氧化钛结构和催化性质的密度泛函理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化钛金属氧化物材料广泛应用于催化化工、环境保护、新能源开发、生物医疗、食品科学等诸多领域。尤其在多相催化和光催化应用领域,二氧化钛一直都是一个热门催化剂,这主要是由于二氧化钛不仅制备技术和工艺十分成熟,而且适用于许多实验分析方法。因此,许多研究人员都在致力于二氧化钛催化剂的性能提高和应用领域拓展工作。另一方面,多相催化剂在催化过程中的性能主要由其表面结构决定,因此,为了能够对二氧化钛的性能形成全面完整的认识,就必须从二氧化钛的表面结构入手,分析其性能及潜在应用。在本文中我们采用了密度泛函理论(Density Functional Theory, DFT)方法对二氧化钛的结构和性能进行了以下研究工作:
     金红石二氧化钛(110)面台阶结构研究:金红石二氧化钛(110)表面是金红石晶体表面中热力学上最稳定的表面。具有缺陷的金红石(110)表面通常比没有缺陷的表面呈现更高的催化活性,尤其是台阶缺陷结构。在本论文中,我们采用DFT方法和扫描隧道显微镜(STM)模拟研究了金红石(110)面上几种不同取向台阶缺陷结构。通过对比不同取向台阶结构的形成能,我们发现取向为<110>的台阶结构经过2×1重构后呈现出最稳定的构型。同时,此种台阶结构经过STM模拟的结果与实验中的STM表征结果完全一致。金红石二氧化钛(110)表面上新的台阶模型的确定为进一步研究其结构和性能提供了坚实的理论基础。
     金红石二氧化钛(011)表面对H20分子的吸附性能研究:对金红石二氧化钛(011)表面的研究现在越来越多,主要由于它在很多催化反应中都呈现出极高的反应活性。最近的一些研究表明经过2×1重构的‘'brookite(001)-like"(011)表面具有最低表面形成能。在本论文中,我们采用DFT方法和STM模拟技术研究了此重构表面对H20分子的吸附行为。研究发现,在完整的2×1重构表面上,H20分子以较弱的分子吸附形式吸附;在具有氧缺陷的表面上,H20分子以较强的解离形式吸附,并在表面形成OH基团。随着表面上吸附的H20分子数量增加时,H20分子则以分子-解离吸附形式聚集形成H20团簇。而且,根据STM模拟结果与实验中的STM表征结果,我们发现H20团簇在表面上的生长均为一维水链结构,主要由于‘'brookite(001)-like"重构表面的特殊“波纹型”结构。经过2×1重构‘'brookite(001)-like"(011)表面上存在的一维纳米通道拓展了二氧化钛在纳米流体、酶催化等领域中的应用。
     锐钛矿二氧化钛(101)和板钛矿二氧化钛(210)表面结构及催化性能对比研究:锐钛矿二氧化钛(101)表面和板钛矿二氧化钛(210)表面分别为锐钛矿和板钛矿晶体暴露的主要表面。同时,它们在结构上具有一定相似性,但在活性上具有很大区别。这两种表面具有相同的结构单元,但是,两种表面上的结构单元内部原子距离和排列方式均不同。在板钛矿(210)表面上,两行结构单元之间的连接处具有极高的活性,能够有效地推进分子吸附和催化反应在表面上发生。在本论文中,我们采用DFT方法对比研究了它们吸附探针分子(H2O和HCOOH)和吸附金团簇的结构和性能。研究表明:(1)对于H20分子,无论是分子吸附还是解离吸附,在板钛矿(210)表面上都比在锐钛矿(101)表面上强。对于HCOOH分子,HCOOH在锐钛矿(101)表面上只表现为分子吸附,而在板钛矿(210)表面上却只表现为解离吸附,并且存在一种最稳定的双齿吸附结构。(2)对于金团簇,Au纳米颗粒倾向于吸附在两种表面的氧缺陷处。在(210)表面上小尺寸的纳米金团簇倾向于分散,形成3D结构,而(101)表面上小尺寸的纳米金团簇则倾向于聚集而形成2D的金膜结构。同时,通过研究Au6-8/brookite催化剂上CO低温氧化的反应机理,我们发现,金团簇中金原子的流动性和改变构象的能力能够明显促进CO氧化过程中的分子吸附和反应进程。板钛矿(210)表面的特殊结构预示着板钛矿材料在催化和光催化中具有更为广阔的应用前景。
     硼氮共掺杂锐钛矿二氧化钛催化剂中协同作用研究:硼氮共掺杂二氧化钛体系在催化领域中一直备受关注。然而,共掺杂体系中非金属间的协同作用一直备受争议。在本论文中,我们采用DFT方法对硼氮共掺杂锐钛矿二氧化钛(101)和(001)表面的几何和电子性质进行了研究。与实验结果相结合,根据制备过程中硼源和氮源的掺入顺序不同,在表面上生成的结构也不相同。B-N协同作用在锐钛矿表面上主要体现为Ti-N-B-O和Ti-B-N-Ti两种结构,这两种结构都能够有效减小共掺杂二氧化钛的禁带宽度。其中,硼氮共掺杂对(101)表面的带宽影响较大,而对(001)表面影响较小。
     二氧化钛混晶材料的异质结构及电子性质研究:混晶二氧化钛材料比单晶二氧化钛催化剂具有更高的光催化活性。在本论文中,我们采用DFT方法对金红石、锐钛矿、板钛矿二氧化钛两两结合形成的混晶材料进行了全面系统的理论研究。结果表明,影响混晶材料的电子性质有几个因素:构成混晶材料的两种成分本身的HOMO和]HUMO态的相对位置;两个板层之间的晶格匹配程度和两个板层间界面结构的形变程度。特别是当其中一种成分的HOMO和LUMO态比另一种都高时,每种成分将会维持本身的电子结构,则在混晶材料中,电子和空穴在空间上实现分离。这种电子性质规律能够对高活性混晶半导体材料的设计和制备起到有效的指导作用。
As a versatile metal oxide, titanium dioxide (TiO2) has been extensively studied and widely used in many application fields, such as materials science, catalysis, environmental protection, energy development, biological science and medical treatment, etc. In particular, TiO2is universally applied in heterogeneous catalysis and photocatalysis, mainly because of its mature manufacturing process and suitability for almost all the experimental characterization and analysis methods. A great deal of effort has been devoted to the catalytic performance of TiO2over the past few decades. However, the surface structure of catalysts largely determines their properties in promoting catalytic process and therefore a comprehensive understanding of relationship between structure and the related reactivity is definitely necessary. In this dissertation, density functional theory (DFT) studies of structure and activity of T1O2catalyst are performed as below:
     Step-edge structures of rutile TiO2(101):rutile TiO2(110) surface is considered as the most thermodynamically stable surface of rutile. Defective rutile TiO2(110) surface always presents higher activity than the defect-free surface, particullay for step-edge structure. In this dissertation, we performed a DFT study and scanning tunneling microscope (STM) simulations of several low index directions of step edge on rutile TiO2(110) surface. According to comparing formation energy of different step-edge structures on rutile TiO2(110) surface, we determined the2X1reconstructed step edge along<110> orientation is the most stable. Simultaneously, the simulated STM image of this step-edge structure is completely consistent with the experimental STM result. It should be mentioned that the new step-edge model on rutile TiO2(110) surface is extremely important for a deeper understanding of structures and reactivities of stepped structures.
     Adsorption of H2O molecule on rutile TiO2(011) surface:rutile TiO2(011) surface is studied with more interests due to its considerably high performance in many catalytic reactions. Some resent studies proposed a new model of2×1reconstructed rutile TiO2(011) surface as "brookite(001)-like" with a lower surface energy. In this dissertation, we performed a DFT study and STM simulation of H2O adsorption on the reconstructed surface. It is suggested that weak molecular adsorption is predicted on perfect2×1reconstructed surface, however, stronger dissociated adsorption on O-defected surface foming hydroxyl group. Water molecules are aggregated into clusters as molecular-dissociated adsorption as the number of adsorbed water increases. On the "brookite(001)-like" surface, water cluster growth is observed along one dimension in simulated STM images and experimental STM data. This is mainly because of the corrugated geometry on the surface. The ID water clusters in nanosized channels on2×1reconstructed rutile TiO2(011) surface is important in different fields, such as, nanofluidics, enzyme catalysis, and biosensors.
     Comparative study of structures and reactivities of anatase and brookite TiC>2surfaces: Anatase TiO2(101) and brookite TiO2(210) surfaces are the two major surfaces exposed at anatase and brookite crystals, which have the similar structures but obviously different reactivities. Both two surfaces have the same structural building blocks, but the interatomic distances are slightly shorter and the blocks are arranged in a different way. Highly active junction sites are generated between rows of blocks on brookite TiO2(210) surface, which can greatly promote molecular adsorption and catalytic reaction on the surface. In this disertation, we performed a comparative DFT study of probe molecules (H2O and HCOOH) and gold clusters adsorption at two surfaces. The results shown as follows:(1) For H2O molecule, stronger molecular and dissociated adsorption are both confirmed at brookite TiO2(210) than anatase TiO2(101). For HCOOH molecule, only molecular adsorption exists at anatase TiO2(101), while HCOOH dissociates at brookite TiO2(210). Moreover, a rather stable dissociated structure (bidentate configuration) is found to occur at junction site.(2) For Au nanoparticles, they prefer to nucleate and grow at O vacancies of defected surfaces. Extended2D Au-film structures are favored at anatase TiO2(101), while dispersion of3D Au clusters is favored at brookite TiO2(210). Furthermore, CO oxidation reaction over Au6-8/brookite catalyst is also studied. The mobility of Au atoms in Au clusters and their capacity to tune conformations can significantly facilitate the adsorption and reaction processes during CO oxidation. The unique surface structure makes brookite TiO2(210) a promising candidate in catalysis and photocatalysis.
