the dislocation bynamics to model the interaction between the dislocation and helium cluster for obtaining the thermally-activated stress caused by the helum cluster, lastly added this stress into the physically based constitutive model for describing the effect of helium on the mechanical property. This method gives attention not only to the describing ability of the physically based constitutive equation for the mechanical property, but also to the properties of the microstructures simulated by the micro- or meso-scale models, such as dislocation dynamics.
引文
[1] Ullmaier H, Introduction remarks - helium in metals, Rad Eff, 1983, 78, 1-10
    [2] Trinkaus H, Singh B N, Helium accumulation in metals during irradiation – where do we stand?, J Nucl Mater, 2003, 323, 229-242
    [3] 王偑璇,宋家树,材料中的氦氚渗透,北京,国防工业出版社,2002, 1-52
    [4] 王隆保,吕曼祺,李依依,金属氚化物的时效和时效效应,金属学报,2003,39(5),449-469
    [5] Heung L K, Titanium for long term tritium storage(U), DOE, WSRC-TR-94-0596
    [6] Holder J S, Short termaging of LaNi4.25Al0.75 tritide storage material, DOE, WSRC-MS-94-0477
    [7] Prem M, Krexner G, Pleschiutschnig J, Helium damage in long-aged metal-tritium systems, J Alloys Comp, 2003,356-357, 683-687
    [8] 万发荣,金属材料的辐射损伤,北京,科学出版社,1993,144-146
    [9] Pillay K K S, Kim K C, Plutonium futures – the science, AIP Conference proceedings 532, New York, Melville, 2000, 416-432
    [10] Wilson W D, Bisson C L, Inert gases in solids: interatomic potentials and their influence on rare-gas mobility, Phys Rev, 1971, B3(12), 3984-3992
    [11] Wilson W D, Bisson C L, Baskes, M I, Self-trapping of helium in metals, Phys Rev, 1981, B24(10), 5616-5624
    [12] Wilson W D, Theory of small clusters of helium in metals, Rad Eff, 1983, 78, 11-24
    [13] Caspers L M, Van Veen A, Bullough T J, A simulation study of the initial phase of He precipitation in metals, Rad eff, 1983, 78, 67-76
    [14] Morishita K, Sugano R, Wirth B D et al., Thermal stability of Helium-vacancy clusters in iron, Nucl Instruments and Methode in Physics Research, 2003, B202, 76-81
    [15] Morishita K, Sugano R, Wirth B D, Thermal stability of He-Vacancy clusters and bubble formation –Multiscale modeling approach for fusion materials development, Fusion Sci and Thch, 2003, 44, 441-445
    [16] Morishita K, Sugano R, Wirth B D, MD and KMC modeling of growth and shrinkage mechanisms of helium-vacancy clusters in Fe, J Nucl Mater, 2003, 323, 243-250
    [17] Wirth B D, Bringa E M, A kinetic monte carlo model for Helium diffusion and clustering in fusion environments, Phys Scrip, 2004, T108, 80-84
    [18] Seletskaia T, Osetsky Y, Stoller R E et al., Magnetic interaction influence the properties of helium defects in iron, Phys Rev Lett, 2005, 94, 046403
    [19] Van der Kolk G L, Van Veen A, Caspers L M et al., Binding of helium to metallic impurities in tungsten, J Nucl. Mater., 1985, 127, 56-66
    [20] Baskes M I, Vitek V. Metall. Trans., 1985, A16, 1625-1631
    [21] Sciani V, Jung P, Diffusion of Helium in FCC metals, Rad Eff, 1983, 78, 87-99
    [22] Ullmaier H, B?rnstein L, Numerical Data and Functional Relationships in Science and Technology, New Series, N25
    [23] Ghoniem N M, Sharafat S, Williams J M et al., The theory of helium transportand clustering in materials under irradiation, J Nucl Mater, 1983, 117, 96-105
    [24] Trinkaus H, On the modeling of the high-temperature embrittlement of metals containing helium, J Nucl Mater, 1983, 118, 39
    [25] Foreman A J E, Singh B N, Gas Diffusion and Temperature Dependence of Bubble Nucleation during Irradiation, J Nucl Mater, 1986, 141/143, 672-676
    [26] Rabaglino E, Hiernaut J P, Ronchi C et al., Helium and tritium kinetics in irradiated beryllium pebbles, J Nucl Mater, 2002, 307-311, 1424-1429
    [27] J?ger W, Manzke R, Trinkaus H et al., The denstity and pressure of helium in bubbles in metals, Rad Eff, 1983, 78, 315-325
    [28] de Hosson J Th M, Atomistic studies of helium trapping in metals, Rad Eff, 1983, 78, 25-36
    [29] Trinkaus H, Energetics and formation kinetics of helium bubbles in metals, Rad Eff, 1983, 78, 189-211
    [30] Kesternich W, Helium trapping at dislocations, precipitaies and grain boundaries, Rad Eff, 1983, 78, 267-273
    [31] Trinkaus H, Modeling of helium effects in metals: high temperature embrittlement, J Nucl Mater, 1985, 133/134, 105-112
    [32] Trinkaus H. Rad eff, 101, 91, 1986
    [33] Singh B N, Leffers T, Green W V et al., Nucleation of helium bubbles on dislocations, dislocation networks and dislocation in grain boundaries during 600 MeV proton irradiation of aluminium, J Nucl Mater, 1984, 125, 287-297
    [34] Singh B N, Foremen A J E, Helium diffusion and bubble nucleation in the dislocation core during irradiation, J Nucl Mater, 1992, 191/194, 1265-1268
    [35] Foremen A J E, Singh B N, Helium flux to grain boundaries during irradiation, J Nucl Mater, 1987, 149, 266
    [36] Evans J H, van Veen A, Gas release processes for high concentrations of helium bubbles in metals, J Nucl Mater, 1996, 233-237, 1179-1183
    [37] Johnson P B, Mazey D J, Evans J H, Bubble structures in He+ irradiated metals, Rad Eff, 1983, 78, 147-156
    [38] Kawano S, Kano F, Kinoshita C et al., Effect of weld thermal cycle, stress and helium content on helium bubble formation in stainless steels, J Nucl Mater, 2002, 307-311, 327-330
    [39] Kano F, Nakahigashi S, Nakamura H et al., Effect of weld thermal cycle on helium bubble formation in stainless steel, J Nucl Mater, 1998, 258-263, 2013-2017
    [40] Sugano R, Morishita K, Iwakiri H et al., Effects of dislocation on thermal helium desorption from iron and ferritic steel, J Nucl Mater, 2002, 307-311, 941-945
    [41] Chernikov V N, Trinkaus H, Ullmaier H, Helium bubbles in nickel annealed at T>0.7Tm, J Nucl Mater, 1997, 250, 103-110
    [42] Kalashnikov A N, Chernov I I, Kalin B A et al., Microstructure development and helium behavior in nickel and vanadium base alloys, J Nucl Mater, 2002, 307-311, 362-366
    [43] Maji S, Singh A, Nambissan P M G, Solid phase transition of overpressurised helium bubbles seen from positron annihilation studies, Phys Lett, 2001, A281, 76-82
    [44] Gruber E E, Calculated size distributions for gas bubble migration and coalescence in solids, J Appl Phys, 1967, 38, 243-250
    [45] Goodhew P J, Tyler S K, Helium bubble behaviour in BCC metals below 0.65Tm, Proc Royal Soc, 1981, A377, 151-184
    [46] Greenwood G W, Boltax A, The role of fission gas resolution during post-irradiation heat treatment, J Nucl Mater, 1962, 5, 234-240
    [47] Markworth A J, On the Coarsening of gas-filled pores in solids, Metall Trans, 1973, 4(11), 2651-2656
    [48] Ono K, Arakawa K, Ohashi M et al., Fromation and migration of helium bubbles in Fe-16Cr-17Ni austenitic alloy at high temperature, J Nucl Mater, 2000, 283-287, 210-214
    [49] Ono K, Arakawa K, Hojou K, Formation and migration of helium bubbles in Fe and Fe-9Cr ferritic alloy, J Nucl Mater, 2002, 307-311, 1507-1512
    [50] Chen J, Jung P, Trinkaus H, Evolution of helium platelets and associated dislocation loops in α-SiC, Phys Rev Lett, 1999, 82, 27092712
    [51] Chen J, Jung P, Trinkaus H, Microstructural evolution of helium-implanted α-SiC, Phys Rev, 2000, B61, 12923-12932
    [52] Hartmann M, Trinkaus H, Evolution of Gas-Filled Nanocracks in Crystalline Solids, Phys Rev Lett, 2002, 88, 055505
    [53] Schroeder H, High temperature embrittlement of metals by helium, Rad Eff, 1983, 78, 297-314
    [54] West A J, Rawl D E, Proc. of Conf. on “ Tritium Technology in Fission, Fussion and Isotopic Application”, Conf-800427, 1980, 69
    [55] Ullmaier H, Chen J, Low temperature tensile properties of steels containing high concentrations of helium, J Nucl Mater, 2003, 318, 228-233
    [56] Hunn J D, Lee E H, Byun T S et al., Helium and hydrogen induced hardening in 316LN stainless steel, J Nucl Mater, 2000, 282, 131-136
    [57] Tosten M H, Morgan M J, The effects of helium bubble microstructure on ductility in annealed and HERF 21Cr-6Ni-9Mn stainless steel(U), DOE, WSRC-RP-92-551
    [58] Morgan M J, Tosten M H, Tritium and decay helium effects on the fracture toughness properties of types 316L, 304L and 21Cr-6Ni-9Mn stainless steels, DOE, SRTC-MTS-94-3036
    [59] Robinson S L, The tritium performance of alloy 22-13-5, DOE, SAND2001-8184
    [60] Louthan Jr M R, Tritium decay, irradiation and hydrogen/helium effects on type 316L austenitic stainless steel, DOE, WSRC-MS-2001-00040
    [61] Louthan Jr M R, Iyer N C, Morgan M J, Helium/hydrogen effectd on the properties of materials for the APT target/blanket region, DOE, WSRC-MS-99-00834
    [62] Sokolov M A, Robertson J P, Snead L L et al., Fracture toughness characterization of 304L and 316L austenitic stainless steels and alloy 718 after irradiation in high-energy , mixed proton/neutron spectrum, in, Rosinsiki S T, Grossbeck M L, Allen T R et al., Effects of radiation on meterials: 20th internatioanal symposium, ASTM STP 1405, West Conshohocken, PA, 2002.
