褐腐真菌生物酸析资源化处理造纸蒸煮黑液研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碱法制浆蒸煮黑液因其高碱性、高COD和高木质素含量等“三高”特点,始终是工业废水低成本、资源化处理技术的难题。传统理化处理黑液技术因其成本及环境友好性问题正在逐渐被生物处理技术所代替。利用产酸微生物析出造纸黑液中的木质素,一定程度上能减轻造纸黑液污染,但效果有限,且生物酸析机制不清晰。基于此,本文主要探讨了褐腐真菌生物酸析处理造纸黑液的机理、废水处理工艺及酸析木质素资源化利用等问题,为生物处理造纸黑液提供新的理论依据和技术支持。
     通过比较研究无机酸和有机酸处理黑液的特性来论证有机酸酸析处理造纸黑液的可行性。结果显示草酸酸化黑液pH到4.0时,析出的木质素含量达到75.0%以上,COD和色度去除率分别达到42.0%和92.0%,其酸析过程、效果同无机酸酸析相同。因此,有机酸草酸可以取代硫酸酸析处理黑液,其中黑液体系pH降低是黑液中木质素快速析出、COD和色度迅速下降的关键指标。
     一株具备调节pH能力的产酸菌株IMER2,经形态和分子生物学鉴定,确定该菌株为拟层孔菌(Fomitopsis sp.IMER2)。该菌在刚性破环秸秆木质纤维结构的同时,能够利用速效碳源、半纤维素成分快速合成草酸。该菌生物酸析造纸黑液,pH4以下时木质素去除率达到93.0%,COD和色度去除率分别达到82.7%和88.9%,优于传统酸析处理效果。
     进一步研究褐腐真菌生物酸析处理黑液的机制。结果显示褐腐真菌处理黑液是一个以酸析木质素为主,吸附、降解木质素为辅的生物反应过程。褐腐真菌在黑液中通过生物合成大量的草酸,快速降低黑液体系pH,导致大量的木质素析出;同时褐腐真菌通过物化吸附和降解木质素,产生一定量的芳香酸,协助降低黑液pH,促进木质素的析出。FTIR、~1H—NMR和GC-MS研究结果表明褐腐真菌主要通过脱甲氧基、芳基羟基化、去酚羟基、侧链氧化等作用方式降解木质素。木质素的苯环结构稳定保留,功能基团活性得到提高,有利于酸析木质素的资源化利用。
     对褐腐真菌生物酸析处理造纸黑液的影响因素进行研究。结果表明代谢产物C_2O_4~(2-)及酸析木质素不利于褐腐真菌连续地生物酸析处理造纸黑液。因此,须建立序批式生物酸析处理工艺。该工艺的最适条件是起始黑液pH 7.0,COD 42.0 g/L,褐腐真菌接种量24.0 g/L。褐腐真菌在开放的鼓泡塔生物反应器中成功运行了12个批次共36天,保持了良好的产酸能力,平均COD和色度去除率可达到40.0%和70.0%。
     对褐腐真菌生物酸析木质素进行资源化利用研究。采用响应面法优化活性炭制备条件,当磷酸浓度为65%,磷料比为4.84:1,活化温度为400℃,活化时间为124 min时,木质素活性炭亚甲基蓝吸附值和得率分别可达到182±4.00 mg/g和56.15±3.81%,其亚甲基蓝吸附性能符合国家木质净水用活性炭一级品标准。表明利用生物酸析木质素可以制备高性能的活性炭。
Black liquor is a byproduct of the alkaline pulping process during the production ofpaper pulp.Pollution caused by black liquor is too serious to address because of its highalkaline,high COD loading and high lignin content.Traditional physical and chemicaltreatments of black liquor are gradually being replaced by biological treatment because ofits low-cost and environment-friendliness.Acidification precipitation of lignin from blackliquor can effectively address black liquor pollution by some microorganisms.However,treatment effects are limited,and mechanism of biological acidification precipitation is notclear.This article focused on the biological mechanism of black liquor treatment bybrown-rot fungi,wastewater treatment process and exploitation of lignin,which canprovide theoretical basis and technological support for biological treatment of black liquor.
     A comparative study about acidifying characteristics of black liquor by inorganic acidand organic acid was firstly investigated.The results showed that organic acid couldcompletely replace inorganic acid to acidify black liquor.When the pH of black liquor wasadjusted to 4.0 by oxalic acid,more than 75.0% lignin could be precipitated and separatedfrom the black liquor.In addition,the effluent COD and color might drop over 42.0% and92.0%,respectively.The key of acid precipitation of lignin,reduction of COD and colorwas lowering pH of black liquor.