     B-N synergistic effect in co-doped anatase TiO2:boron and nitrogen co-doped TiO2has attracted much attention and been widely studied. However, the synergistic effect between the two dopants is still controversial. In this disertation, we performed a DFT study of geometric and electric properties of boron and nitrogen co-doped TiO2(anatase TiO2(101) and (001) surfaces). Combining with experimental results, newly forming structures are different according to the doping order of B and N dopants. The B-N synergistic effect is shown as Ti-B-N-Ti and Ti-B-N-O structures at anatase surfaces, which can both improved photocatalytic activity of TiO2. Furthermore, the B-N synergistic effect can largely decrease the bandgap of (101) surface, which is not obvious at (001) surface. Heterostructures and electronic properties of mixed-phase TiO2:mixed-phase TiO2has been reported to exhibit improved photocatalytic activities than single-phase TiO2. In this disertation, we performed a systematic DFT study of geometric and electronic properties of two-phase TiO2by joinig two single-phase TiO2slabs. Our results indicated that electronic properties of mixed-phase TiO2are affected by several factors:the relative positions of HOMO and LUMO states of the two composites; the lattice match between the two slabs of the compositon and how well the two slabs interact with each other in the interfacial region. In particular, when the HOMO and LUMO levels of one of the two single-phase TiO2slabs are higher than the corresponding ones of the other, the composite may have native electronic structures with phase separated HOMO-LUMO states. Such electronic properties may provide useful information to guide the design and preparation of highly active semiconductor materials with mixed phases.
引文
[1]X. Q. Gong, A. Selloni, M. Batzill, U. Diebold. Steps on anatase TiO2 (101). Nat. Mater. 2006,5(8):665-670
    [2]M. Bowker. Catalysis resolved using scanning tunnelling microscopy. Chem. Soc. Rev. 2007,36(10):1656-1673
    [3]R. Bennett, P. Stone, M. Bowker. Scanning tunnelling microscopy studies of the reactivity of the TiO2 (110) surface:Re-oxidation and the thermal treatment of metal nanoparticles. Faraday Discuss.1999,114:267-277
    [4]X. Lai, D. W. Goodman. Structure-reactivity correlations for oxide-supported metal catalysts:new perspectives from STM. J. Mol. Catal. A-Chem.2000,162(1):33-50
    [5]Y. Tokura, N. Nagaosa. Orbital physics in transition-metal oxides. Science 2000, 288(5465):462-468
    [9]A. I. Hochbaum, P. D. Yang. Semiconductor Nanowires for Energy Conversion. Chem. Rev.2009,110(1):527-546
    [10]K. Hashimoto, H. Irie, A. Fujishima. TiO2 photocatalysis:A historical overview and future prospects. Jpn. J. Appl. Phys. Part 1-Regul. Pap. Brief Commun. Rev. Pap.2005,
    44(12):8269-8285
    [11]O. Carp, C. L. Huisman, A. Reller. Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem.2004,32(1-2):33-177
    [12]G. H. Du, Q. Chen, R. C. Che, Z. Y. Yuan, L. M. Peng. Preparation and structure analysis of titanium oxide nanotubes. Appl. Phys. Lett.2001,79(22):3702-3704
    [13]X. Chen, S. S. Mao. Titanium dioxide nanomaterials:synthesis, properties, modifications, and applications. Chem. Rev.2007,107(7):2891-2959
    [14]M. Anpo, M. Takeuchi. The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. J. Catal.2003,216(1-2):505-516
    [15]Z. R. Dai, J. L. Gole, J. D. Stout, Z. L. Wang. Tin oxide nanowires, nanoribbons, and nanotubes. J. Phys. Chem. B 2002,106(6):1274-1279
    [16]U. Diebold. The surface science of titanium dioxide. Surf. Sci. Rep.2003,48(5-8): 53-229
    [17]J. G. Li, T. Ishigaki. Brookite-rutile phase transformation of TiO2 studied with monodispersed particles. Acta materialia 2004,52(17):5143-5150
    [18]T. Mitsuhashi, O. Kleppa. Transformation enthalpies of the TiO2 polymorphs. J. Am. Ceram. Soc.1979,62(7-8):356-357
    [19]S. Bakardjieva, V. Stengl, L. Szatmary, J. Subrt, J. Lukac, N. Murafa, D. Niznansky, K. Cizek, J. Jirkovsky, N. Petrova. Transformation of brookite-type TiO2 nanocrystals to rutile: correlation between microstructure and photoactivity. J. Mater. Chem.2006,16(18): 1709-1716
    [20]H. Zhang, J. F. Banfield. Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates:insights from TiO2. J. Phys. Chem. B 2000, 104(15):3481-3487
    [21]H. G. Yang, C. H. Sun, S. Z. Qiao, J. Zou, G. Liu, S. C. Smith, H. M. Cheng, G. Q. Lu. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 2008, 453(7195):638-641
    [22]J. S. Chen, Y. L. Tan, C. M. Li, Y L. Cheah, D. Y. Luan, S. Madhavi, F. Y. C. Boey, L. A. Archer, X. W. Lou. Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage. J. Am. Chem. Soc.2010,132(17):6124-6130
    [23]C. Di Valentin, G. Pacchioni, A. Selloni. Electronic structure of defect states in hydroxylated and reduced rutile TiO2(110) surfaces. Phys. Rev. Lett.2006,97(16):166803
    [24]M. Ramamoorthy, D. Vanderbilt, R. King-Smith. First-principles calculations of the energetics of stoichiometric TiO2 surfaces. Phys. Rev. B 1994,49(23):16721
    [25]A. Kumar, A. R. Madaria, C. W. Zhou. Growth of aligned single-crystalline rutile TiO2 nanowires on arbitrary substrates and their application in dye-sensitized solar cells. J. Phys. Chem. C 2010,114(17):7787-7792
    [26]B. Liu, E. S. Aydil. Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc.2009, 131(11):3985-3990
    [27]Y. S. Hu, L. Kienle, Y G Guo, J. Maier. High lithium electroactivity of nanometer-sized rutile TiO2. Adv. Mater.2006,18(11):1421-1426
    [28]H. Cheng, J. Ma, Z. Zhao, L. Qi. Hydrothermal preparation of uniform nanosize rutile and anatase particles. Chem. Mat.1995,7(4):663-671
    [29]P. D. Cozzoli, A. Kornowski, H. Weller. Low-temperature synthesis of soluble and processable organic-capped anatase TiO2 nanorods. J. Am. Chem. Soc.2003,125(47): 14539-14548
    [30]J. Pan, G Liu, G M. Lu, H. M. Cheng. On the true photoreactivity order of{001},{010}, and{101} facets of anatase TiO2 Crystals. Angew. Chem. Int. Ed.2011,50(9):2133-2137
    [31]R. Schaub, P. Thostrup, N. Lopez, E. Lagsgaard, I. Stensgaard, J. K. Norskov, F. Besenbacher. Oxygen vacancies as active sites for water dissociation on rutile TiO2(110). Phys. Rev. Lett.2001,87(26):266104
    [32]R. A. Spurr, H. Myers. Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer. Anal. Chem.1957,29(5):760-762
    [33]N. Q. Wu, J. Wang, D. Tafen, H. Wang, J. G. Zheng, J. P. Lewis, X. G. Liu, S. S. Leonard, A. Manivannan. Shape-enhanced photocatalytic activity of single-crystalline anatase TiO2 (101) nanobelts. J. Am. Chem. Soc.2010,132(19):6679-6685
    [34]H. G. Yang, G. Liu, S. Z. Qiao, C. H. Sun, Y. G. Jin, S. C. Smith, J. Zou, H. M. Cheng, G. Q. Lu. Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant {001} facets. J. Am. Chem. Soc.2009,131(11):4078-4083
    [35]M. Lazzeri, A. Vittadini, A. Selloni. Structure and energetics of stoichiometric TiO2 anatase surfaces. Phys. Rev. B 2001,63(15):155409
    [36]Z. Dohnalek, I. Lyubinetsky, R. Rousseau. Thermally-driven processes on rutile TiO2(110)-(1×1):Adirect view at the atomic scale. Prog. Surf. Sci.2010,85(5-8):161-205
    [37]H. Kominami, M. Kohno, Y. Kera. Synthesis of brookite-type titanium oxide nano-crystals in organic media. J. Mater. Chem.2000,10(5):1151-1156
    [38]Y. Zheng, E. Shi, S. Cui, W. Li, X. Hu. Hydrothermal preparation and characterization of brookite-type TiO2 nanocrystallites. J. Mater. Sci. Lett.2000,19(16):1445-1448
    [39]A. Pottier, C. Chaneac, E. Tronc, L. Mazerolles, J. P. Jolivet. Synthesis of brookite TiO2 nanoparticles by thermolysis of TiCl4 in strongly acidic aqueous media. J. Mater. Chem.2001, 11(4):1116-1121
    [40]M. Addamo, M. Bellardita, A. Di Paola, L. Palmisano. Preparation and photoactivity of nanostructured anatase, rutile and brookite TiO2 thin films. Chem. Commun.2006,47: 4943-4945