    [63] Jung P, Henry J, Chen J et al., Effect of implanted helium on tensile properties and hardness of 9% Cr martensitic stainless steels, J Nucl Mater, 2003, 318, 242-248
    [64] Jung P, Henry J, Chen J et al., Microstructural analysis of 9% Cr martensitic stainless steels containing 0.5at.% helium, J Nucl Mater, 2003, 318, 249-259
    [65] Ullmaier H, Chen J, Low temperature tensile properties of steels containing high concentration of helium, J Nucl Mater, 2003, 318, 228-233
    [66] Katoh Y, Ando M, Kohyama A, Radiation and helium effects on microstructures, nano-indentation properties and deformation behavior in ferrous alloys, J Nucl Mater, 2003, 323(2-3), 251-262
    [67] Pokor C, Brechet Y, Dubuisson P et al., Irradiation damage in 304 and 316 stainless steels: experimental investigation and modelin. Part I: evolution of the microstructure, J Nucl Matr, 2004, 326, 19-29
    [68] Pokor C, Brechet Y, Dubuisson P et al., Irradiation damage in 304 and 316 stainless steels: experimental investigation and modelin. Part II: irradiation induced hardening, J Nucl Matr, 2004, 326, 30-37
    [69] Doraiswamy N, Kestel B, Alexander D E, In-situ irradiation studies on the effects of helium on the microstructural evolution of V-3.8Cr-3.9Ti, DOE, 1996, CONF-961202-78
    [70] Chung H M, Loomis B A, Smith D L, Swelling and structure of Vanadium-based alloys irradiation in the dynamic Helium charging experiment, DOE, CONF-940657-8
    [71] Chung H M, Loomis B A, Smith D L, Effect of dynamically charge Helium on mechanical properties of Vanadium –based alloys, DOE, CONF-940657-7
    [72] Averback R S, Ghaly M, Fundamental aspects of defect production in solids, Nucl Instruments and Methodes in Phys Research, 1997, B127-128, 1-11
    [73] Golubov S I, Singh B N, Trinkaus H, Defect accumulation in fee and bcc metals and alloys under cascade damage conditions. Towards a generalisation of the production bias model. International workshop on basic aspects of differences in irradiation effects between FCC, BCC and HCP metals and alloys, Asturias (ES), 15-20 Oct 1998, J Nucl Mater, 2000, 276, 78-89
    [74] Tosten M H, Kanne Jr W R, Chapman G K et al., Weldability comparison of tritium-charged-and-aged 304 and 316LN stainless steels(U), DOE, 2003, WSRC-TR-2003-00077, ITER/US/02/INV-VV-01
    [75] Robertson I M, Robach J, Wirth B D, Mechanical proeprties of irradiated materials, International conference nuclear energy in central Europe 2001, Hoteli Bernardin, Portoro?, Slovenia, 2001 Step, 10-13
    [76] Arsenlis A, Wirth B D, Rhee M, Dislocation density-based constitutive model for the mechanical behavior of irradiation Cu, DOE, 2003, UCRL-JC-152725
    [77] Arsenlis A, Wirth B D, Rhee M, Dislocation density-based constitutive model for the mechanical behaviour of irradiation Cu, Philo Mag, 2004, 84(34), 3617-3635
    [78] Lindau R, M?slang A, Preininger D et al., Influence of helium on impact properties of reduced-activation ferritic/martensitic Cr-steels, J Nucl Mater, 1999, 271&272, 450-454
    [79] de la Rubia T D, Zbib H M, Khraishi T A et al., Multiscale modeling of plastic flow localization in irradiated materials, Nature, 2000, 406, 871-874
    [80] Campbell G H, Foiles S M, Huang H et al., Multi-scale modeling of polycrystal plasticity: a workshop report, Mater Sci Eng, 1998, A251, 1-22
    [81] 罗伯 D 编著, 项金钟, 吴兴惠 译, 计算材料学, 北京, 化学工业出版社, 2002,3-34
    [82] Mailhiot C. The DOE accelerated strategic computing initiative: challenges andopportunities for predictive materials simulation capabilities, DOE, 1997, UCRL-JC-128829
    [83] Parker A, Strategic supercomputing Comes of age, LLNL S&TR, 2004 June, 12-20
    [84] Wirth B D, Odette G R, Marian J et al., Multiscale modeling of rediation damage in Fe-based alloys in the fusion environment, J Nucl Mater, 2004, 329-333, 103-111
    [85] Lu G, Kaxiras E, Overview of multiscale simulations of materials, in, Rieth M, Schommers W, Handbook of theoretical and Computational Nanotechnology, Volume X, New York, American Scientific Publishers, 2005, 1-33
    [86] Holm E A, Battaile C C, Fang E et al., Making the connection between microstructure and mechanics, DOE, 2003, SAND2002-4231
    [87] Baskes M I, The status role of modeling and simulation in materials science and engineering, Current Opinion in Solid State & Materials Science, 1999, 4, 273-277
    [88] Bulatov V V, Current developments and trends in dislocation dynamics, J Computer-aided Mater Design, 2002, 9, 133-144
    [89] Yasin H, Zbib H M, Khaleel M A, Size and boundary effects in discreete dislocation dynamics: coupling with continuum finite element, Mater Sci Eng, 2001, A309-310, 294-299
    [90] Weygand D, Friedman L H, Van der Giessen E et al., Discrete dislocation modeling in three-dimensional confined volumes, Mater Sci Eng, 2001, A309-310, 420-424
    [91] Khraishi T A, Zbib H M, de la Rubia T D, The treatment of traction-free boundary condition in three-dimensional dislocation dynamics using generalized image stress analysis, Mater Sci Eng, 2001, A309-310, 283-287
    [92] Khan S M A, Zbib H M, Hughes D A, Modeling planar dislocation boundaries using multi-scale dislocation dynamics plasticity, Int J Plast, 2004, 20, 1059-1092
    [93] Lemarchand C, Devincre B, Kubin L P, Homogenization method for a discrete-continuum simulation of dislocation dynamics, J Mech Phys Solids, 2001, 49, 1969-1982
    [94] Roters F, Raabe D, Gottstein G, Calculation of stress-strain curves by using 2 dimensional dislocation dynamics, Compu Mater Sci, 1996, 7, 56-62
    [95] Han C S, Hartmaier A, Gao H et al., Discrete dislocation dynamics simulations of surface induced size effects in plasticity, Mater Sci Eng, 2006, A415, 225-233
    [96] Jonsson A, Discrete dislocation dynamics by an O(N) algorithm, Compu Mater Sci, 2003, 27, 271-288
    [97] Raabe D, Introduction of a hybrid model for the discrete 3D simulation of dislocation dynamics, Compu Mater Sci, 1998, 11, 1-15
    [98] Devincre B, Meso-scale simulation of the dislocation dynamics, in, Kirchner H O, Kubin L P, Pontikis V, Computer Simulation in Materials Science, Netherlands, Kluwer Academic, 1996, 309-323
    [99] Kubin L P, Devincre B, Tang M, Mesoscopic modelling and simulation of plasticity in fcc and bcc crystals:Dislocation intersections and mobility, J Computer-aided Mater Design, 1998, 5, 31-54
    [100] Devincre B, Kubin L P, Lemarchand C et al., Mesoscopic simulations of plastic deformation, Mater Sci Eng, 2001, A309-310, 211-219