     A strain IMER2 with an ability to adjust pH was identified as brown-rot basidiomyceteFomitopsis sp.IMER2 by morphological and molecular biology.The strain IMER2 couldexcrete and accumulate a large number of oxalic acid by qualitative and quantitative HPLCanalysis.In the process of straw biodegradation by the fungus,straw fiber was rigidlybroken,and some available carbon sources and hemicelluloses were rapidly consumed toproduce oxalic acid.So,the acid-producing brown rot fungus IMER2 could be used fortreatment of black liquor.After black liquor pH was 4.0 below,more than 93.0% lignincould be precipitated and separated,and COD and color reduction reached 82.7% and88.9%,respectively.Noticeably,biological treatment of black liquor by brown rot fungiwas better than conventional acidification treatment.
     Further analysis of biological treatment mechanism,the results indicated biologicaltreatment processes of black liquor was acidification precipitation of lignin as a main,biological adsorption and degradation of lignin as a supplement.Brown-rot fungi in blackliquor could produce a lot of oxalic acid to rapidly reduce black liquor pH,which resultedin lignin precipitation.Simultaneously,some lignins were adsorbed and degraded bybrown-rot fungi to form an amount of aromatic acids,which can assist in reducing blackliquor pH and enhance biological treatment of black liquor.In addition,the biodegradationof lignin was a primarily modified process with demethoxy,phenolic hydroxylation,dehydroxylation,side-chain oxidation.Some aromatic ring of lignin was retained,andactivities of function in lignin were improved by the fungus.According to previous studies,these lignins could be useful for a variety of industrial applications.
     To establish a practical treatment process of black liquor,influence of sodium salts andlignin on growth and acid-producing capacity of the fungus IMER2 were studied.Theresults suggested that metabolic products of the fungus such as C_2O_4~(2-) and precipitatedlignin could inhibit the fungal growth and acid-production.Therefore,a repeated batchtreatment of black liquor was suitably established.The optimal conditions for the repeatedbatch treatment of black liquor were initial black liquor pH 7.0,COD 42.0 g/L,inoculums24.0 g/L.Moreover,the repeated batch process was successfully carried out 12 times over36 days in an air bubble column bioreactor.The average reduction of COD and color wasapproximately 40% and 70%,respectively.
     At last,utilization of lignin precipitation by acidification was studied.The lignin canbe prepared a kind of high-performance activated carbon.Phosphoric acid concentration(65%),ration of activation reagent to material (4.84:1),activation temperature (400℃),activation time (124 min) were optimized using response surface method.The adsorption ofmethylene blue and the yield of activated carbon could reach 182±4.00 mg/g and 56.15±3.81%,respectively.The adsorption performance of methylene blue has achieved the firstdegree quality of wooden activated carbon for water purification in China.
引文
[1]中国造纸协会.关于造纸工业”十一五”发展的意见.上海造纸,2007, 38(6):3-12.
    [2]胡宗渊.推进我国造纸工业”十一五”持续健康发展.造纸信息,2007, 11: 10-18.
    [3]国家发展和改革委员会..造纸产业发展政策,江苏造纸.2007, 4: 2-12.
    [4]赵伟.2008年中国造纸工业产销情况分析.中华纸业,2009, 30(1): 6-13.
    [5]国家发展和改革委员会..我国造纸工业发展目标及主要任务.福建轻纺,2008,1:29-33.
    [6]曹朴芳.中国造纸工业”十一五”发展及展望.造纸信息,2007, 10:4-5.
    [7]贺燕丽.解读《造纸产业发展政策》促进造纸产业持续,稳定,健康发展.造纸信息,2008, 1: 12-18.
    [8]国家发展和改革委员会..全国林纸一体化工程建设”十五”及2010年专项规划.2004, 25(3): 6-13.
    [9]赵伟.制浆造纸行业节能减排的形势和任务.造纸信息,2008, 7: 4-10.
    [10]林乔元.中国造纸工业非木材制浆水污染防治进展.纸和造纸,2007, 26(2): 1-7.
    [11]国家发展和改革委员会.我国造纸工业面临的形势.造纸信息,2007, 12: 6-7.
    [12]Smook GA.制浆造纸工程大全(第二版).曹邦威译.北京:中国轻工业出版社,2001.38-392.
    [13]Britt KW. Handbook for pulp and paper technology. New York: Van Nostrand Reinhold, 1970. 27-723.
    [14]Hultom T, Lonnberg B, Laxen T, ElSakhawy M. Alkaline pulping of cereal straw.Cellulose Chemistry and Technology, 1997, 31(1-2): 65-75.
    [15]Xu EC. Chemical treatment in mechanical pulping, Part 5: Sulfite pretreatment.Tappi Journal, 2003, 2(8): 13-18.