    [41]K. Tomita, V. Petrykin, M. Kobayashi, M. Shiro, M. Yoshimura, M. Kakihana. A water-soluble titanium complex for the selective synthesis of nanocrystalline brookite, rutile, and anatase by a hydrothermal method. Angew. Chem. Int. Ed.2006,45(15):2378-2381
    [42]A. Di Paola, M. Addamo, M. Bellardita, E. Cazzanelli, L. Palmisano. Preparation of photocatalytic brookite thin films. Thin Solid Films 2007,515(7):3527-3529
    [43]F. Iskandar, A. B. D. Nandiyanto, K. M. Yun, C. J. Hogan, K. Okuyama, P. Biswas. Enhanced photocatalytic performance of brookite TiO2 macroporous particles prepared by spray drying with colloidal templating. Adv. Mater.2007,19(10):1408-1412
    [44]J. Li, T. Ishigaki, X. Sun. Anatase, brookite, and rutile nanocrystals via redox reactions under mild hydrothermal conditions:phase-selective synthesis and physicochemical properties. J. Phys. Chem. C 2007,111(13):4969-4976
    [45]M. A. Reddy, M. S. Kishore, V. Pralong, U. Varadaraju, B. Raveau. Lithium intercalation into nanocrystalline brookite TiO2. Electrochem. Solid S.T.2007,10(2):A29-A31
    [46]R. Buonsanti, V. Grillo, E. Carlino, C. Giannini, T. Kipp, R. Cingolani, P. D. Cozzoli. Nonhydrolytic synthesis of high-quality anisotropically shaped brookite TiO2 nanocrystals. J. Am. Chem. Soc.2008,130(33):11223-11233
    [47]D. Reyes-Coronado, G Rodriguez-Gattorno, M. Espinosa-Pesqueira, C. Cab, R. De Coss, G Oskam. Phase-pure TiO2 nanoparticles:anatase, brookite and rutile. Nanotechnology 2008, 19(14):145605
    [48]B. Zhao, F. Chen, Q. Huang, J. Zhang. Brookite TiO2 nanoflowers. Chem. Commun. 2009,34:5115-5117
    [49]T. A. Kandiel, L. Robben, A. Alkaim, D. Bahnemann. Brookite versus anatase TiO2 photocatalysts:phase transformations and photocatalytic activities. Photoch. Photobio. Sci. 2013,12(4):602-609
    [50]W. Li, X. Gong, G z. Lu, A. Selloni. Different reactivities of TiO2 polymorphs: comparative DFT calculations of water and formic acid adsorption at anatase and brookite TiO2 surfaces. J. Phys. Chem. C 2008,112(17):6594-6596
    [51]X. Q. Gong, A. Selloni. First-principles study of the structures and energetics of stoichiometric brookite TiO2 surfaces. Phys. Rev. B 2007,76(23):235307
    [52]L. Zhang, V. M. Menendez-Flores, N. Murakami, T. Ohno. Improvement of photocatalytic activity of brookite titanium dioxide nanorods by surface modification using chemical etching. Appl. Surf. Sci.2012,258(15):5803-5809
    [53]K. Pruethiarenun, T. Isobe, S. Matsushita, A. Nakajima. Photocatalytic activity and photoinduced hydrophilicity of brookite-heteropolyacid hybrid films. Appl. Catal. A-Gen. 2012,445-446(28):274-279
    [54]A. Di Paola, G Cufalo, M. Addamo, M. Bellardita, R. Campostrini, M. Ischia, R. Ceccato, L. Palmisano. Photocatalytic activity of nanocrystalline TiO2(brookite, rutile and brookite-based) powders prepared by thermohydrolysis of TiCl4 in aqueous chloride solutions. Collide Surface A2008,317(1):366-376
    [55]W. Yan, B. Chen, S. Mahurin, V. Schwartz, D. Mullins, A. R. Lupini, S. Pennycook, S. Dai, S. Overbury. Preparation and comparison of supported gold nanocatalysts on anatase, brookite, rutile, and P25 polymorphs of TiO2 for catalytic oxidation of CO. J. Phys. Chem. B 2005,109(21):10676-10685
    [56]T. A. Kandiel, A. Feldhoff, L. Robben, R. Dillert, D. W. Bahnemann. Tailored titanium dioxide nanomaterials:anatase nanoparticles and brookite nanorods as highly active photocatalysts. Chem. Mat.2010,22(6):2050-2060
    [57]M. I. Litter. Heterogeneous photocatalysis-Transition metal ions in photocatalytic systems. Appl. Catal. B-Environ.1999,23(2-3):89-114
    [58]S. Tauster, S. Fung. Strong metal-support interactions:occurrence among the binary oxides of groups IIA-VB. J. Catal.1978,55(1):29-35
    [59]C. T. Campbell. Ultrathin metal films and particles on oxide surfaces:structural, electronic and chemisorptive properties. Surf. Sci. Rep.1997,27(1):1-111
    [60]D. W. Goodman. Model studies in catalysis using surface science probes. Chem. Rev. 1995,95(3):523-536
    [61]B. Gates. Supported metal clusters:synthesis, structure, and catalysis. Chem. Rev.1995, 95(3):511-522
    [62]C. R. Henry. Surface studies of supported model catalysts. Surf. Sci. Rep.1998,31(7): 231-325
    [63]X. Zhu, T. Hoang, L. L. Lobban, R. G. Mallinson. Significant improvement in activity and stability of Pt/TiO2 catalyst for water gas shift reaction via controlling the amount of Na addition. Catal. Lett.2009,129(1-2):135-141
    [64]H. Zhu, Z. Qin, W. Shan, W. Shen, J. Wang. Pd/CeO2-TiO2 catalyst for CO oxidation at low temperature:a TPR study with H2 and CO as reducing agents. J. Catal.2004,225(2): 267-277
    [65]N. Perkas, Z. Zhong, L. Chen, M. Besson, A. Gedanken. Sonochemically prepared high dispersed Ru/TiO2 mesoporous catalyst for partial oxidation of methane to syngas. Catal. Lett. 2005,103(1-2):9-14
    [66]J. Panpranot, K. Kontapakdee, P. Praserthdam. Effect of TiO2 crystalline phase composition on the physicochemical and catalytic properties of Pd/TiO2 in selective acetylene hydrogenation. J. Phys. Chem. B 2006,110(15):8019-8024
    [67]M. Okumura, S. Nakamura, S. Tsubota, T. Nakamura, M. Azuma, M. Haruta. Chemical vapor deposition of gold on Al2O3, SiO2, and TiO2 for the oxidation of CO and of H2. Catal. Lett.1998,51(1-2):53-58
    [68]R. Liu, A. Sen. Controlled synthesis of heterogeneous metal-titania nanostructures and their applications. J. Am. Chem. Soc.2012,134(42):17505-17512
    [69]M. S. Kim, S. H. Chung, C. J. Yoo, M. S. Lee, I. H. Cho, D. W. Lee, K. Y. Lee. Catalytic reduction of nitrate in water over Pd-Cu/TiO2 catalyst:Effect of the strong metal-support interaction (SMSI) on the catalytic activity. Appl. Catal. B-Environ.2013,142:354-361
    [70]J. H. Kang, E. W. Shin, W. J. Kim, J. D. Park, S. H. Moon. Selective Hydrogenation of Acetylene on TiO2-Added Pd Catalysts. J. Catal.2002,208(2):310-320
    [71]J. He, I. Ichinose, T. Kunitake, A. Nakao, Y. Shiraishi, N. Toshima. Facile fabrication of Ag-Pd bimetallic nanoparticles in ultrathin TiO2-gel films:Nanoparticle morphology and catalytic activity. J. Am. Chem. Soc.2003,125(36):11034-11040
    [72]Q. Fu, H. Saltsburg, M. Flytzani-Stephanopoulos. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 2003,301(5635):935-938
    [73]A. Erdohelyi, J. Cserenyi, E. Papp, F. Solymosi. Catalytic reaction of methane with carbon dioxide over supported palladium. Appl. Catal. A-Gen.1994,108(2):205-219
    [74]D. I. Enache, J. K. Edwards, P. Landon, B. Solsona-Espriu, A. F. Carley, A. A. Herzing, M. Watanabe, C. J. Kiely, D. W. Knight, G. J. Hutchings. Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2 catalysts. Science 2006,311(5759):362-365
    [75]K. Drew, G Girishkumar, K. Vinodgopal, P. V. Kamat. Boosting fuel cell performance with a semiconductor photocatalyst:TiO2/Pt-Ru hybrid catalyst for methanol oxidation. J. Phys. Chem. B 2005,109(24):11851-11857
    [76]T. Burgi, A. Baiker. In situ infrared spectroscopy of catalytic solid-liquid interfaces using phase-sensitive detection:Enantioselective hydrogenation of a pyrone over Pd/TiO2. J. Phys. Chem. B 2002,106(41):10649-10658
    [77]J. Bitter, W. Hally, K. Seshan, J. Van Ommen, J. Lercher. The role of the oxidic support on the deactivation of Pt catalysts during the CO2 reforming of methane. Catal. Today 1996, 29(1):349-353
    [78]S. Arrii, F. Morfin, A. Renouprez, J. Rousset. Oxidation of CO on gold supported catalysts prepared by laser vaporization:Direct evidence of support contribution. J. Am. Chem. Soc.2004,126(4):1199-1205
    [79]F. Boccuzzi, A. Chiorino, M. Manzoli, P. Lu, T. Akita, S. Ichikawa, M. Haruta. Au/TiO2 nanosized samples:A catalytic, TEM, and FTIR study of the effect of calcination temperature on the CO oxidation. Journal of Catalysis 2001,202(2):256-267
    [80]M. Haruta, N. Yamada, T. Kobayashi, S. Iijima. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J. Catal. 1989,115(2):301-309
    [81]X. Xie, Y. Li, Z. Liu, M. Haruta, W. Shen. Low-temperature oxidation of CO catalysed by CO3O4 nanorods. Nature 2009,458(7239):746-749