    [101] Monnet G, Devincre B, Kubin L P, Dislocation study of prismatic slip systems and their interactions in hexagonal close packed metals:application to zirconium, Acta Mater, 2004, 52, 4317-4328
    [102] Zbib H M, Rjee M, Hirth J P, On plastic deformation and the dynamics of 3D dislocations, Int J Mech Sci, 1998, 40(2-3), 113-127
    [103] Rhee M, Zbib H M, Hirth J P et al., Models for long-/short-range interactions and cross slip in 3D dislocation simulation of BCC single crystals, Model Simul Mater Sci Eng, 1998, 6, 467-492
    [104] Zbib H M, de la Rubia T D, Rhee M et al., 3D dislocation dynamics:stress-strain behavior and hardening mechanisms in fcc and bcc metals, J Nucl Mater, 2000, 276, 154-165
    [105] Ghoniem N M, Tong S H, Sun L Z, Parametric dislocation dynamics: a thermodynamics-based approach to investigations of mesoscopic plastic deformation, Phys Rev, 2000, B61(2), 913-927
    [106] Huang J, Ghoniem N M, The dynamics of dislocation interactionn with sessile self-interstitial atom(SIA) defect cluster atmospheres, Compu Mater Sci, 2002, 23, 225-234
    [107] Weygand D, Friedman L H, Giessen E V et al., Aspects of boundary-value problem solutions with three-dimensional dislocation dynamics, Model Simul Mater Sci Eng, 2002, 10, 437-468
    [108] Shenoy V B, Kukta R V, Phillips R, Mesoscopic analysis of structure and strength of dislocation junctions in fcc metals, Phys Rev Lett, 2000, 84(7), 1491-1494
    [109] Koslowski M, Ortiz M, A multi-phase field model of planar dislocation networks, Model Simul Mater Sci Eng, 2004, 12(6), 1087-1097
    [110] Wirth B D, Caturla M J, de la Rubia T D et al., Mechanical property degradation in irradiated materials: a multiscale modeling approch, Nucl Instru Meth Phys Rese, 2001, B180, 23-31
    [111] Osetsky Y N, Bacon D J, Void and presipitate strengthening in α-iron: what can we learn from atomic-level modelling?, J Nucl Mater, 2003, 323, 268-280
    [112] Beeler Jr J R, Radiation effects computer experiments, New York, Elsevier Science Publishing, 1983, 1-872
    [113] Marian J, Wirth B D, Sch?ublin R et al., MD modeling of defects in Fe and their interactions, J Nucl Mater, 2003, 323, 181-191
    [114] Wirth B D, Odetteg G R, Maroudas D et al., Enery of formation and migration of self-interstitials and self-interstitial clusters in α-iron, J Nucl Mater, 1997, 244, 185-194
    [115] Wirth B D, Odetteg G R, Maroudas D et al., Dislocation loop structure, energy and mobility of self-interstitial atom clusters in bcc iron, J Nucl Mater, 2000, 276, 33-40
    [116] Pasianot R C, Monti A M, Simonelli G et al., Computer simulation of SIA migration in bcc and hcp metals, J Nucl Mater, 2000, 276, 230-234
    [117] Han S, Zepeda-Ruiz L A, Ackland G J et al., Interatomic potential for vanadium suitable for ratiation damae simulations, J Appl Phys, 2003, 93(6), 3328-3335
    [118] Shimomura Y, Sugio K, Kogure Y et al., Point defects and their clusters in bcc metals, Compu Mater Sci, 1999, 14, 36-42
    [119] Soneda N, Ishino S, Takahashi A et al., Modeling the microstructural evolution in bcc-Fe during irradiation using kinetic Monte Carlo computer simulation, J Nucl Mater,2003, 323, 169-180
    [120] Foils S M, Hoyt J J, Computer simulation of bubble growth in metals due to He, DOE, 2001, SAN2001-0661
    [121] Valone S M, Baskes M I, Stan M et al., Simulation of low energy cascade in fcc Pu metal at 300K and constant volume, J Nucl Meter, 2004, 324, 41-51
    [122] Fu H –H, Benson D J, Meyers M A, Analytical and computational description of effect of grain size on yield stress of metals, Acta Mater, 2001, 49, 2567-2582
    [123] Schulze V, V?hringer, Influence of alloying elements on the strain rate and temperature dependence of the flow stress of steels, Metall Mater Trans, 2000, A31, 825-830
    [124] Meyers M A, Benson D J, V?hringer O et al., Constitutive description of dynamic deformation: physically-based mechanisms, Mater Sci Eng, 2002, A322, 194-216
    [125] Holm E A, Battaile C C, Buchheit T E et al., Computational methods for coupling microstructural and micromechanical materials response simulations, DOE, 2000, SAND2000-1015
    [126] Stainier L, Cuiti?o A M, Ortiz M, A micromechanical model of hardening, rate sensitivity and thermal sodtening in bcc single crystals, J Mech Phys Solids, 2002, 50, 1511-1545
    [127] Shiraishi H. Evaluation of helium embrittlement by two dimensional elastic-plastic finite element method, J Nucl Mater, 1996, 233-237, 985-990
    [128] 任大鹏, 王小英, 姜桂芬, 21-6-9奥氏体钢贮氘、氚容器时效后显微组织研究,中国国防科学技术报告, GF-A0044888
    [129] 任大鹏, 邹觉生, 倪然夫 等, 氢氚对不锈钢力学性能的影响, 中国国防科学技术报告, GF-A0059118G
    [130] 任大鹏, 向士凯, 邹觉生 等, 充氚对不锈钢显微组织拉伸性能的影响, 中国国防科学技术报告, GF-A0059119G
    [131] 赵雅文, 刘柯钊, 陈向林 等, 充氚不锈钢中氦行为的PAL和TEM研究, 2006年度材料学科学术交流会论文集, 中国工程物理研究院, 2006, 674-679
    [132] 张镭, 王佩璇, 陶蓉 等, 注入氦不锈钢中氦泡的热形核及长大研究, 金属学报, 1992, 28, 12-17
    [133] 张崇宏, 陈克勤, 王引书 等, 金属材料中氦的扩散与氦泡形核生长研究, 原子核物理评论, 2001, 18(1), 50-55
    [134] 任大鹏, 王小英, 不锈钢高温氦脆(HTHE)问题, 材料导报, 2002, 16(7), 27-28
    [135] 向士凯,任大鹏,邹觉生 等,充氚对不锈钢显微组织位伸性能的影响,金属学报,2001,37(4),373-376
    [136] 李玉璞,王佩璇,不锈钢中离子注入氦的分布其效应,中国核科技报告,1991,(S3)
    [137] 盛钟琦, 肖洪, 彭峰 等, 奥氏体不锈钢的显微组织氦脆断口观察, 核动力工程, 1991, 12(6), 41-46
    [138] Yu J, Zhao X, Zhang W et al., Defect production and accumulation under hydrogen and helium ion irradiation, J Nucl Mater, 1997, 251, 150-156
    [139] Chen K Q, Yang S H, Wang Z G et al., The analysis of microstructure of helium bubbles in 316L SS induced by 3.02MeV He ion irradiation, J Nucl Mater, 1992, 191-194,737-741
    [140] Chen K Q, Wang Y S, Quan J M et al., The formation of helium bubbles in 316L SS irradiated with helium ions at different temperatures, J Nucl Mater, 1994, 212-215, 345-351
    [141] Wang Y S, Chen K Q, Zhang C H et al., The formation of helium bubbles in 316L SS irradiated with helium ions at 837K, J Nucl Mater, 1996, 240, 70-74
    [142] Zhang C H, Chen K Q, Wang Y S et al., Formation of bubbles in helium implanted 316L SS at temperatures between 25℃ and 550℃ , J Nucl Mater, 1997, 245, 210-216
    [143] Zhang C H, Chen K Q, Wang Y S et al., Thermal stability of He-vacancy clusters in He-ion irradiated 316L SS at 550 ℃, Nucl Instr Meth, 1998, B135, 256-259
    [144] Zhang C H, Chen K Q, Wang Y S et al., Temperature dependence of bubble structures in stainless steels trradiated with 2.5MeV He+ ions, J Nucl Mater, 1998, 258-263, 623-627
    [145] 刁小雪, 何远航, 刑修三, 辐照金属氦脆的微观机理统计特性, 北京理工大学学报, 1993, 13(1), 10-16
    [146] 刁小雪, 何远航, 刑修三, 辐照金属氦脆的非平衡统计理论, 北京理工大学学报, 1993, 13(2), 133-139