    [16]Pinkerton JE. Trends in US pulp and paper mill SO_2 and NOx emissions, 1980-1995.Tappi Journal, 1998, 81(4): 114-122.
    [17]Grace TM. Chemical recovery in the alkaline pulping process. Publisher: TAPPI Press, 1985, 95.
    [18]Martinez JM, Reguant J, Salvado J, et al. Soda-anthraquinone pulping of a softwood mixture: Applying a pseudo-kinetic severity parameter. Bioresource Technology, 1997, 60(2): 161-167.
    [19]Khristova P, Bentcheva S, Karar I. Soda-AQ pulp blends from kenaf and sunflower stalks. Bioresource Technology, 1998, 66(2): 99-103.
    [20]Burazin M. Ph.D. thesis: A dynamic model of kraft-anthraquinone pulping. Institute of Paper Chemistry, 1986.
    [21]Fiserova M, Gigac J, Melnik P. Application of anthraquinone in kraft pulping of beechwood. Wood Research, 2006, 51(4): 55-68.
    [22]隋晓飞.制浆工艺生物技术的研究进展.天津造纸,2007, 44: 19-24
    [23]曹云峰,杨益琴.麦草氧碱两段蒸煮黑液性能的研究.中国造纸学报,2002,17(1): 64-67.
    [24]Bajpai P, Mishra SP, Mishra OP, et al. Biochemical pulping of wheat straw. TAPPI Journal, 2004, 87(8): 3-6.
    [25]刘江燕,武书斌,郭伊丽.制浆黑液固形物与工业木质素热解液化产物分析.林产化学与工业.2008, 28(4): 65-70.
    [26]Feng ZN, Alen R, Niemela K. Formation of aliphatic carboxylic acids during alkaline pulping of muli bamboo. Journal of Wood Chemistry and Technology, 2002,22(1): 25-37.
    [27]Neto CP. Total fractionation and analysis of organic components of industrial Eucalyptus globulus kraft black liquor. Appita Journal, 1999, 52(4): 274-274.
    [28]陈启钊,张桂兰,朱衡.气相色谱法测定碱法黑液中糖的组成.中国造纸,1991,6: 45-48.
    [29]Rodko IY, Scott BF, Carey JH. Analysis of pulp mill black liquor for organosulfur compounds using GC/atomic emission detection. Environmental Fate and Effects of Pulp and Paper Mill Effluents, 1996. 195-202.
    [30]福建林学院.木材制浆工艺学.北京:中国林业出版社,1986. 127.
    [31]Gullichsen J, Fogelholm CJ. Chemical engineering principles of fiber line operations. Chemical Pulping. Papermaking Science and Technology, 2000, 693.
    [32]Boluk Y, Berksoy M. Improving flow characteristics of high solids black liquor with a practical processing aid. International Chemical Recovery Conference, 1998. 1-3:1149-1156.
    [33]Gutierrez A, Del Rio JC. Lipids from flax fibers and their fate in alkaline pulping.Journal of Agricultural and Food Chemistry, 2003, 51(17): 4965-4971.
    [34]Macek A. Research on combustion of black-liquor drops. Progress in Energy and Combustion Science, 1999, 25: 275.
    [35]Dai QZ, Jameel H, Chang HM. Precipitation of extractives onto kraft pulps during black liquor recycling in extended delignification process. Journal of Wood Chemistry and Technology, 2006, 26(1): 35-51.
    [36]Werner JA, Ragauskas AJ, Jiang JE. Evaluation of the intrinsic metal binding capacity of kraft black liquor lignins. TAPPI Pulping Conference, 1998. 1-3:1145-1155.
    [37]张贵才,孙铭勤,赵福麟.碱法造纸黑液性质的研究.石油大学学报,1992,16(6): 49-54.
    [38]林乔元.中国造纸工业非木材制浆污染防治的评价与展望.中国造纸,2006,25(5): 47-56.
    [39]路祺,钱学仁,利害朝.我国草浆黑液污染治理的现状.黑龙江造纸,2005, 2:40-41.
    [40]Ali M, Sreekrishnan T. Aquatic toxicity from pulp and paper mill effluents: a review.Advances in Environmental Research, 2001, 5(2): 175-196.
    [41]Moo-Young HK. Pulp and paper effluent management. Water Environment Research, 2007, 79(10): 1733-1741.
    [42]Pokhrel D, Viraraghavan T. Treatment of pulp and paper mill wastewater—a review.Science of the Total Environment, 2004, 333(1-3): 37-58.
    [43]苏维丰,柴立元,王云燕.造纸黑液综合治理的研究进展.工业水处理,2004,24(11): 4-8.