    [82]M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M. J. Genet, B. Delmon. Low-Temperature oxidation of CO over gold supported on TiO2, a-Fe2O3, and CO3O4. J. Catal. 1993,144(1):175-192
    [83]M. Date, M. Haruta. Moisture effect on CO oxidation over Au/TiO2 catalyst. J. Catal. 2001,201(2):221-224
    [84]M. Haruta, T. Kobayashi, H. Sano, N. Yamada. Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0℃. Chem. Lett.1987,2:405-408
    [85]T. Hayashi, K. Tanaka, M. Haruta. Selective vapor-phase epoxidation of propylene over Au/TiO2 catalysts in the presence of oxygen and hydrogen. J. Catal.1998,178(2):566-575
    [86]T. Tabakova, V. Idakiev, D. Andreeva, I. Mitov. Influence of the microscopic properties of the support on the catalytic activity of Au/ZnO, Au/ZrO2, Au/Fe2O3, Au/Fe2O3-ZnO, Au/Fe2O3-ZrO2 catalysts for the WGS reaction. Appl. Catal. A-Gen.2000,202(1):91-97
    [87]H. Sakurai, A. Ueda, T. Kobayashi, M. Haruta. Low-temperature water-gas shift reaction over gold depositedon TiO2. Chem. Commun.1997,3:271-272
    [88]N. Patil, B. Uphade, P. Jana, R. Sonawane, S. Bhargava, V. Choudhary. Epoxidation of styrene by anhydrous t-butyl hydroperoxide over Au/TiO2 catalysts. Catal. Lett.2004,94(1-2): 89-93
    [89]M. Haruta. Catalysis of gold nanoparticles deposited on metal oxides. Cattech 2002,6(3): 102-115
    [90]H. Kung, M. Kung, C. Costello. Supported Au catalysts for low temperature CO oxidation. J. Catal.2003,216(1):425-432
    [91]M. Comotti, W. C. Li, B. Spliethoff, F. Schuth. Support effect in high activity gold catalysts for CO oxidation. J. Am. Chem. Soc.2006,128(3):917-924
    [92]T. Choudhary, C. Sivadinarayana, C. Chusuei, A. Datye, J. Fackler, D. Goodman. CO Oxidation on Supported Nano-Au Catalysts Synthesized from a [Au6(PPh3)6](BF4)2 Complex. J. Catal.2002,207(2):247-255
    [93]B. Schumacher, V. Plzak, M. Kinne, R. Behm. Highly active Au/TiO2 catalysts for low-temperature CO oxidation:preparation, conditioning and stability. Catal. Lett.2003, 89(1-2):109-114
    [94]S. Lin, M. Bollinger, M. Vannice. Low temperature CO oxidation over Au/TiO2 and Au/SiO2 catalysts. Catal. Lett.1993,17(3-4):245-262
    [95]F. Cosandey, T. Madey. Growth, morphology, interfacial effects and catalytic properties of Au on TiO2. Surf. Rev. Lett.2001,8(01n02):73-93
    [96]L. Zhang, F. Cosandey, R. Persaud, T. E. Madey. Initial growth and morphology of thin Au films on TiO2(110). Surf. Sci.1999,439(1):73-85
    [97]M. Haruta. Size-and support-dependency in the catalysis of gold. Catal. Today 1997, 36(1):153-166
    [98]M. Valden, S. Pak, X. Lai, D. Goodman. Structure sensitivity of CO oxidation over model Au/TiO2 catalysts. Catal. Lett.1998,56(1):7-10
    [99]D. C. Meier, D. W. Goodman. The influence of metal cluster size on adsorption energies: CO adsorbed on Au clusters supported on TiO2. J. Am. Chem. Soc.2004,126(6):1892-1899
    [100]M. Chen, Y. Cai, Z. Yan, D. W. Goodman. On the origin of the unique properties of supported Au nanoparticles. J. Am. Chem. Soc.2006,128(19):6341-6346
    [101]M. Valden, X. Lai, D. W. Goodman. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 1998,281(5383):1647-1650
    [102]M. Chen, D. Goodman. The structure of catalytically active gold on titania. Science 2004,306(5694):252-255
    [103]D. Widmann, R. J. Behm. Active oxygen on a Au/TiO2 catalyst: formation, stability, and CO oxidation activity. Angew. Chem. Int. Ed.2011,50(43):10241-10245
    [104]W. J. Chun, K. Miyazaki, N. Watanabe, Y. Koike, S. Takakusagi, K. Fujikawa, M. Nomura, Y. Iwasawa, K. Asakura. Au clusters on TiO2 (110)(1×1) and (1×2) surfaces examined by polarization-dependent total reflection fluorescence XAFS. J. Phys. Chem. C 2012,117(1):252-257
    [105]T. Fujitani, I. Nakamura. Mechanism and active sites of the oxidation of CO over Au/TiO2. Angew. Chem. Int. Ed.2011,50(43):10144-10147
    [106]I. X. Green, W. Tang, M. Neurock, J. T. Yates. Spectroscopic observation of dual catalytic sites during oxidation of CO on a Au/TiO2 catalyst. Science 2013,333(6043): 736-739
    [107]D. Pillay, G. S. Hwang. Growth and structure of small gold particles on rutile TiO2(110). Phys. Rev. B 2005,72(20):205422
    [108]Y. Wang, G. S. Hwang. Adsorption of Au atoms on stoichiometric and reduced TiO2 (110) rutile surfaces:a first principles study. Surf. Sci.2003,542(1):72-80
    [109]S. Chretien, H. Metiu. Density functional study of the interaction between small Au clusters, Aun (n= 1-7) and the rutile TiO2 surface. I. Adsorption on the stoichiometric surface. J. Chem. Phys.2007,127(8):084704
    [110]S. Chretien, H. Metiu. Density functional study of the interaction between small Au clusters, Aun (n= 1-7) and the rutile TiO2 surface. II. Adsorption on a partially reduced surface. J. Chem. Phys.2007,127(24):244708
    [111]X. Q. Gong, A. Selloni, O. Dulub, P. Jacobson, U. Diebold. Small Au and Pt clusters at the anatase TiO2 (101) surface:Behavior at terraces, steps, and surface oxygen vacancies. J. Am. Chem. Soc.2008,130(1):370-381
    [112]A. Vittadini, A. Selloni. Small gold clusters on stoichiometric and defected TiO2 anatase (101) and their interaction with CO:A density functional study. J. Chem. Phys.2002,117(1): 353-361
    [113]Z. P. Liu, X. Q. Gong, J. Kohanoff, C. Sanchez, P. Hu. Catalytic role of metal oxides in gold-based catalysts:A first principles study of CO oxidation on TiO2 supported Au. Phys. Rev. Lett.2003,91(26):266102
    [114]L. Molina, M. Rasmussen, B. Hammer. Adsorption of O and oxidation of CO at Au nanoparticles supported by TiO2(110). J. Chem. Phys.2004,120(16):7673-7680
    [115]N. Lopez, J. K. Norskov. Catalytic CO oxidation by a gold nanoparticle:A density functional study. J. Am. Chem. Soc.2002,124(38):11262-11263
    [116]I. N. Remediakis, N. Lopez, J. K. Norskov. CO oxidation on rutile-supported Au nanoparticles. Angew. Chem.2005,117(12):1858-1860
    [117]H. F. Wang, X. Q. Gong, Y. L. Guo, Y. Guo, G. z. Lu, P. Hu. Structure and catalytic activity of gold in low-temperature CO oxidation. J. Phys. Chem. C 2009,113(15): 6124-6131
    [118]W. Yan, B. Chen, S. M. Mahurin, S. Dai, S. H. Overbury. Brookite-supported highly stable gold catalytic system for CO oxidation. Chem. Commun.2004,17):1918-1919
    [119]A. Beck, G. Magesh, B. Kuppan, Z. Schay, O. Geszti, T. Benko, R. Viswanath, P. Selvam, B. Viswanathan, L. Guczi. Specific role of polymorphs of supporting titania in catalytic CO oxidation on gold. Catal. Today 2011,164(1):325-331
    [120]M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann. Environmental applications of semiconductor photocatalysis. Chem. Rev.1995,95(1):69-96
    [121]A. Mills, S. Le Hunte. An overview of semiconductor photocatalysis. J. Photoch. Photobio. A 1997,108(1):1-35
    [122]M. A. Henderson. A surface science perspective on photocatalysis. Surf. Sci. Rep.2011, 66(6):185-297
    [123]A. Fujishima, X. Zhang, D. A. Tryk. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep.2008,63(12):515-582
    [124]A. Fujishima, T. N. Rao, D. A. Tryk. Titanium dioxide photocatalysis. J. Photoch. Photobio. C 2000,1(1):1-21
    [125]S. U. Khan, M. Al-Shahry, W. B. Ingler. Efficient photochemical water splitting by a chemically modified n-TiO2. Science 2002,297(5590):2243-2245
    [126]S. Takabayashi, R. Nakamura, Y. Nakato. A nano-modified Si/TiO2 composite electrode for efficient solar water splitting. J. Photoch. Photobio. A 2004,166(1):107-113
    [127]S. Ngamsinlapasathian, T. Sreethawong, Y. Suzuki, S. Yoshikawa. Single-and double-layered mesoporous TiO2/P25 TiO2 electrode for dye-sensitized solar cell. Sol. Energ. Mat. Sol. C.2005,86(2):269-282
    [128]E. Palomares, J. N. Clifford, S. A. Haque, T. Lutz, J. R. Durrant. Slow charge recombination in dye-sensitised solar cells (DSSC) using Al2O3 coated nanoporous TiO2 films. Chem. Commun.2002,14:1464-1465
    [129]K. Sunada, Y. Kikuchi, K. Hashimoto, A. Fujishima. Bactericidal and detoxification effects of TiO2 thin film photocatalysts. Environ. Sci. Techno.1998,32(5):726-728