    [147] 胡颖, 刑修三, 金属辐照氦的统计理论, 北京理工大学学报, 1997, 17(5), 539-544
    [148] Wang J, Ning X, Molecular dynamics simulation of helium behavior in copper crystals, Chin Phys Lett, 2003, 20(9), 1416-1419
    [149] Wang J, Hou Q, Sun T Y et al., Simulation of helium behavior in titanium crystals using molecular dynamics, Chin Phys Lett, 2006, 23(7), 1666-1669
    [150] 杨继红, 李勇, 李守新 等, Cu单晶中疲劳早期位错花样演化的观察与模拟, 金属学报, 2000, 36(10), 1015-1020
    [151] 杨继红, 李守新, 柯伟, 边界条件对离散位错动力学模拟疲劳Cu单晶位错花样的影响, 金属学报, 2003, 39(7), 704-710
    [152] 周国辉,褚武扬,周富信,温度和加载速率影响位错发射的分子动力学模拟,固体力学学报,1999,20(4),310-314
    [153] 李忠吉, 刘辉, 高克玮 等, 吸附促进位错发射、运动以裂纹扩展的分子动力学模拟, 金属学报, 2001, 37(10), 1013-1017
    [154] 李忠吉,褚武扬,高克玮 等,氢促进位错发射和裂纹扩散的三维分子动力学模拟,自然科学进展,2002, 12(9), 1001-1004
    [155] 周志敏, 孙艳蕊, 位错组态演化规律其在流变应力预测中的应用, 科学通报, 2004, 49(12), 1123-1127
    [156] 程经毅, 周光泉, 基于物理变量的热黏塑性本构模型, 爆炸与冲击, 1996, 16(3), 218-231
    [157] Nemat-Nasser S, Guo W G, Kihl D P, Thermomechanical response of AL-6XN stainless steel over a wide range of strain rates and temperatures, J Mech Phys Solids, 2001, 49, 1823-1846
    [158] Nemat-Nasser S, Guo W G, Nesterenko V F et al., Dynamic response of conventional and hot isostatically pressed Ti-6Al-4V alloys: experiments and modeling,Mech Mater, 2001, 33, 425-439
    [159] Nemat-Nasser S, Li Y L, Flow stress of FCC polycrystals with application to OFHC Cu, Acta Mater, 1998, 46, 565-577
    [160] Nemat-Nasser S, Guo W G, Cheng J Y, Mechanical properties and deformation mechanisms of a commercially pure titanium, Acta Mater, 1999, 47(13), 3705-3720
    [161] Bortz A B, Kalos M H, Lebowitz J L, A new algorithm for. monte-carlo simulation of ising spin systems, J Comput Phys,. 1975, 17, 10-18
    [162] Daw M S, Baskes M I, Embedded-atom method: derivation and application to impurities, surface, and other defects in metals, Phys Rev, 1984, B29(12), 6443-6453
    [163] Foiles S M, Baskes M I, Daw M S, Embedded-atom-method function for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys, Phys Rev, 1986, B33(12), 7983-7991
    [164] Baskes M I, Nelson J S, Wright A F, Semiempirical modified embedded-atom potentials for silicon and germanium, Phys Rev, 1989, B40(9), 6085-6100
    [165] Baskes M I, Modified embedded-atom potentials for cubic materials and impurities, Phys Rev, 1992, B46, 2727-2742
    [166] Baskes M I, Determination of modified embedded atom method parameters, Mater Chem Phys, 1997, 55(2), 152-158
    [1]Wilson W D, Bisson C L, Inert gases in solids: interatomic potentials and their influence on rare-das mobility, Phys Rev, 1971, B3(12), 3984-3992
    [2]Wilson W D, Bisson C L, Baskes, M I, Self-trapping of helium in metals, Phys Rev, 1981, B24(10), 5616-5624
    [3]Wilson W D, Theory of small clusters of helium in metals, Rad Eff, 1983, 78, 11-24
    [4]Caspers L M, van Veen A, Bullough T J, A simulation study of the initial phase of He precipitation in metals, Rad Eff, 1983, 78, 67-76
    [5]Wirth B D, Odetteg G R, Maroudas D et al., Enery of formation and migration of self-interstitials and self-interstitial clusters in α-iron, J Nucl Mater,1997, 244, 185-194
    [6]Shimomura Y, Sugio K, Kogure Y et al., Point defects and their clusters in bcc metals, Compu Mater Sci, 1999, 14, 36-42
    [7]Wirth B D, Odetteg G R, Maroudas D et al., Dislocation loop structure, energy and mobility of self-interstitial atom clusters in bcc iron, J Nucl Mater, 2000, 276, 33-40
    [8]Pasianot R C, Monti A M, Simonelli G et al., Computer simulation of SIA migration in bcc and hcp metals, J Nucl Mater, 2000, 276, 230-234
    [9]Han S, Zepeda-Ruiz L A, Ackland G J et al., Interatomic potential for vanadium suitable for ratiation damae simulations, J Appl Phys, 2003, 93(6), 3328-3335
    [10]Fu C –C, Willaime F, Stability and mobility of mono- and di-interstitials in α-Fe, Phys Rev Lett, 2004, 92(17), 175503
    [11]吴兴惠, 项金钟, 现代材料计算与设计教程, 北京, 电子工业出版社, 2002, 154-172
    [12]Baskes M I, Modified embedded-atom potentials for cubic materials and impurities, Phys Rev, 1992, B46, 2727-2742
    [13]Baskes M I, Determination of modified embedded atom method parametersfor nickel, Mater Chem Phys, 1997, 55, 152-158
    [14]Baskes M I, Atomistic potentials for the molybdenum-silicon system, Mater Sci Eng, 1999, A261, 165-168
    [15]Daw M S, Baskes M I, Embedded-atom method: derivation and application to impurities, surface, and other defects in metals, Phys Rev, 1984, B29(12), 6443-6453
    [16]Foiles S M, Baskes M I, Daw M S, Embedded-atom-method function for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys, Phys Rev, 1986, B33(12), 7983-7991
    [17]Baskes M I, Nelson J S, Wright A F, Semiempirical modified embedded-atom potentials for silicon and germanium, Phys Rev, 1989, B40(9), 6085-6100
    [18]Lee B -J, Baskes M I, Kim H et al., Second nearest-neighbor modified embedded atom method potentials for bcc transition metals, Phys Rev, 2001, B64, 184102
    [19]Plimpton S J, Hendrickson B A, Parallel molecular dynamics with the embedded atom method, in, Broughton J, Bristowe P, Newsam J, Materials theory and modeling, MRS Proceeding 291, Pittsburgh, 1993, 37-42
    [20]Beeler Jr J R, Radiation effects computer experiments, New York, Elsevier Science Publishing, 1983, 132
    [21]Becks D E, A new interatomic potential function for helium, Mole Phys, 1968, 14(4), 311-315
    [22]戴彧虹, 袁亚湘, 非线性共轭梯度法, 上海, 科学技术出版社, 2000
    [23]Cheng L J, Cai W S, Shao X G, An energy-based perturbation and taboo strategy for improving the searching ability of stochastic structural optimization methods, Chem Phys Lett, 2005, 404, 182-186
    [24]Bj?rkman M, Holmstr?m, Global optimization using the direct algorithm in Matlab, Advanced Modeling and Optimization, 1999, 1(2), 17-35
    [25]Morishita K, Sugano R, Wirth B D et al., Thermal stability of Helium-vacancy clusters in iron, Nucl Instr and Meth in Phys Resea, 2003, B202, 76-81
    [26]Morishita K, Sugano R, Wirth B D, Thermal stability of He-Vacancy clusters and bubble formation –Multiscale modeling approach for fusion materials development, Fusion Sci Thch, 2003, 44, 441-445
    [27]Morishita K, Sugano R, Wirth B D, MD and KMC modeling of growth and shrinkage mechanisms of helium-vacancy clusters in Fe, J Nucl Mater, 2003, 323, 243-250
    [28]Wirth B D, Bringa E M, A kinetic monte carlo model for Helium diffusion and clustering in fusion environments, Phys Scrip, 2004, T108, 80-84