    [44]Saroha AK, Wadhwa RK, Chandra S, et al. Soda recovery from non-wood spent pulping liquor. Appita Journal, 2003, 56(2): 107-110.
    [45]Macek A. Research on combustion of black-liquor drops. Progress in Energy and Combustion Science, 1999, 25(3): 275-304.
    [46]杜兆年,贺连娟.麦草浆黑液碱回收除硅工艺试验研究.甘肃环境研究与监测,2002. 15(3): 153-154.
    [47]艾天召,董学芝,蒋智霞,等.黑液碱回收中直接生产碳酸钙新工艺.纸和造纸,2003, (4): 59-60.
    [48]Vakkilainen E, Backman R, Forssen M, et al. Effects of liquor heat treatment on black liquor combustion properties. Pulp and Paple Canada, 1999, 1(8): 24-30.
    [49]韦保仁,杨芸.中国造纸业能源需求与CO_2排放情景分析(Ⅱ).中华纸业,2008,29(3): 23-27.
    [50]Ganjidoust H, Tatsumi K, Yamagishi T, Gholian RN. Effect of synthetic and natural coagulant on lignin removal from pulp and paper wastewater. Water Science and Technology, 1997, 35(2-3): 291-296.
    [51]郭建平,王继徽.矿渣复合混凝剂处理造纸黑液的研究.工业水处理,2003,23(11): 50-52.
    [52]熊正为,袁华山,刘金香.铁质粘土混凝沉淀处理造纸黑液的应用研究.南华大学学报:理工-版,2004,18(2): 17-19.
    [53]Helmy SM, El Rafie S, Ghaly MY. Bioremediation post-photo-oxidation and coagulation for black liquor effleunt treatment. Desalination, 2003, 158(1-3):331-339.
    [54]孙家寿,周卫军.交联粘土矿物处理造纸废液的研究.工业用水与废水,1999,30(4): 13-15.
    [55]Gilarranz MA, Rodriguez F, Oliet M, et al. Acid precipitation and purification of wheat straw lignin. Separation Science and Technology, 1998, 33(9): 1359-1377.
    [56]Yang WB, Mu HZ, Huang YC. Treatment of black liquor from the papermaking industry by acidification and reuse. Journal of Environmental Sciences China, 2003,15(5): 697-700.
    [57]秦毅红,王云燕.造纸黑液酸析法回收木质素.环境污染与防治,1999, 21(4):5-7.
    [58]戴友芝.碱法草浆黑液酸析回收木质素.环境科学与技术. 1995, 1: 40-42.
    [59]Howell JF, Thring RW. Hardwood lignin recovery using generator waste acid.Statistical analysis and simulation. Industrial and Engineering Chemistry Research,2000, 39(7): 2534-2540.
    [60]王毓秀,韦彦斐.用燃煤烟道气处理造纸黑液的研究.污染防治技术,1995, 8(001): 41-44.
    [61]张玉蕴.浅析造纸厂废水分段处理技术.山西建筑,2003, 29(4): 254-255.
    [62]Petrus L, Noordermeer M. Biomass to biofuels, a chemical perspective. Green Chemistry, 2006, 8(10): 861-867.
    [63]Nadif A, Hunkeler D, Kauper P. Sulfur-free lignins from alkaline pulping tested in mortar for use as mortar additives. Bioresource Technology, 2002, 84(1): 49-55.
    [64]El-Sayed M, Mansour OY, Selim IZ, et al. Identification and utilization of banana plant juice and its pulping liquor as anti-corrosive materials. Journal of Scientific and Industrial Research, 2001,60(9): 738-747.
    [65]Xiao C, Bolton R, Pan WL. Lignin from rice straw kraft pulping: Effects on soil aggregation and chemical properties. Bioresource Technology, 2007, 98(7):1482-1488.
    [66]Cavdar AD, Kalaycioglu H, Hiziroglu S. Some of the properties of oriented strandboard manufactured using kraft lignin phenolic resin. Journal of Materials Processing Technology, 2008, 202(1-3): 559-563.
    [67]Wang YY, Peng WJ, Chai LY, et al. Preparation of adhesive for bamboo plywood using concentrated papermaking black liquor directly. Journal of Central South University of Technology, 2006, 13(1): 53-57.
    [68]Nada AAMA, Abou-Youssef H, El-Gohary SEM. Phenol formaldehyde resin modification with lignin. Polymer-Plastics Technology and Engineering, 2003,42(4): 689-699.
    [69]Danielson B, Simonson R. Kraft lignin in phenol formaldehyde resin. Part 1 .Partial replacement of phenol by kraft lignin in phenol formaldehyde adhesives for plywood. Journal of Adhesion Science and Technology, 1998, 12(9): 923-939.