    [130]C. Hu, J. C. Yu, Z. Hao, P. K. Wong. Photocatalytic degradation of triazine-containing azo dyes in aqueous TiO2 suspensions. Appl. Catal. B-Environ.2003,42(1):47-55
    [131]E. J. Wolfrum, J. Huang, D. M. Blake, P. C. Maness, Z. Huang, J. Fiest, W. A. Jacoby. Photocatalytic oxidation of bacteria, bacterial and fungal spores, and model biofilm components to carbon dioxide on titanium dioxide-coated surfaces. Environ. Sci. Techno. 2002,36(15):3412-3419
    [132]A. Fujishima, K. Honda. Photolysis-decomposition of water at the surface of an irradiated semiconductor. Nature 1972,238(5385):37-38
    [133]S. N. Frank, A. J. Bard. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder. J. Am. Chem. Soc.1977,99(1):303-304
    [134]J. H. Carey, J. Lawrence, H. M. Tosine. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions. B. Environ. Contam. Tox.1976,16(6):697-701
    [135]D. Chatterjee, S. Dasgupta. Visible light induced photocatalytic degradation of organic pollutants. J. Photoch. Photobio. C 2005,6(2):186-205
    [136]K. Yanagisawa, J. Ovenstone. Crystallization of anatase from amorphous titania using the hydrothermal technique:effects of starting material and temperature. J. Phys. Chem. B 1999,103(37):7781-7787
    [137]H. Tang, K. Prasad, R. Sanjines, P. Schmid, F. Levy. Electrical and optical properties of TiC-2 anatase thin films. J. Appl. Phys.1994,75:2042
    [138]A. L. Linsebigler, G. Lu, J. T. Yates Jr. Photocatalysis on TiO2 surfaces:principles, mechanisms, and selected results. Chem. Rev.1995,95(3):735-758
    [139]Z. Ding, G Lu, P. Greenfield. Role of the crystallite phase of TiO2 in heterogeneous photocatalysis for phenol oxidation in water. J. Phys. Chem. B 2000,104(19):4815-4820
    [140]K. Nagaveni, G Sivalingam, M. Hegde, G. Madras. Solar photocatalytic degradation of dyes:high activity of combustion synthesized nano TiO2. Appl. Catal. B-Environ.2004,48(2): 83-93
    [141]H. Harada, T. Ueda. Photocatalytic activity of ultra-fine rutile in methanol-water solution and dependence of activity on particle size. Chem. Phys. Lett.1984,106(3):229-231
    [142]J. Lin, J. C. Yu, D. Lo, S. Lam. Photocatalytic activity of rutile Tii.xSnxO2 solid solutions. J. Catal.1999,183(2):368-372
    [143]S. Yurdakal, G. Palmisano, V. Loddo, V. Augugliaro, L. Palmisano. Nanostructured rutile TiO2 for selective photocatalytic oxidation of aromatic alcohols to aldehydes in water. J. Am. Chem. Soc.2008,130(5):1568-1569
    [144]Y. Wang, L. Zhang, K. Deng, X. Chen, Z. Zou. Low temperature synthesis and photocatalytic activity of rutile TiO2 nanorod superstructures. J. Phys. Chem. C 2007,111(6): 2709-2714
    [145]M. Andersson, L. Osterlund, S. Ljungstroem, A. Palmqvist. Preparation of nanosize anatase and rutile TiO2 by hydrothermal treatment of microemulsions and their activity for photocatalytic wet oxidation of phenol. J. Phys. Chem. B 2002,106(41):10674-10679
    [146]H. Zhang, M. Finnegan, J. F. Banfield. Preparing single-phase nanocrystalline anatase from amorphous titania with particle sizes tailored by temperature. Nano Lett.2001,1(2): 81-85
    [147]X. Chen, L. Liu, Y. Y. Peter, S. S. Mao. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 2011,331(6018):746-750
    [148]J. Li, C. Tang, D. Li, H. Haneda, T. Ishigaki. Monodispersed spherical particles of brookite-type TiO2:synthesis, characterization, and photocatalytic property. J. Am. Ceram. Soc.2004,87(7):1358-1361
    [149]M. Addamo, V. Augugliaro, M. Bellardita, A. Di Paola, V. Loddo, G. Palmisano, L. Palmisano, S. Yurdakal. Environmentally friendly photocatalytic oxidation of aromatic alcohol to aldehyde in aqueous suspension of brookite TiO2-Catal. Lett.2008,126(1-2): 58-62
    [150]T. Kawahara, Y. Konishi, H. Tada, N. Tohge, J. Nishii, S. Ito. A patterned TiO2 (anatase)/TiO2 (rutile) bilayer-type photocatalyst:effect of the anatase/rutile junction on the photocatalytic activity. Angew. Chem.2002,114(15):2935-2937
    [151]H. Li, W. Zhang, W. Pan. Enhanced photocatalytic activity of electrospun TiO2 nanofibers with optimal anatase/rutile ratio. J. Am. Ceram. Soc.2011,94(10):3184-3187
    [152]C. Wang, X. Zhang, C. Shao, Y. Zhang, J. Yang, P. Sun, X. Liu, H. Liu, Y. Liu, T. Xie. Rutile TiO2 nanowires on anatase TiO2 nanofibers:A branched heterostructured photocatalysts via interface-assisted fabrication approach. J. Colloid Interface Sci.2013, 363(1):157-164
    [153]T. Ohno, K. Tokieda, S. Higashida, M. Matsumura. Synergism between rutile and anatase TiO2 particles in photocatalytic oxidation of naphthalene. Appl. Catal. A-Gen.2003, 244(2):383-391
    [154]T. Ozawa, M. Iwasaki, H. Tada, T. Akita, K. Tanaka, S. Ito. Low-temperature synthesis of anatase-brookite composite nanocrystals:the junction effect on photocatalytic activity. J. Colloid Interface Sci.2005,281(2):510-513
    [155]S. Ardizzone, C. L. Bianchi, G. Cappelletti, S. Gialanella, C. Pirola, V. Ragaini. Tailored anatase/brookite nanocrystalline TiO2-The optimal particle features for liquid-and gas-phase photocatalytic reactions. J. Phys. Chem. C 2007,111(35):13222-13231
    [156]H. Xu, L. Zhang. Controllable one-pot synthesis and enhanced photocatalytic activity of mixed-phase TiO2 nanocrystals with tunable brookite/rutile ratios. J. Phys. Chem. C 2009, 113(5):1785-1790
    [157]A. Di Paola, G. Cufalo, M. Addamo, M. Bellardita, R. Campostrini, M. Ischia, R. Ceccato, L. Palmisano. Photocatalytic activity of nanocrystalline TiO2 (brookite, rutile and brookite-based) powders prepared by thermohydrolysis of TiO2 in aqueous chloride solutions. Collide Surface A 2008,317(1):366-376
    [158]A. A. Ismail, T. A. Kandiel, D. W. Bahnemann. Novel (and better?) titania-based photocatalysts:brookite nanorods and mesoporous structures. J. Photoch. Photobio. A 2010, 216(2):183-193
    [159]A. Di Paola, M. Bellardita, L. Palmisano. TiO2 photocatalysts prepared by thermohydrolysis of TiCl4 in aqueous solutions. Stud. Surf. Sci. Catal.2010,175:225-228
    [160]R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001,293(5528):269-271
    [161]C. Burda, Y. Lou, X. Chen, A. C. Samia, J. Stout, J. L. Gole. Enhanced nitrogen doping in TiO2 nanoparticles. Nano Lett.2003,3(8):1049-1051
    [162]Y. Cong, J. Zhang, F. Chen, M. Anpo. Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity. J. Phys. Chem. C 2007,111(19): 6976-6982
    [163]T. Ihara, M. Miyoshi, Y.Iriyama, O. Matsumoto, S. Sugihara. Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping. Appl. Catal. B-Environ.2003,42(4):403-409
    [164]M. Batzill, E. H. Morales, U. Diebold. Influence of nitrogen doping on the defect formation and surface properties of TiO2 rutile and Anatase. Phys. Rev. Lett.2006,96(2): 026103
    [165]K. Nagaveni, M. Hegde, N. Ravishankar, G. Subbanna, G. Madras. Synthesis and structure of nanocrystalline TiO2 with lower band gap showing high photocatalytic activity. Langmuir 2004,20(7):2900-2907
    [166]Z. Wu, F. Dong, W. Zhao, H. Wang, Y. Liu, B. Cuan. The fabrication and characterization of novel carbon doped TiO2 nanotubes, nanowires and nanorods with high visible light photocatalytic activity. Nanotechnology 2009,20(23):235701
    [167]W. F. Huang, P. J. Wu, W. C. Hsu, C. W. Wu, K. Liang, M. Lin. Carbon-doped TiO2 nanotubes:experimental and computational studies. J. Theor. Comput. Chem.2013,12(03): 135007
    [168]T. Ohno, T. Mitsui, M. Matsumura. Photocatalytic activity of S-doped TiO2 photocatalyst under visible light. Chem. Lett.2003,32(4):364-365
    [169]S. H. Nam, T. K. Kim, J. H. Boo. Physical property and photo-catalytic activity of sulfur doped TiO2 catalysts responding to visible light. Catal. Today 2012,185(1):259-262
    [170]M. Harb, P. Sautet, P. Raybaud. Anionic or cationic S-doping in bulk anatase TiO2: insights on optical absorption from first principles calculations. J. Phys. Chem. C 2013, 117(17):8892-8902