    [29]Ackland G J, Bacon D J, Calder A F et al., Computer simulation of point defect properties in dulite Fe-Cu alloys using a many-body interatomic potential, Phil Mag, 1997, A75(3), 713-732
    [30]Ventelon L, Wirth B D, Fusion Materials Semiannual Progress for the Period Ending Dec.31 2004, DOE, DOE-ER-0313/37, 2005, 140
    [31]Seletskaia T, Osetsky Y, Stoller R E et al., Magnetic interaction influence the properties of helium defects in iron, Phys Rev Lett, 2005, 94, 046403
    [32]Adams J B, Wolfer W G, Formation energies of helium-void complexes in nickel, J Nucl Mater, 1989, 166, 235-242,
    [33]Ullmaier H, Introduction remarks - helium in metals, Rad Eff, 1983, 78, 1-10
    [34]Bortz A B, Kalos M H, Lebowitz J L, A new algorithm for monte-carlo simulation of ising spin systems, J Comput Phys,. 1975, 17, 10-18
    [35]余永宁, 毛卫民, 材料的结构, 北京, 冶金工业出版社, 2001, 58-149
    [36]赵雅文, 刘柯钊, 陈向林 等, 充氚不锈钢中氦行为的PAL和TEM研究, 2006年度材料学科学术交流会论文集, 中国工程物理研究院, 2006, 674-679
    [37]王偑璇, 宋家树, 材料中的氦氚渗透, 北京, 国防工业出版社, 2002, 1-52
    [38]Foils S M, Hoyt J J, Computer simulation of bubble growth in metals due to He, DOE, SAN2001-0661
    [39]Evans J H, van Veen A, Finnis M W, Observations and theory of thermally-induced helium bubble shrinkage in gold, J Nucl Mater, 1989, 168, 19-23
    [40]Vassen R, Trinkaus H, Jung P, Diffusion of Helium in Magnesium and Titanium before and after Clustering, J Nucl Mater, 1991, 183, 1-8
    [41]张镭,王佩璇, 陶蓉 等, 注入氦不锈钢中氦泡的热形核及长大研究, 金属学报, 1992, 28, 12-17
    [42]Trinkaus H, Energetics and formation kinetics of helium bubbles in metals, Rad Eff, 1983, 78, 189-211
    [1] Raabe D, Introduction of a hybrid model for the discrete 3D simulation of dislocation dynamics, Compu Mater Sci, 1998, 11, 1-15
    [2] Devincre B, Meso-scale simulation of the dislocation dynamics, in, Kirchner H O, Kubin L P, Pontikis V, Computer Simulation in Materials Science, Netherlands, Kluwer Academic,1996, 309-323
    [3] Kubin L P, Devincre B, Tang M, Mesoscopic modelling and simulation of plasticity in fcc and bcc crystals: dislocation intersections and mobility, J Computer-aided Mater Design, 1998, 5, 31-54
    [4] Devincre B, Kubin L P, Lemarchand C et al., Mesoscopic simulations of plastic deformation, Mater Sci Eng, 2001, A309-310, 211-219
    [5] Monnet G, Devincre B, Kubin L P, Dislocation study of prismatic slip systems and their interactions in hexagonal close packed metals:application to zirconium, Acta Mater, 2004, 52, 4317-4328
    [6] Zbib H M, Rjee M, Hirth J P, On plastic deformation and the dynamics of 3D dislocations, Int J Mech Sci, 1998, 40(2-3), 113-127
    [7] Rhee M, Zbib H M, Hirth J P et al., Models for long-/short-range interactions and cross slip in 3D dislocation simulation of BCC single crystals, Model Simul Mater Sci Eng, 1998, 6, 467-492
    [8] Zbib H M, de la Rubia T D, Rhee M et al., 3D dislocation dynamics: stress-strain behavior and hardening mechanisms in fcc and bcc metals, J Nucl Mater, 2000, 276, 154-165
    [9] Ghoniem N M, Tong S H, Sun L Z, Parametric dislocation dynamics: a thermodynamics-based approach to investigations of mesoscopic plastic deformation, Phys Rev, 2000, B61(2), 913-927
    [10] Huang J, Ghoniem N M, The dynamics of dislocation interactionn with sessile self-interstitial atom(SIA) defect cluster atmospheres, Compu Mater Sci, 2002, 23, 225-234
    [11] Weygand D, Friedman L H, Giessen E V et al., Aspects of boundary-value problem solutions with three-dimensional dislocation dynamics, Model Simul Mater Sci Eng, 2002, 10, 437-468
    [12] Shenoy V B, Kukta R V, Phillips R, Mesoscopic analysis of structure and strength of dislocation junctions in fcc metals, Phys Rev Lett, 2000, 84(7), 1491-1494
    [13] Koslowski M, Ortiz M, A multi-phase field model of planar dislocation networks, Model Simul Mater Sci Eng, 2004, 12(6), 1087-1097
    [14] Xiang Y, Srolovitz, Cheng L T et al., Level set simulations of dislocation- particle bypass mechanisms, Acta Mater, 2004, 52, 1745-1760
    [15] 罗伯 D 编著, 项金钟, 吴兴惠 译, 计算材料学, 北京, 化学工业出版社, 2002, 151-222
    [16] Zbib H M, de la Rubia T D, A multiscale model of plasticity, Int J Plast, 2002, 18, 1133-1163
    [17] Hirth J P, Zbib H M, Lothe J, Forces on high velocity dislocation, Model SimulMater Sci Eng, 1998, 6, 165-169
    [18] Kocks U F, Argon A S, Ashby M F, Thermodynamics and Kinetics of Slip, England, Pergamon Press Ltd, 1975, 171-229
    [19] Tang M, Kubin L P, Canova G R, Dislocation mobility and the mechanical response of B.C.C. single crystals: A mesoscopic approach, Acta Mater, 1998, 46(9), 3221-3235
    [20] Moulin A, Condat M, Kubin L P, Mesoscale modelling of the yield point properties of silicon crystals, Acta Mater, 1999, 47(10), 2879-2888
    [21] Tang M, Fivel M, Kubin L P, From forest hardening to strain hardening in body centered cubic single crystals:simulation and modeling, Mater Sci Eng, 2001, A309-310, 256-260
    [22] Hirth J P, Lothe J, Theory of Dislocations, New York, Wiley, 1982, 30-353
    [23] Cai W, Arsenlis A, Weinberger C R et al., A non-singular continuum theory of dislocations, J Mech Phys Solids, 2006, 54, 561-587
    [24] LeSar R, Ambiguities in the calculation of dislocation self energies, Phys Stat Sol(b), 2004, 241(13), 2875-2880
    [25] Lothe J, Hirth J P, Dislocation core parameters, Phys Stat Sol(b), 2005, 242(4), 836-841
    [26] 余永宁, 毛卫民, 材料的结构, 北京, 冶金工业出版社, 2001, 184-192
    [27] R?nnpagel D, Streit T, Pretorius T, Including thermal activation in simulation calculations of dislocation glide, Phys Stat Sol(a), 1993, 135(2), 445-454
    [28] Hiratani M, Zbib H M, Khaleel M A, Modeling of thermally activated dislocation glide and plastic flow through local obstacles, Int J Plast, 2003, 19, 1271-1296
    [29] Meyers M A, Dynamic Behavior of Materials, New York, John Wiley & Sons, 1994, 349
    [30] Zerilli F J, Armstrong R W, Dislocation-mechanics-based constitutive relations for material dynamics calculations, J Appl Phys, 1987, 61(5), 1816-1825
    [31] Mughrabi H, Plastic Deformation and Fracture of Materials, In, Cahn R W, Hassen P, Kramer E J, Materials Science and Technology - A Comprehensive Treatment, Weinheim, VCH, 1993, 30-147
    [32] Nabarro F R N, Fifty-year study of the Peierls-Nabarro stress, Mater Sci Eng, 1997, A234-236, 67-76
    [33] 颜庆云, 体心立方晶体中螺型位错的可动性-模拟方法评述, 自然科学进展, 2000, 10(9), 769-776
    [34] Weygand D, Friedman L H, van der Giessen E et al., Discrete dislocation modeling in three-dimensional confined volumes, Mater Sci Eng, 2001, A309-310, 420-424