    [70]张子健,高宝玉,岳钦艳,等.酸析法处理氧碱蒸煮造纸黑液研究.2005,21(3):38-40.
    [71]Zeng HH, Zhang YF, Wang SF, et al. The treatment of black liquor using up-flow multi-stage anaerobic reactor. Second International Papermaking and Environment Conference, 2008. 1173-1176.
    [72]Baruah B, Das M. Effect of paper mill effluent on plankton population of wetland. Environment and Ecology, 1997, 15(4): 770-777.
    [73]Poggi-Varaldo HM, Estrada-Vazquez C, Fernandez-Villagomez G, et al.Pretreatment of black liquor spills effluent. 51 Industrial waste conference, 1997.651-661.
    [74]Bhoi Z, Mehrotra I, Shrivastava A. Treatability studies of black liquor by upflow anaerobic sludge blanket reactor. Journal of Environmental Engineering and Science,2003, 2(4): 307-313.
    [75]Kortekaas S, Vidal G, He YL, et al. Anaerobic-aerobic treatment of toxic pulping black liquor with upfront effluent recirculation. Journal of Fermentation and Bioengineering, 1998, 86(1): 97-110.
    [76]Font X, Caminal G, Gabarrell X, et al. Black liquor detoxification by laccase of Trametes versicolor pellets. Journal of Chemical Technology and Biotechnology,2003, 78(5): 548-554.
    [77]Srinivasan S, Murthy D. Colour removal from bagasse-based pulp mill effluent using a white rot fungus. Bioprocess and Biosystems Engineering, 1999, 21(6):561-564.
    [78]Malaviya P, Rathore V. Bioremediation of pulp and paper mill effluent by a novel fungal consortium isolated from polluted soil. Bioresource Technology, 2007,98(18): 3647-3651.
    [79]Wingate K, Stuthridge T, Mansfield S. Colour remediation of pulp mill effluent using purified fungal cellobiose dehydrogenase: Reaction optimisation and mechanism of degradation. Biotechnology and Bioengineering, 2005, 90(1):95-106.
    [80]张小勇,张建安,韩润林,等.碱法造纸黑液木质素生物酸析法.应用与环境生物学报,1995, 5(6): 618-622.
    [81]Wang HX, Zhang XY, Liu B, et al. Whtie rot fungus treatment of black liquor by varying the pH values. Fresenius Enviromental Bulletin, 2004, 13(11 a): 1104-1108
    [82]McFee W, Stone E. The persistence of decaying wood in the humus layers of northern forests. Soil Science Society of America Journal, 1966, 30(4): 513.
    [83]Kalbitz K, Kaiser K. Contribution of dissolved organic matter to carbon storage in forest mineral soils. Journal of Plant Nutrition and Soil Science, 2008, 171(1): 52-60.
    [84] Fakoussa RM, Hofrichter M. Biotechnology and microbiology of coal degradation. Applied Microbiology and Biotechnology, 1999, 52(1): 25-40.
    [85] Rillig MC, Caldwell BA, Wosten HAB, et al. Role of proteins in soil carbon and nitrogen storage: controls on persistence. Biogeochemistry, 2007, 85(1): 25-44.
    [86] Orlov DS, Sadovnikova LK. Soil organic matter and protective functions of humic substances in the bioshere. Use of Humic Substances to Remediate Polluted Environments: From Theory to Practice, 2005. 52: 37-52.
    [87] Xu G, Goodell B. Mechanisms of wood degradation by brown-rot fungi:chelator-mediated cellulose degradation and binding of iron by cellulose. Journal of Biotechnology, 2001, 87(1): 43-57.
    [88] Goodell B, Daniel G, Jellison J, et al. Iron-reducing capacity of low-molecular-weight compounds produced in wood by fungi. Holzforschung, 2006,60(6): 630-636.
    [89] Newcombe D, Paszczynski A, Gajewska W, et al. Production of small molecular weight catalysts and the mechanism of trinitrotoluene degradation by several Gloeophyllum species. Enzyme and Microbial Technology, 2002, 30(4): 506-517.
    [90] Flournoy D, Kirk T, Highley T. Wood decay by brown-rot fungi: changes in pore structure and cell wall volume. Holzforschung, 1991, 45(5): 383-388.
    [91] Green F, Highley T. Mechanism of brown-rot decay: paradigm or paradox. International Biodeterioration and Biodegradation, 1997, 39(2-3): 113-124.
    [92] Niemenmaa O, Uusi-Rauva A., Hatakka, A. Demethoxylation of [O~(14)CH~3]-labelled lignin model compounds by the brown-rot fungi Gloeophyllum trabeum and Poria (Postia)placenta. Biodegradation, 2008,19(4): 555-565.