    [171]N. Lu, X. Quan, J. Li, S. Chen, H. Yu, G. Chen. Fabrication of boron-doped TiO2 nanotube array electrode and investigation of its photoelectrochemical capability. J. Phys. Chem. C 2007,111(32):11836-11842
    [172]P. Carmichael, D. Hazafy, D. S. Bhachu, A. Mills, J. A. Darr, I. P. Parkin. Atmospheric pressure chemical vapour deposition of boron doped titanium dioxide for photocatalytic water reduction and oxidation. Phys. Chem. Chem. Phys.2013,15(39):16788-16794
    [173]E. Finazzi, C. Di Valentin, G. Pacchioni. Boron-doped anatase TiO2:pure and hybrid DFT calculations. J. Phys. Chem. C 2008,113(1):220-228
    [174]J. C. Yu, J. G. Yu, W. K. Ho, Z. T. Jiang, L. Z. Zhang. Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem. Mat. 2002,14(9):3808-3816
    [175]Y. Wu, M. Xing, B. Tian, J. Zhang, F. Chen. Preparation of nitrogen and fluorine co-doped mesoporous TiO2 microsphere and photodegradation of acid orange 7 under visible light. Chem. Eng. J.2010,162(2):710-717
    [176]Y. Wu, M. Xing, J. Zhang. Gel-hydrothermal synthesis of carbon and boron co-doped TiO2 and evaluating its photocatalytic activity. J. Hazard. Mater.2011,192(1):368-373
    [177]龚叶,郭蔚,张桂琴,毕先钧.离子液体介质中氮-硼共掺杂TiO2催化剂制备及其光催化活性.工业催化2010,18(8):30-36
    [178]G. Kresse, J. Hafner. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994,49(20): 14251-14269
    [179]J. M. Hammersley, D. C. Handscomb, G. Weiss. Monte Carlo methods. Physics today 1965,18(2):55
    [180]W. K. Hastings. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 1970,57(1):97-109
    [181]A. North, D. t. Phillips, F. S. Mathews. A semi-empirical method of absorption correction. Acta Cryst. A 1968,24(3):351-359
    [182]R. Car, M. Parrinello. Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett.1985,55(22):2471
    [183]S. Nose. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys.1984,81(1):511-519
    [184]T. Ziegler. Approximate density functional theory as a practical tool in molecular energetics and dynamics. Chem. Rev.1991,91(5):651-667
    [186]W. Kohn, A. D. Becke, R. G. Parr. Density functional theory of electronic structure. J. Phys. Chem.1996,100(31):12974-12980
    [188]W. Kohn. Nobel lecture:Electronic structure of matter-wave functions and density functionals. Rev. Mod. Phys.1999,71(5):1253-1266
    [189]F. Himo, T. Lovell, R. Hilgraf, V. V. Rostovtsev, L. Noodleman, K. B. Sharpless, V. V. Fokin. Copper (Ⅰ)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates. J. Am. Chem. Soc.2005,127(1):210-216
    [190]F. Besenbacher, I. Chorkendorff, B. Clausen, B. Hammer, A. Molenbroek, J. K. Norskov, I. Stensgaard. Design of a surface alloy catalyst for steam reforming. Science 1998, 279(5358):1913-1915
    [191]E. Schrodinger. Quantisierung als eigenwertproblem. Annalen der physik 1926,385(13): 437-490
    [192]M. Born, R. Oppenheimer. Zur quantentheorie der molekeln. Annalen der physik 1927, 389(20):457-484
    [196]J. C. Slater. Atomic shielding constants. Phys. Rev.1930,36(1):57
    [197]E. Fermi. Un metodo statistico per la determinazione di alcune priorieta dell'atome. Rend. Accad. Naz. Lincei 1927,6(32):602-607
    [199]P. Hohenberg, W. Kohn. Inhomogeneous electron gas. Phys. Rev.1964,136(3): B864-B871
    [200]W. Kohn, L. J. Sham. Self-consistent equations including exchange and correlation effects. Phys. Rev.1965,140(4):A1133-A1138
    [201]L. Hedin, B. Lundqvist. Explicit local exchange-correlation potentials. J. Phys. C 1971, 4(14):2064-2083
    [202]J. P. Perdew, A. Zunger. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 1981,23(10):5048-5079
    [203]E. Wigner. Effects of the electron interaction on the energy levels of electrons in metals. Transactions of the Faraday Society 1938,34:678-685
    [204]J. P. Perdew. Generalized gradient approximations for exchange and correlation:A look backward and forward. Physica B:Condensed Matter 1991,172(1):1-6
    [205]J. P. Perdew, Y. Wang. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992,45(23):13244-13249
    [206]J. P. Perdew, J. Chevary, S. Vosko, K. A. Jackson, M. R. Pederson, D. Singh, C. Fiolhais. Atoms, molecules, solids, and surfaces:Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992,46(11):6671-6687
    [207]J. P. Perdew, K. Burke, Y. Wang. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B 1996,54(23): 16533-16539
    [208]J. P. Perdew, K. Burke, M. Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett.1996,77(18):3865
    [209]J. P. Perdew, S. Kurth, A. Zupan, P. Blaha. Accurate density functional with correct formal properties:A step beyond the generalized gradient approximation. Phys. Rev. Lett. 1999,82(12):2544-2547
    [210]M. Filatov, W. Thiel. Anew gradient-corrected exchange-correlation density functional. Molecular Physics 1997,91(5):847-860
    [211]G. J. Laming, V. Termath, N. C. Handy. A general purpose exchange-correlation energy functional. J. Chem. Phys.1993,99(11):8765-8773
    [212]A. D. Becke. Density-functional thermochemistry. Ⅲ. The role of exact exchange. J. Chem. Phys.1993,98(7):5648-5652
    [213]A. D. Becke. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988,38(6):3098
    [214]A. D. Becke. Density-functional thermochemistry. Ⅱ. The effect of the Perde-Wang generalized-gradient correlation correction. J. Chem. Phys.1992,97(12):9173-9718
    [215]H. Gronbeck. First principles studies of metal-oxide surfaces. Topics in catalysis 2004, 28(1-4):59-69
    [216]D. Chadi, M. L. Cohen. Special points in the Brillouin zone. Phys. Rev. B 1973,8(12): 5747-5753
    [217]H. J. Monkhorst, J. D. Pack. Special points for Brillouin-zone integrations. Phys. Rev. B 1976,13(12):5188-5192
    [218]P. E. Blochl, O. Jepsen, O. K. Andersen. Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 1994,49(23):16223-16233
    [219]G. Kresse, J. Furthmuller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996,54(16):11169-11186
    [220]M. L. Cohen, V. Heine. The fitting of pseudopotentials to experimental data and their subsequent application. Solid state physics 1970,24:37-248
    [221]G. Kresse, J. Hafner. Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. J. Phys-Condens. Mat.1994,6(40):8245-8258
    [222]W. E. Pickett. Pseudopotential methods in condensed matter applications. Comput. Phys. Rep.1989,9(3):115-197
    [223]D. Hamann. Generalized norm-conserving pseudopotentials. Phys. Rev. B 1989,40(5): 2980-2987
    [224]N. Troullier, J. L. Martins. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 1991,43(3):1993-2006
    [225]N. Troullier, J. L. Martins. Efficient pseudopotentials for plane-wave calculations. Ⅱ. Operators for fast iterative diagonalization. Phys. Rev. B 1991,43(11):8861-8869
    [226]D. Vanderbilt. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990,41(11):7892-7895
    [227]G. Kresse, D. Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999,59(3):1758-1775
    [229]M. Evans, M. Polanyi. Further considerations on the thermodynamics of chemical equilibria and reaction rates. Transactions of the Faraday Society 1936,32:1333-1360
    [230]S. D. G. S. Baroni, A. Dal Corso, P. Giannozzi. Quantum-Espresso. http://www.democritos.it
    [231]G. Kresse, J. Hafher. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47(1):558-561
    [232]J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, P. Ordejon, D. Sanchez-Portal. The SIESTA method for ab initio order-N materials simulation. J. Phys-Condens. Mat.2002,14(11):2745-2779
    [233]P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka, G. D. Stucky. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature 1998, 396(6707):152-155
    [234]P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. Tarascon. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000,407(6803): 496-499
    [235]A. Sawa. Resistive switching in transition metal oxides. Mater. Today 2008,11(6): 28-36
    [236]W. Choi, A. Termin, M. R. Hoffmann. The role of metal ion dopants in quantum-sized TiO2:correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem.1994,98(51):13669-13679