    [35] Bulatov V V, Rhee M, Cai W, Periodic boundary conditions for dislocation dynamics simulations in three dimensions, DOE, UCRL-JC-141458, 2000
    [36] García D G, Devincre B, Kubin L, Dislocation dynamics in confined geometry, J Computer-aided Mater Design, 1999, 6, 157-164
    [37] Khraishi T A, Zbib H M, de la Rubia T D, The treatment of traction-free boundary condition in three-dimensional dislocation dynamics using generalized image stress analysis, Mater Sci Eng, 2001, A309-310, 283-287
    [38] Khan S M A, Zbib H M, Hughes D A, Modeling planar dislocation boundariesusing multi-scale dislocation dynamics plasticity, Int J Plast, 2004, 20, 1059-1092
    [39] Lemarchand C, Devincre B, Kubin L P, Homogenization method for a discrete- continuum simulation of dislocation dynamics, J Mech Phys Solids, 2001, 49, 1969-1982
    [40] Rodney D. Phillips R, Structure and strength of dislocation junction: an atomic level analysis, Phys Rev Lett, 1999, 82(8), 1704-1707
    [41] Dupuy L, Five M C, A study of dislocation junctions in FCC metals by an orientation dependent line tension model, Acta Mater, 2002, 50, 4873-4885
    [42] Shenoy V B, Kukta R V, Phillips R, Mesoscopic analysis of structure and strength of dislocation junctions in fcc metals, Phys Rev Lett, 2000, 84(7), 1491-1494
    [43] Zhou S J, Preston D L, Lomdahl P S et al., Large-scale molecular dynamics simulations of dislocation intersection in copper, Science, 1998, 279(6), 1525-1527
    [44] Madec R, Devincre B, Kubin L P, From dislocation junctions to forest hardening, Phys Rev Lett, 2002, 89(25), 255508
    [45] Schwarz K W, Local rules for approximating strong dislocation interaction in discrete dislocation dynamics, Model Simul Mater Sci Eng, 2003, 11, 609-625
    [46] Puschl W, Models for disloaction cross-slip in close-packed crystal structures:a critical review, Prog Mater Sci, 2002, 47, 415-461
    [47] Bonneville J, Escaig B, Martin J L, A study of cross-slip activation parameters in pure copper, Acta Metall, 1988, 36(8), 1989-2002
    [48] Duesbery M S, Dislocation motion, constriction and cross-slip in fcc metals, Model Simul Mater Sci Eng, 1998, 6, 35-49
    [49] Rasmussen T, Jacobsen K W, Leffers T et al., Atomic structure and energetics of constricted screw dislocations, Mater Sci Eng, 1997, A234-236, 544-547
    [50] Vegge T, Atomistic simulations of screw dislocation cross slip in copper and nickel, Mater Sci Eng, 2001, A309-310, 113-116
    [51] Qi Y, Strachan A, Cagin T et al., Large scale atomistic simulations of screw dislocation structure, annihilation and cross slip in FCC Ni, Mater Sci Eng, 2001, A309-310, 156-159
    [52] Mordehai D, Kelson I, Makov G, Cross-slip and annihilation of screw dislocation in Cu: a molecular dynamics study, Mater Sci Eng, 2005, A400-401, 37-39
    [53] Rasmussen T, Jacobsen K W, Leffers T et al., Atomistic determination of cross-slip pathway and energetics, Phys Rev Lett, 1997, 79(10), 3676-3679
    [54] Vegge T, Rasmussen T, Leffers T et al., Determination of the rate of cross slip of screw dislocation, Phys Rev Lett, 2000, 85(18), 3866-3869
    [55] Rasmussen T, Jacobsen K W, Simulations of the atomic structure, energetics, and cross slip of screw dislocations in copper, Phys Rev, 1997, B56(6), 2977-2990
    [56] Hiratani M, Zbib H M, On dislocation-defect interactions and patterning: stochastic discrete dislocation dynamics(SDD), J Nucl Mater, 2003, 323, 290-303
    [57] 李瑞遐, 何志庆, 微分方程数值方法, 上海, 华东理工大学出版社, 2005, 38-44
    [58] Burrage K, Tian T H, The composite Euler method for stiff stochastic differential equations, J Compu Appl Math, 2001, 131, 407-426
    [59] Lamba H, An adaptive timestepping algorithm for stochactic differential equations, J Compu Appl Math, 2003, 161, 417-430
    [60] Tian T H, Burrage K, Implicit Taylor methods for stiff stochastic differentialequations, Appl Nume Math, 2001, 38, 167-185
    [61] Mazonka O, Jarzyński C, Blocki J, Computing probabilities of very rare events for Langevin processes: a new method based on importance sampling, Nucl Phys, 1998, A641, 335-354
    [62] Mughrabi H, Self-consistent experimental determination of the dislocation line tension and long-range internal stresses in deformed copper crystals by analysis of dislocation curvatures, Mater Sci Eng, 2001, A309-310, 237-245
    [63] Kubin L P, Estrin Y, Evolution of dislocation densities and the critical conditions for the Portevin-Le Chatelier effect, Acta Metall Mater, 1990, 38(5), 697-708
    [64] Verdier M, Fivel M, Groma I, Mesoscopic scale simulation of dislocation dynamics in fcc metals: principles and applications, Model Simul Mater Sci Eng, 1998, 6(6), 755-770
    [65] Mohles V, R?nnpagel D, Thermal activation analysis of dislocations in obstacle fields, Compu Mater Sci, 1996, 7(1-2), 98-102
    [66] Bonneville J, Escaig B, Martin J L, A study of cross-slip activation parameters in pure copper, Acta Matall, 1988, 36(8), 1989-2002
    [67] Mohles V, The critical resolved shear stress of single crystal with long-range ordered precipitates calculated by dislocation dynamics simulation, Mater Sci Eng, 2004, A365, 144-150
    [68] Mohles V, Fruhstorfer B, Computer simulations of orowan process controlled dislocation glide in particle arrangements of various randomness, Acta Mater, 2002, 50, 2503-2516
    [69] Shin C S, Fivel M C, Verdier M et al., Dislocation-impenetrable precipitate interaction: a three-dimensional discrete dislocation dynamics analysis, Philo Maga, 2003, 83(31-34), 3691-3704
    [70] Shin C S, Fivel M C, Verdier M et al., Dislocation dynamics simulations of fatigue of precipitation-hardened materials, Mater Sci Eng, 2005, A400-401, 166-169
    [71] Hiratani M, Nadgorny E M, Combined model of dislocation motion with thermally activated and drag-dependent stages, Acta Mater, 2001, 49, 4337-4346
    [72] Hiratani M, Zbib H M, Stochastic dislocation dynamics for dislocationdefects interaction: a multiscale modeling approach, J Eng Mater Tech, 2002, 124, 1-7
    [1] 杨桂通, 塑性动力学, 北京, 高等教育出版社, 2000, 1-13
    [2] 王礼立, 爆炸与冲击载荷下结构和材料动态响应研究的新进展, 爆炸与冲击, 2001, 21(2), 81-88
    [3] Meyers M A, Dynamic Behavior of Materials, New York, John Wiley & Sons, 1994, 349
    [4] 李庆生, 材料强度学, 太原, 山西科学教育出版社, 1990
    [5] Zurek A K, Meyers M A, Microstructual aspects of dynamic failure,
    [6] Meyers M A, Benson D J, V?hringer O et al., Constitutive description of dynamic deformation: physically-based mechanisms, Mater Sci Eng, 2002, A322, 194-216
    [7] Hirth J P, Lothe J, Theory of Dislocations, New York, Wiley, 1982, 751-809