    [93] Koenigs J. Hydrogen peroxide and iron: a proposed system for decomposition of wood by brown-rot basidiomycetes. Wood and Fiber Science, 1974, 6: 66-80.
    [94] Baldrian P, Valaskova V. Degradation of cellulose by basidiomycetous fungi. FEMS Microbiology Reviews, 2008, 32(3): 501-521.
    [95] Contreras D, Rodriguez J, Freer J, et al. Enhanced hydroxyl radical production by dihydroxybenzene-driven Fenton reactions: implications for wood biodegradation.Journal of Biological Inorganic Chemistry, 2007, 12(7): 1055-1061.
    [96] Suzuki MR, Hunt CG, Houtman CJ, et al. Fungal hydroquinones contribute to brown rot of wood. Environmental Microbiology, 2006, 8(12): 2214-2223.
    [97] Aguiar A, Souza-Cruz PB, Ferraz A. Oxalic acid, Fe~(3+)-reduction activity and oxidative enzymes detected in culture extracts recovered from Pinus taeda wood chips biotreated by Ceriporiopsis subvermispora. Enzyme and Microbial Technology, 2006, 38(7): 873-878.
    [98] Shimokawa T, Nakamura M, Hayashi N, et al. Production of 2,5-dimethoxyhydroquinone by the brown-rot fungus Serpula lacrymans to drive extracellular Fenton reaction. Holzforschung, 2004, 58(3): 305-310.
    [99] Yelle D, Goodell B, Gardner DJ, et al. Bonding of wood fiber composites using a synthetic chelator-lignin activation system. Forest Products Journal, 2004, 54(4):73-78.
    [100] Goodell B. Brown-rot fungal degradation of wood: our evolving view. Wood Deterioration and Preservation, 2003, 845: 97-118.
    [101] Hyde S, Wood P. A mechanism for production of hydroxyl radicals by the brown-rot fungus Coniophora puteana: Fe (Ⅲ) reduction by cellobiose dehydrogenase and Fe(Ⅱ) oxidation at a distance from the hyphae. Microbiology, 1997, 143(1): 259-266.
    [102] Wetzstein H, Schmeer N, Karl W. Degradation of the fluoroquinolone enrofloxacin by the brown rot fungus Gloeophyllum striatum: identification of metabolites.Applied and Environmental Microbiology, 1997, 63(11): 4272-4281.
    [103] Henriksson G, Johansson G., Pettersson G. A critical review of cellobiose dehydrogenases. Journal of Biotechnology, 2000, 78(2): 93-113.
    [104] Bringer S, Sprey B, Sahm H. Purification and Properties of Alcohol Oxidase from Poria contigua. European Journal of Biochemistry, 1979, 101(2): 563-570.
    [105] Lapeyrie F, Chilvers G, Bhem C. Oxalic acid synthesis by the mycorrhizal fungus Paxillus involutes (Batsch. EX FR.) FR. New Phytologist, 1987, 106(1): 139-146.
    [106] Geoffrey D, Jindrich V. Lada F, et al. Characteristics of Gloeophyllum trabeum alcohol oxidase, an extracellular source of H_2O_2 in brown rot decay of wood. Applied and Environmental Microbiology, 2007, 73(19):6241-6253.
    [107] Yelle DJ, Ralph J, Lu F, et al. Evidence for cleavage of lignin by a brown rot basidiomycete. Environ Microbiol, 2008, 10(7): 1844-1849.
    [108] Wang W, Huang F, Gao PJ. HO-involved oxidaive degradation of lignocellulose by brown-rot fungi. Emerging Technologies of Pulping and Papermaking, 2002:171-177.
    [109] Kamada F, Abe S, Hiratsuka N, et al. Mineralization of aromatic compounds by brown-rot basidiomycetes-mechanisms involved in initial attack on the aromatic ring. Microbiology, 2002, 148: 1939-1946.
    [110] Irbe I, Andersone I, Andersons B, et al. Use of C-13 NMR, sorption and chemical analyses for characteristics of brown-rotted Scots pine. International Biodeterioration and Biodegradation, 2001, 47(1): 37-45.
    [111] Kerem Z, Bao WL, Hammel KE. Rapid polyether cleavage via extracellular one-electron oxidation by a brown-rot basidioemycete. PNAS, 1998, 95(18):10373-10377.
    [112] Munir E, Yoon J, Tokimatsu T, et al. A physiological role for oxalic acid biosynthesis in the wood-rotting basidiomycete Fomitopsis palustris. PNAS, 2001,98(20): 11126-11130.