    [237]O. Diwald, T. L. Thompson, T. Zubkov, E. G. Goralski, S. D. Walck, J. T. Yates. Photochemical activity of nitrogen-doped rutile TiO2(110) in visible light. J. Phys. Chem. B 2004,108(19):6004-6008
    [238]M. M. Branda, C. Loschen, K. M. Neyman, F. Ⅱlas. Atomic and Electronic Structure of Cerium Oxide Stepped Model Surfaces. J. Phys. Chem. C 2008,112(45):17643-17651
    [239]E. Menke, Q. Li, R. Penner. Bismuth telluride (Bi2Te3) nanowires synthesized by cyclic electrodeposition/stripping coupled with step edge decoration. Nano Lett.2004,4(10): 2009-2014
    [240]J. Kasparian, M. Elwenspoek, P. Allongue. Digital computation and in situ STM approach of silicon anisotropic etching. Surf. Sci.1997,388(1):50-62
    [241]X. Q. Gong, A. Selloni. Role of steps in the reactivity of the anatase TiO2(101) surface. J. Catal.2007,249(2):134-139
    [242]J. Tersoff, D. Hamann. Theory of the scanning tunneling microscope. Phys. Rev. B 1985,31(2):805-813
    [243]T. Luttrell, W. K. Li, X. Q. Gong, M. Batzill. New Directions for Atomic Steps:Step Alignment by Grazing Incident Ion Beams on TiO2(110). Phys. Rev. Lett.2009,102(16): 166103
    [244]L. Firment. Thermal faceting of the rutile TiO2(001) surface. Surf. Sci.1982,116(2): 205-216
    [245]V. E. Henrich, S. K. Shaikhutdinov. Atomic geometry of steps on metal-oxide single crystals. Surf. Sci.2005,574(2):306-316
    [246]T. Ohno, K. Sarukawa, M. Matsumura. Crystal faces of rutile and anatase TiO2 particles and their roles in photocatalytic reactions. New J. Chem.2002,26(9):1167-1170
    [247]P. Morris Hotsenpiller, J. Bolt, W. Farneth, J. Lowekamp, G. Rohrer. Orientation dependence of photochemical reactions on TiO2 surfaces. J. Phys. Chem. B 1998,102(17): 3216-3226
    [248]J. Lowekamp, G Rohrer, P. Morris Hotsenpiller, J. Bolt, W. Farneth. Anisotropic photochemical reactivity of bulk TiO2 crystals. J. Phys. Chem. B 1998,102(38):7323-7327
    [249]X. Q. Gong, N. Khorshidi, A. Stierle, V. Vonk, C. Ellinger, H. Dosch, H. Cheng, A. Selloni, Y. He, O. Dulub. The 2×1 reconstruction of the rutile TiO2(011) surface:A combined density functional theory, X-ray diffraction, and scanning tunneling microscopy study. Surf. Sci.2009,603(1):138-144
    [250]C. Di Valentin, A. Tilocca, A. Selloni, T. Beck, A. Klust, M. Batzill, Y. Losovyj, U. Diebold. Adsorption of water on reconstructed rutile TiO2 (011)-(2×1):Ti-O double bonds and surface reactivity. J. Am. Chem. Soc.2005,127(27):9895-9903
    [251]O. Dulub, M. Batzilln, S. Solovev, E. Loginova, A. Alchagirov, T. E. Madey, U. Diebold. Electron-induced oxygen desorption from the TiO2 (011)-2×1 surface leads to self-organized vacancies. Science 2007,317(5841):1052-1056
    [252]T. Beck, A. Klust, M. Batzill, U. Diebold, C. Di Valentin, A. Tilocca, A. Selloni. Mixed dissociated/molecular monolayer of water on the TiO2(011)-(2×1) surface. Surf. Sci.2005, 591(1):L267-L272
    [253]O. Dulub, C. D. Valentin, A. Selloni, U. Diebold. Structure, defects, and impurities at the rutile TiO2 (011)-(2×1)surface:A scanning tunneling microscopy study. Surf. Sci.2006, 600(19):4407-4417
    [254]T. Beck, A. Klust, M. Batzill, U. Diebold, C. Di Valentin, A. Selloni. Surface Structure of TiO2 (011)-2×1. Phys. Rev. Lett.2004,93(8):036104
    [255]T. Kubo, H. Orita, H. Nozoye. Surface structures of rutile TiO2 (011). J. Am. Chem. Soc.2007,129(34):10474-10478
    [256]G. S. Herman, Z. Dohnalek, N. Ruzycki, U. Diebold. Experimental investigation of the interaction of water and methanol with anatase-TiO2 (101). J. Phys. Chem. B 2003,107(12): 2788-2795
    [257]L. M. Liu, S. C. Li, H. Cheng, U. Diebold, A. Selloni. Growth and organization of an organic molecular monolayer on TiO2:catechol on anatase (101). J. Am. Chem. Soc.2011, 133(20):7816-7823
    [258]G S. Li, L. P. Li, J. Boerio-Goates, B. F. Woodfield. High purity anatase TiO2 nanocrystals:Near room-temperature synthesis, grain growth kinetics, and surface hydration chemistry. J. Am. Chem. Soc.2005,127(24):8659-8666
    [259]M. Zuleta, T. Edvinsson, S. Yu, S. Ahmadi, G. Boschloo, M. Gothelid, A. Hagfeldt. Light-induced rearrangements of chemisorbed dyes on anatase (101). Phys. Chem. Chem. Phys.2012,14(30):10780-10788
    [260]A. Tilocca, A. Selloni. Structure and reactivity of water layers on defect-free and defective anatase TiO2 (101) surfaces. J. Phys. Chem. B 2004,108(15):4743-4751
    [261]W. Yang, J. Li, Y. Wang, F. Zhu, W. Shi, F. Wan, D. Xu. A facile synthesis of anatase TiO2 nanosheets-based hierarchical spheres with over 90% {001} facets for dye-sensitized solar cells. Chem. Commun.2011,47(6):1809-1811
    [262]X. Han, Q. Kuang, M. Jin, Z. Xie, L. Zheng. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J. Am. Chem. Soc. 2009,131(9):3152-3153
    [263]X. Wang, G. Liu, L. Wang, J. Pan, G. Q. M. Lu, H. M. Cheng. TiO2 films with oriented anatase{001} facets and their photoelectrochemical behavior as CdS nanoparticle sensitized photoanodes. J. Mater. Chem.2011,21(3):869-873
    [264]V. P. Indrakanti, J. D. Kubicki, H. H. Schobert. Quantum chemical modeling of ground states of CO2 chemisorbed on anatase (001),(101), and (010) TiO2 surfaces. Energ. Fuel 2008, 22(4):2611-2618
    [265]A. Hussain, J. Gracia, B. E. Nieuwenhuys, J. Niemantsverdriet. Chemistry of O-and H-containing species on the (001) surface of anatase TiO2: ADFT study. ChemPhysChem 2010, 11(11):2375-2382
    [266]J. Guo, S. Watanabe, M. J. Janik, X. Ma, C. Song. Density functional theory study on adsorption of thiophene on TiO2 anatase (001) surfaces. Catal. Today 2010,149(1):218-223
    [267]X. Q. Gong, A. Selloni. Reactivity of anatase TiO2 nanoparticles:the role of the minority (001) surface. J. Phys. Chem. B 2005,109(42):19560-19562
    [268]A. Vittadini, A. Selloni, F. Rotzinger, M. Gratzel. Structure and energetics of water adsorbed at TiO2 anatase(101) and (001) surfaces. Phys. Rev. Lett.1998,81(14):2954
    [269]B. Wu, C. Guo, N. Zheng, Z. Xie, G. D. Stucky. Nonaqueous production of nanostructured anatase with high-energy facets. J. Am. Chem. Soc.2008,130(51): 17563-17567
    [270]A. Mattsson, L. Osterlund. Adsorption and photoinduced decomposition of acetone and acetic acid on anatase, brookite, and rutile TiO2 nanoparticles. J. Phys. Chem. C 2010, 114(33):14121-14132
    [271]M. Zhao, L. Li, H. Lin, S. L. Yang, G. Li. A facile strategy to large-scale uniform brookite TiO2 nanospindles with high thermal stability and superior electrical properties. Chem. Commun.2013,49(63):7046-7048
    [272]K. Katsumata, Y. Ohno, K. Tomita, T. Taniguchi, N. Matsushita, K. Okada. Synthesis of amphiphilic brookite nanoparticles with high photocatalytic performance for wide range of application. ACS Appl. Mater. Interfaces 2012,4(9):4846-4852
    [273]M. Gratzel. Photoelectrochemical cells. Nature 2001,414(6861):338-344
    [274]A. Vittadini, A. Selloni, F. Rotzinger, M. Gratzel. Formic acid adsorption on dry and hydrated TiO2 anatase (101) surfaces by DFT calculations. J. Phys. Chem. B 2000,104(6): 1300-1306
    [275]S. Ushiroda, N. Ruzycki, Y. Lu, M. Spitler, B. Parkinson. Dye sensitization of the anatase (101) crystal surface by a series of dicarboxylated thiacyanine dyes. J. Am. Chem. Soc.2005,127(14):5158-5168
    [276]F. Allegretti, S. O'Brien, M. Polcik, D. Sayago, D. Woodruff. Adsorption bond length for H2O on TiO2(110):A key parameter for theoretical understanding. Phys. Rev. Lett.2005, 95(22):226104
    [277]O. Bikondoa, C. L. Pang, R. Ithnin, C. A. Muryn, H. Onishi, G. Thornton. Direct visualization of defect-mediated dissociation of water on TiO2 (110). Nat. Mater.2006,5(3): 189-192
    [278]S. Wendt, J. Matthiesen, R. Schaub, E. K. Vestergaard, E. Lagsgaard, F. Besenbacher, B. Hammer. Formation and splitting of paired hydroxyl groups on reduced TiO2(110). Phys. Rev. Lett.2006,96(6):066107