    [8] Mughrabi H, Plastic Deformation and Fracture of Materials, In, Cahn R W, Hassen P, Kramer E J, Materials Science and Technology - A Comprehensive Treatment, Weinheim, VCH, 1993, 101-628
    [9] Blazynski T Z , ed., Materials at high rates, London, Elsevier, 1987
    [10] Zerilli F J, Armstrong R W, Dislocation-mechanics-based constitutive relations for material dynamics calculations, J Appl Phys, 1987, 61(5), 1816-1825
    [11] Staudhammer K D, Murr K D, Hecher S S, Acta Metall, 1983, 31, 267
    [12] Johnson K A, Murr L E, Staudhammer K D, Acta Metall, 1985, 33, 677
    [13] Bergstr?m Y, Dislocation model for the stress-strain behaviour of polycrystalline alpha-iron with special emphasis on the variation of the densities of mobile and immobile dislocations, Mater Sci Eng, 1970, 5(4), 193-200
    [14] Bergstr?m Y, Roberts W, Dislocation model for dynamical strain ageing of alpha-fe in the jerky-flow region, Acta Metall, 1971, 19(11), 1243-1251
    [15] Roberts W, Bergstr?m Y, Stress-strain behaviour of single crystals and polycrysals of fcc metals – a new dislocation treatment, Acta Metall, 1973, 21(4), 457-469
    [16] Bergstr?m Y, Olund S, The forming limit diagram of sheet metals and effects of strain path changes on formability: a dislocation treatment, Mater Sci Eng, 1982, 56(1), 47-61
    [17] Bergstr?m Y, Hallen H, An improved dislocation model for the stress-strain behaviour of polycrystalline alpha-iron, Mater Sci Eng, 1982, 55(1), 49-61
    [18] Kocks U F, Argon A S, Ashby M F, Thermodynamics and Kinetics of Slip, England, Pergamon Press Ltd, 1975, 110-170
    [19] Peckner D, Bernstein I M 主编, 顾守仁, 周有德 等译, 不锈钢手册, 北京, 机械工业出版社, 1987, 122-183
    [20] Ohkubo N, Miyakusu K, Uematsu Y et al., Effect of alloying elements on the mechanical properties of the stable austenitic stainess steel, ISIJ international, 1994, 34(9), 764-772
    [1] Arsenlis A, Wirth B D, Rhee M, Dislocation density-based constitutive model for the mechanical behaviour of irradiation Cu, Philo Mag, 2004, 84(34), 3617-3635
    [2] Mughrabi H, Plastic Deformation and Fracture of Materials, In, Cahn R W, Hassen P, Kramer E J, Materials Science and Technology - A Comprehensive Treatment, Weinheim, VCH, 1993, 92-355
    [3] Kocks U F, Argon A S, Ashby M F, Thermodynamics and Kinetics of Slip, England, Pergamon, 1975, 110-170
    [4] Johnson G R, Cook W H, A constitutive model and data for metals subjected to large strains, high rates and high temperaturea, Proceeding of the 7th International Symposium On Ballistics, The Hague, Netherland, 1983, 541-547
    [5] Frost H J, Ashby M F, Deformation-Mechanism Maps- The Plasticity and Creep of Metals and Ceramics, England, Pergamon, 1982
    [6] Zerilli F J, Armstrong R W, Dislocation-mechanics-based constitutive relations for material dynamics calculations, J Appl Phys, 1987, 61(5), 1816-1825
    [7] Zerilli F J, Armstrong R W, Description of tantalum deformation behavior by dislocation mechanics based constitutive relation, J Appl Phys, 1990, 68, 1580-1591
    [8] Zerilli F J, Armstrong R W, Effect of dislocation drag on the stress-strain behavior of FCC metals, Acta Metall Mater, 1992, 40(8), 1803-1808
    [9] Follansbee P S, High strain rate deformation of FCC metals and alloys, In, Murr L E, Staudhammer K P, Meyers M A, Metallurgical Applications of Shocks-Wave and High-Strain-Rate Phenomena, New York, Marcel Dekker, 1986, 451-480
    [10] Follansbee P S, Kocks U F, A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable, Acta Metall, 1988, 36(1), 81-93
    [11] Voce E, The relationship between stress and strain for homogeneous deformation, J Inst Metall, 1948, 74, 537-562
    [12] Andrade U, Meyers M A, Chokshi A H, Constitutive description of work- and shock-hardened copper, Scrip Metall Mater, 1994, 30, 933-938
    [13] Bodner S R, Partom Y. Constitutive equations for elastic-viscoplastic strain- hardening materials, J Appl Mech, 1975, June, 385-389
    [14] Bammann D J, Internal variable model of viscoplasticity, Int J Eng Sci, 1984, 22(8-10), 1041-1053
    [15] Bammann D J, Modeling temperature and strain rate dependent large deformations of metals, Appl Mech Rev, 1990, 43(5, part2), 312-319
    [16] Hoge K G, Mukherjee A K, Temperature and strain rate dependence of the flow stress of tantalum, J Mater Sci, 1977, 12(8), 1666-1672
    [17] Steinberg D J, Guinan M W, Constitutive relations for the KOSPALL code, LLNL Report, Apr. 1973
    [18] Steinberg D J, Cochran S G, Guinan M W, A constitutive models for metals application at high rate, J Appl Phys, 1980, 51(3), 1498-1504
    [19] Steinberg D J, Lund C M, A constitutive model for strain rates from 10-4 to 106 s-1,J Appl Phys, 1989, 65(4), 1528-1533
    [20] Devince B, Kubin L P, Simulation of forest interactions and strain-hardening in fcc crystal, Model Simul Mater Sci Eng, 1994, 2(3A), 559-570
    [21] Rhee M, Zbib H M, Hirth J P et al., Models for long-/short-range interactions and cross slip in 3D dislocation simulation of BCC single crystals, Model Simul Mater Sci Eng, 1998, 6, 467-492
    [22] Zbib H M, De la rubia T D, Rhee M et al., 3D dislocation dynamics:stress-strain behavior and hardening mechanisms in fcc and bcc metals, J Nucl Mater, 2000, 276, 154-165
    [23] Robert W, Bergstr?m Y, The stress-strain behavioue of single crystals and polycrystals of f.c.c metals: a new dislocation treatment, Acta Metall, 1973, 21, 457-469
    [24] Kocks U F, A statistical theory of flow stress and work hardening, Philo Maga, 1966, 13, 541-566
    [25] Kocks U F, Laws for work-hardening and low temperature creep, J Eng Mater Tech, 1976, 98, 76-85
    [26] Estrin Y, Mecking H, A unified phenomenological description of work-hardening and creep based on one-parameter models, Acta Metall, 1984, 32, 57-70
    [27] Estrin Y, Dislocation theory based constitutive modeling: foundations and applications, J Mater Process Technol, 1998, 80-81, 33-39
    [28] Bammann D J, Modeling temperature and strain rate dependent large deformation of metals, Appl Mech Rev, 1990, 43(5, part 2), 312-319
    [29] Busso E P, A continuum theory for dynamic recrystallization with microstructure-related length scales, Int J Plast, 1998, 14(4-5), 319-353
    [30] Bergstr?m Y, Dislocation model for the stress-strain behaviour of polycrystalline alpha-iron with special emphasis on the variation of the densities of mobile and immobile dislocations, Mater Sci Eng, 1970, 5(4), 193-200