    [113] Sakai S, Nishide T, Munir E, et al. Subcellular localization of glyoxylate cycle key enzymes involved in oxalate biosynthesis of wood-destroying basidiomycete Fomitopsis palustris grown on glucose. Microbiology, 2006, 152(6): 1857.
    [114] Abramowicz D. Aerobic and anaerobic biodegradation of PCBs: a review. Critical Reviews in Biotechnology, 1990, 10(3): 241-251.
    [115] Zhu B, Kitrossky N, Chevion M. Evidence for Production of hydroxyl radicals by pentachlorophenol metabolites and hydrogen peroxide: a metal-independent organic fenton reaction. Biochemical and Biophysical Research Communications, 2000,270(3): 942-946.
    [116] Wetzstein H, Stadler M, Tichy H, et al. Degradation of ciprofloxacin by basidiomycetes and identification of metabolites generated by the brown rot fungus Gloeophyllum striatum. Applied and Environmental Microbiology, 1999, 65(4): 1556-1563.
    [117]Fahr K, Wetzstein H, Grey R, Schlosser D. Degradation of 2, 4-dichlorophenol and pentachlorophenol by two brown rot fungi. FEMS Microbiology Letters, 1999,175(1): 127-132.
    [118]郁红艳,曾光明,牛承刚,等.细菌降解木质素的研究进展.环境科学与技术,2005, 28(2): 104-106.
    [119]Merewether J. The precipitation of lignin from eucalyptus kraft black liquor. TAPPI Journal, 1962, 45: 159-163.
    [120]Bretz WA, Corby PM, Costa S, et al. Microbial acid production (Clinpro Cario L-Pop) and dental caries in infants and children. Quintessence International, 2007,38: 213-217.
    [121]Widner B, Behr R, Von Dollen S, et al. Hyaluronic acid production in Bacillus subtilis. Applied and Environmental Microbiology, 2005, 71(7): 3747-3752.
    [122]Rymowicz W, Lenart D. Oxalic acid production from lipids by a mutant of Aspergillus niger at different pH. Biotechnology Letters, 2003, 25(12): 955-958.
    [123]Boskey ER, Telsch KM, Whaley KJ, et al. Acid production by vaginal flora in vitro is consistent with the rate and extent of vaginal acidification. Infection and Immunity, 1999, 67(10): 5170-5175.
    [124]Grewal HS, Kalra KL. Fungal production of citric acid. Biotechnology Advances,1995, 13(2): 209-234.
    [125]Faboya O, Ikotun T, Fatoki OS. Production of oxalic acid by some fungi infected tubers. Z Allg Mikrobiology, 1983, 23(10): 621-624.
    [126]潘学军,谢来苏.麦草Soda-AQ黑液中木素的紫外特性及其定量测定.天津造纸,1992, 14(4): 7-11.
    [127]国家环境保护局,水质化学需氧量的测定重铬酸盐法GB 11914-89.北京:中国标准出版社,1989.
    [128]王安,谢宇.水中色度测定的研究.中国环境监测,2000, 16(2): 37-40.
    [129]国家环境保护局,水质悬浮物的测定重量法GB 11901-89.北京:中国标准出版社,1989.
    [130]Sun R,Tomkinson J, Wang S, et al. Characterization of lignins from wheat straw by alkaline peroxide treatment. Polymer Degradation and Stability, 2000, 67(1):101-109.
    [131]罗才典,陈仁悦.麦草硫酸盐浆黑液中木素的酸化沉降与黑液性质的关系.中国造纸,1989, 8(3): 53-56.
    [132]Hodgkinson A. Oxalic acid in biology and medicine. New York: Academic Press,1977. 51-53.
    [133]Shimazono H. Oxalic acid decarboxylase, a new enzyme from the mycelium of wood destroying fungi. Journal of Biochemistry, 1955, 42(3): 321.
    [134]Shimada M, Akamtsu Y, Tokimatsu T, et al. Possible biochemical roles of oxalic acid as a low molecular weight compound involved in brown-rot and white-rot wood decays. Journal of Biotechnology, 1997, 53(2-3): 103-113.
    [135]Shimada M, Ma D, Akamatsu Y, et al. A proposed role of oxalic acid in wood decay systems of wood-rotting basidiomycetes. FEMS Microbiology Reviews, 1994,13(2-3): 285-295.
    [136]McIntyre DA, Harlander SK. Improved electroporation efficiency of intact Lactococcus lactis subsp. lactis cells grown in defined media. Applied and Environmental Microbiology, 1989, 55(10): 2621-2626.