    [279]Z. Zhang, O. Bondarchuk, B. D. Kay, J. White, Z. Dohnalek. Imaging water dissociation on TiO2(110):Evidence for inequivalent geminate OH groups. J. Phys. Chem. B 2006,110(43):21840-21845
    [280]G. Ketteler, S. Yamamoto, H. Bluhm, K. Andersson, D. E. Starr, D. F. Ogletree, H. Ogasawara, A. Nilsson, M. Salmeron. The nature of water nucleation sites on TiO2 (110) surfaces revealed by ambient pressure X-ray photoelectron spectroscopy. J. Phys. Chem. C 2007,111(23):8278-8282
    [281]Y. He, A. Tilocca, O. Dulub, A. Selloni, U. Diebold. Local ordering and electronic signatures of submonolayer water on anatase TiO2 (101). Nat. Mater.2009,8(7):585-589
    [282]X. Q. Gong, A. Selloni, A. Vittadini. Density functional theory study of formic acid adsorption on anatase TiO2 (001):Geometries, energetics, and effects of coverage, hydration, and reconstruction. J. Phys. Chem. B 2006,110(6):2804-2811
    [283]C. Wang, H. Groenzin, M. J. Shultz. Direct observation of competitive adsorption between methanol and water on TiO2:An in situ sum-frequency generation study. J. Am. Chem. Soc.2004,126(26):8094-8095
    [284]C. Wang, H. Groenzin, M. J. Shultz. Comparative study of acetic acid, methanol, and water adsorbed on anatase TiO2 probed by sum frequency generation spectroscopy. J. Am. Chem. Soc.2005,127(27):9736-9744
    [285]L. M. Molina, B. Hammer. Some recent theoretical advances in the understanding of the catalytic activity of Au. Appl. Catal. A:Gen.2005,291(1-2):21-31
    [286]G. C. Bond, D. T. Thompson. Catalysis by gold. Catal. Rev.1999,41(3-4):319-388
    [287]M. Okumura, S. Tsubota, M. Haruta. Preparation of supported gold catalysts by gas-phase grafting of gold acethylacetonate for low-temperature oxidation of CO and of H2. J. Mol. Catal. A-Chem.2003,199(1):73-84
    [288]P. Landon, P. J. Collier, A. J. Papworth, C. J. Kiely, G. J. Hutchings. Direct formation of hydrogen peroxide from H2/O2 using a gold catalyst. Chem. Commun.2002,18:2058-2059
    [289]M. Chen, D. Goodman. Structure-activity relationships in supported Au catalysts. Catal. Today 2006,111(1):22-33
    [290]L. Molina, B. Hammer. Active role of oxide support during CO oxidation at Au/MgO. Phys. Rev. Lett.2003,90(20):206102
    [291]E. Wahlstrom, N. Lopez, R. Schaub, P. Thostrup, A. Ronnau, C. Africh, E. Laegsgaard, J. K. Norskov, F. Besenbacher. Bonding of gold nanoclusters to oxygen vacancies on rutile TiO2(110). Phys. Rev. Lett.2003,90(2):4
    [292]H. Hakkinen, U. Landman. Gold clusters (AuN,2<-N<-10) and their anions. Phys. Rev. B 2000,62(4):R2287
    [293]X. Zhang, H. Wang, B. Q. Xu. Remarkable nanosize effect of zirconia in AU/ZrO2 catalyst for CO oxidation. J. Phys. Chem. B 2005,109(19):9678-9683
    [294]X. Zhang, H. Shi, B. Q. Xu. Vital roles of hydroxyl groups and gold oxidation states in Au/ZrO2 catalysts for 1,3-butadiene hydrogenation. J. Catal.2011,279(1):75-87
    [295]X. Zhang, H. Shi, B. Q. Xu. Comparative study of Au/ZrO2 catalysts in CO oxidation and 1,3-butadiene hydrogenation. Catal. Today 2007,112(3):330-337
    [296]K. P. McKenna, A. L. Shluger. Shaping the morphology of gold nanoparticles by CO adsorption. J. Phys. Chem. C 2007,111(51):18848-18852
    [297]Z. P. Liu, P. Hu, A. Alavi. Catalytic role of gold in gold-based catalysts:A density functional theory study on the CO oxidation on gold. J. Am. Chem. Soc.2002,124(49): 14770-14779
    [298]M. Haruta, M. Date. Advances in the catalysis of Au nanoparticles. Appl. Catal. A-Gen. 2001,222(1-2):427-437
    [299]M. Xing, J. Zhang, F. Chen. New approaches to prepare nitrogen-doped TiO2 photocatalysts and study on their photocatalytic activities in visible light. Appl. Catal. B-Environ.2009,89(3):563-569
    [300]T. Ohno, Z. Miyamoto, K. Nishijima, H. Kanemitsu, F. Xueyuan. Sensitization of photocatalytic activity of S-or N-doped TiO2 particles by adsorbing Fe3+cations. Appl. Catal. A-Gen.2006,302(1):62-68
    [301]D. Li, H. Haneda, S. Hishita, N. Ohashi. Visible-light-driven NF-codoped TiO2 photocatalysts.2. Optical characterization, photocatalysis, and potential application to air purification. Chem. Mat.2005,17(10):2596-2602
    [302]T. Umebayashi, T. Yamaki, H. Itoh, K. Asai. Band gap narrowing of titanium dioxide by sulfur doping. Appl. Phys. Lett.2002,81(3):454-456
    [303]M. Xing, J. Zhang, F. Chen. Photocatalytic performance of N-doped TiO2 adsorbed with Fe3+ions under visible light by a redox treatment. J. Phys. Chem. C 2009,113(29): 12848-12853
    [304]J. Zhang, Y. Wu, M. Xing, S. A. K. Leghari, S. Sajjad. Development of modified N doped TiO2 photocatalyst with metals, nonmetals and metal oxides. Energ. Environ. Sci.2010, 3(6):715-726
    [305]W. Zhao, W. Ma, C. Chen, J. Zhao, Z. Shuai. Efficient degradation of toxic organic pollutants with Ni2O3/TiO2-x Bx under visible irradiation. J. Am. Chem. Soc.2004,126(15): 4782-4783
    [306]S. Moon, H. Mametsuka, E. Suzuki, Y. Nakahara. Characterization of titanium-boron binary oxides and their photocatalytic activity for stoichiometric decomposition of water. Catal. Today 1998,45(1):79-84
    [307]D. Chen, D. Yang, Q. Wang, Z. Jiang. Effects of boron doping on photocatalytic activity and microstructure of titanium dioxide nanoparticles. hid. Eng. Chem. Res.2006, 45(12):4110-4116
    [308]K. Y. Jung, S. B. Park, S.-K. Ihm. Local structure and photocatalytic activity of B2O3-SiO2/TiO2 ternary mixed oxides prepared by sol-gel method. Appl. Catal. B-Environ. 2004,51(4):239-245
    [309]S. In, A. Orlov, R. Berg, F. Garcia, S. Pedrosa-Jimenez, M. S. Tikhov, D. S. Wright, R. M. Lambert. Effective visible light-activated B-doped and B, N-codoped TiO2 photocatalysts. J. Am. Chem. Soc.2007,129(45):13790-13791
    [310]G. Liu, Y. Zhao, C. Sun, F. Li, G. Q. Lu, H. Cheng. Synergistic effects of B/N doping on the visible-light photocatalytic activity of mesoporous TiO2. Angew. Chem. Int. Ed.2008, 47(24):4516-4520
    [311]N. O. Gopal, H. H. Lo, S. C. Ke. Chemical state and environment of boron dopant in B, N-codoped anatase TiO2 nanoparticles: An avenue for probing diamagnetic dopants in TiO2 by electron paramagnetic resonance spectroscopy. J. Am. Chem. Soc.2008,130(9): 2760-2761
    [312]R. Khan, S. W. Kim, T. J. Kim, C. M. Nam. Comparative study of the photocatalytic performance of boron-iron co-doped and boron-doped TiO2 nanoparticles. Mater. Chem. Phys. 2008,112(1):167-172
    [313]V. Gombac, L. De Rogatis, A. Gasparotto, G. Vicario, T. Montini, D. Barreca, G. Balducci, P. Fornasiero, E. Tondello, M. Graziani. TiO2 nanopowders doped with boron and nitrogen for photocatalytic applications. Chem. Phys.2007,339(1):111-123
    [314]J. Lin, Y. Lin, P. Liu, M. J. Meziani, L. F. Allard, Y. P. Sun. Hot-fluid annealing for crystalline titanium dioxide nanoparticles in stable suspension. J. Am. Chem. Soc.2002, 124(38):11514-11518
    [315]M. Fernandez-Garcia, A. Martinez-Arias, J. Hanson, J. Rodriguez. Nanostructured oxides in chemistry:characterization and properties. Chem. Rev.2004,104(9):4063-4104
    [316]M. Sathish, B. Viswanathan, R. Viswanath, C. S. Gopinath. Synthesis, characterization, electronic structure, and photocatalytic activity of nitrogen-doped TiO2 nanocatalyst. Chem. Mat.2005,17(25):6349-6353
    [317]E. Finazzi, C. Di Valentin, A. Selloni, G. Pacchioni. First principles study of nitrogen doping at the anatase TiO2 (101) surface. J. Phys. Chem. C 2007,111(26):9275-9282
    [318]S. Bakardjieva, J. Subrt, V. Stengl, M. J. Dianez, M. J. Sayagues. Photoactivity of anatase-rutile TiO2 nanocrystalline mixtures obtained by heat treatment of homogeneously precipitated anatase. Appl. Catal. B-Environ.2005,58(3):193-202
    [319]T. Xia, N. Li, Y. Zhang, M. B. Kruger, J. Murowchick, A. Selloni, X. Chen. Directional heat dissipation across the interface in anatase-rutile nanocomposites. ACS Appl. Mater. Interfaces 2013,5(20):9883-9890
    [320]D. Dambournet, I. Belharouak, K. Amine. Tailored preparation methods of TiO2 anatase, rutile, brookite:mechanism of formation and electrochemical properties? Chem. Mat.2009, 22(3):1173-1179