    [31] Bergstr?m Y, Roberts W, Dislocation model for dynamical strain ageing of alpha-fe in the jerky-flow region, Acta Metall, 1971, 19(11), 1243-1251
    [32] Roberts W, Bergstr?m Y, Stress-strain behaviour of single crystals and polycrysals of fcc metals – a new dislocation treatment, Acta Metall, 1973, 21(4), 457-469
    [33] Bergstr?m Y, Olund S, The forming limit diagram of sheet metals and effects of strain path changes on formability: a dislocation treatment, Mater Sci Eng, 1982, 56(1), 47-61
    [34] Bergstr?m Y, Hallen H, An improved dislocation model for the stress-strain behaviour of polycrystalline alpha-iron, Mater Sci Eng, 1982, 55(1), 49-61
    [35] Hasegawa T, Takahashi T, Okazaki K, Deformation parameters govering tensile elongation for a mechanically milled Al-1.1at.%Mg-1.2at.%Cu alloy tested in tension at constant true strain rates, Acta Mater, 2000, 48(8), 1789-1796
    [36] Busso E P, Meissonier F T, O’Dowd N P, Gradient-dependent deformation of two-phase single crystal, J Mech Phys Solids, 2000, 48, 2333-2361
    [37] Estrin Y, Braasch H, Brechet Y, A dislocation density based constitutive model for cyclic deformation, J Eng Mater Tech, 1996, 118(4), 441-447
    [38] Nemat-Nasser S, Guo W G, Kihl D P, Thermomechanical response of AL-6XN stainless steel over a wide range of strain rates and temperatures, J Mech Phys Solids, 2001, 49, 1823-1846
    [39] Nemat-Nasser S, Isaacs J B, Direct measurement of isothermal flow stress of metals at elevated temperatures and high strain rates with application to Ta and Ta-W alloys, Acta Mater, 1997, 45(3), 907-919
    [40] Nemat-Nasser S, Guo W G, Nesterenko V F et al., Dynamic response of conventional and hot isostatically pressed Ti-6Al-4V alloys: experiments and modeling, Mech Mater, 2001, 33, 425-439
    [41] Nemat-Nasser S, Guo W G, High strain-rate response of commercially pure vanadium, Mech Mater, 2000, 32, 243-260
    [42] Nemat-Nasser S, Kapoor R, Deformation behavior of tantalum and a tantalum tungsten alloy, Int J Plast, 2001, 17, 1351-1366
    [43] Kapoor R, Nemat-Nasser S, Comparison between high and low strain-rate deformation of tantalum, Metall Mater Trans, 2000, A31, 815-823
    [44] Nemat-Nasser S, Li Y L, Flow stress of FCC polycrystals with application to OFHC Cu, Acta Mater, 1998, 46, 565-577
    [45] Nemat-Nasser S, Guo W G, Cheng J Y, Mechanical properties and deformation mechanisms of a commercially pure titanium, Acta Mater, 1999, 47(13), 3705-3720
    [46] Cheng J Y, Nemat-Nasser S, A model for experimentally-observed high-strain- rate dynamic strain aging in titanium, Acta Mater, 2000, 48(12), 3131-3144
    [47] Voyiadjis G Z, Abed F H, Microstructural based models for bcc and fcc metals with temperature and strain rate dependency, Mech Mater, 2005, 37, 355-378
    [48] Abed F H, Voyiadjis G Z, Rouge B et al., A consistent modified Zerilli- Armstrong flow stress model for BCC and FCC metals for elevated temperatures, Acta Mech, 2005, 175, 1-18
    [49] Abed F H, Voyiadjis G Z, Plastic deformation modeling of AL-6XN stainless steel at low and high strain rates and temperatures using a combination of bcc and fcc mechanisim of metals, Inter J Plasticity, 2005, 21, 1618-1639
    [50] Stainier L, Cuiti?o A M, Ortiz M, A micromechanical model of hardening, rate sensitivity and thermal sodtening in bcc single crystals, J Mech Phys Solids, 2002, 50, 1511-1545
    [51] Meyers M A, Benson D J, V?hringer O et al., Constitutive description of dynamic deformation: physically-based mechanisms, Mater Sci Eng, 2002, A322, 194-216
    [1] Trinkaus H, Singh B N, Foreman A J E, Segregation of cascade induced interstitial loops at dislocations: Possible effect on initiation of plastic deformation. International workshop on defect production, accumulation and materials performance in an irradiation environment, Davos (CH), 2-8 Oct 1996, J Nucl Mater, 1997, 251, 172-187
    [2] Zbib H M, de la Rubia T D, Rhee M et al., 3D dislocation dynamics:stress-strain behavior and hardening mechanisms in fcc and bcc metals, J Nucl Mater, 2000, 276, 154-165
    [3] Osetsky Yu N, Bacon D J, Void and precipitate strengthening in α-iron: what cann we learn from atomic-level modeling?, J Nucl Mater, 2003, 323, 268-280
    [4] Arsenlis A, Wirth B D, Rhee M, Dislocation density-based constitutive model for the mechanical behaviour of irradiation Cu, Philo Mag, 2004, 84(34), 3617-3635
    [5] Yashiro K, Kurose F, Nakashima Y et al., Discrete dislocation dynamics simulation of cutting of precipitate and interfacial dislocation network in Ni-based superalloys, Inter J Plas, 2006.22, 713-723
    [6] Shin C S, Fivel M C, Verdier M et al., dislocation-impenetrable precipitate interaction: a three-dimensional discrete dislocation dynamics analysis, Philo Maga, 2003, 83(31-34), 3691-3704
    [7] Mohles V, The critical resolved shear stress of single crystal with long-range ordered precipitates calculated by dislocation dynamics simulation, Mater Sci Eng, 2004, A365, 144-150
    [8] Mohles V, Fruhstorfer B, Computer simulations of orowan process controlled dislocation glide in particle arrangements of various randomness, Acta Mater, 2002, 50, 2503-2516
    [9] Mohles V, R?nnpagel D, Nembach E, Simulation of dislocation glide in precipitation hardened materials, Comp Mater Sci, 1999, 16, 144-150
    [10] R?nnpagel D, Streit T, Pretorius T, Including thermal activation in simulation calculations of dislocation glide, Phys Stat Sol (a), 1993, 135(2), 445-454
    [11] Mohles V, R?nnpagel D, Thermal activation analysis of dislocations in obstacle fields, Compu Mater Sci, 1996, 7, 98-102
    [12] Hiratani M, Zbib H M, Khaleel M A, Modeling of thermally activated dislocation glide and plastic flow through local obstacles, Inter J Plas, 2003, 19, 1271-1296
    [13] Hiratani M, Zbib H M, On dislocation-defect interactions and patterning: stochastic discrete dislocation dynamics (SDD), J Nucl Mater, 2003, 323, 290-303
    [14] Hiratani M, Nadgorny E M, Combined model of dislocation motion with thermally activated and drag-dependent stages, Acta Mater, 2001, 49, 4337-4346
    [15] Kocks U F, Argon A S and Ashby M F. Thermodynamics and Kinetics of Slip, England, Pergamon, 1975, 110-170
    [16] 任大鹏,邹觉生,倪然夫,等,氢氚对不锈钢力学性能的影响,中国国防科学技术报告,GF-A0059118G
    [17] 任大鹏,向士凯,邹觉生,等,充氚对不锈钢显微组织拉伸性能的影响,中国国防科学技术报告,GF-A0059119G
     [18] Mughrabi H, Plastic Deformation and Fracture of Materials, In, Cahn R W, Hassen P, Kramer E J, Materials Science and Technology - A Comprehensive Treatment, Weinheim, VCH, 1993,315-355