    [137]Kirk T, Schultz E, Connors W, et al. Influence of culture parameters on lignin metabolism by Phanerochaete chrysosporium. Archives of Microbiology, 1978,117(3): 277-285.
    [138]Makela M, Galkin S, Hatakka A. Production of organic acids and oxalate decarboxylase in lignin-degrading white rot fungi. Enzyme and Microbial Technology, 2002, 30(4): 542-549.
    [139]赵晖,李国庆,郭坚,等.雪腐核盘菌的ITS序列分析.化学与生物工程,2005,22(12): 23-25.
    [140]Schilling J. Ph.D. thesis: Oxalate production and cation translocation during wood biodegradation by fungi. The University of Maine, 2006.
    [141]杜甫佑,张晓昱,王宏勋.木质纤维素的定量测定及降解规律的初步研究.生物技术,2004, 14(5): 46-48.
    [142]Taniguchi M, Suzuki H, Watanabe D, et al. Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice straw. Journal of Bioscience and Bioengineering, 2005, 100(6): 637-643.
    [143]Pandey K, Pitman A. FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. International Biodeterioration and Biodegradation, 2003, 52(3): 151-160.
    [144]赵继鼎,张小青,徐连旺.中国真菌志第三卷多孔菌科.北京:科学出版社,1998. 127-156.
    [145]Yoon JJ, Kim YK. Degradation of crystalline cellulose by the brown-rot basidiomycete Fomitopsis palustris. The Journal of Microbiology, 2005, 43(6):487-492.
    [146]Espejo E, Agosin E. Production and degradation of oxalic acid by brown rot fungi.Applied and Environmental Microbiology, 1991,57(7): 1980-1986.
    [147]Green F, Clausen C, Kuster T, et al. Induction of polygalacturonase and the formation of oxalic acid by pectin in brown-rot fungi. World Journal of Microbiology and Biotechnology, 1995, 11(5): 519-524.
    [148]P(?)rez V, Troya M, Martinez A, et al. In vitro decay of Aextoxicon punctatum and Fagus sylvatica woods by white and brown-rot fungi. Wood Science and Technology, 1993, 27(4): 295-307.
    [149]Pandey KK, Nagveni HC. Rapid characterisation of brown and white rot degraded chir pine and rubberwood by FTIR spectroscopy. Holz Als Roh-Und Werkstoff,2007, 65(6): 477-481.
    [150]董群,郑丽伊.改良的苯酚—硫酸法测定多糖和寡糖含量的研究.中国药学杂志,1996, 31(9): 550-553.
    [151]陈春云,庄源益,刘斐.干活性污泥吸附水中染料的试验研究.环境科学与技术,2004, 27(1): 1-2.
    [152]赵建,李雪芝,石淑兰,等.桉木RDH蒸煮过程中木质素与碳水化合物的溶出规律研究.林产化学与工业,2004, 24(1): 64-68.
    [153]Lora J, Glasser W. Recent industrial applications of lignin: A sustainable alternative to nonrenewable materials. Journal of Polymers and the Environment, 2002, 10(1):39-48.
    [154]Han YH, Shin KS, Youn YC, et al. Mode of action and active site of an extracellular peroxidase from Pleurotus ostreatus. Biochemical Journal, 1996, 314:421-426.
    [155]Shin KS, Lee YJ. Depolymerisation of lignosulfonate by peroxidase of the white rot basidiomycete, Pleurotus ostreatus. Biotechnology Letters, 1999, 21:585-588.
    [156]Akamatsu Y, Takahashi M, Shimada M. Influences of various factors on oxaloacetase activity of the brown-rot fungus Tyromyces palustris. Journal of the Japan Wood Research Society, 1993, 39: 352-356.
    [157]Akamatsu Y, Shimada M. Partial purification and characterization of glyoxylate oxidase from the brown-rot basidiomycete Tyromyces palustris. Phytochemistry,1994, 37(3): 649-654.
    [158]Ichinose H, Nakamizo M, Wariishi H, et al. Metabolic response againse sulfur-containing heterocyclic compounds by the lignin-degrading basidomycete Coriolus versicolor. Applied Microbiology and Biotechnology, 2002, 58: 517-526.
    [159]Font X, Caminal G, Gabarrell X, et al. Black liquor detoxification by laccase of Trametes versicolor pellets. Journal of Chemical Technology and Biotechnology,2003, 78(5): 548-554.
    [160]Wu J, Xiao Y, Yu H. Degradation of lignin in pulp mill wastewaters by white-rot fungi on biofilm. Bioresource Technology, 2005, 96(12): 1357-1363.
    [161]路祺,孙黎明,钱学仁,等.麦草浆蒸煮黑液木素制备活性炭.中国造纸,2005,24(9): 29-31.
    [162]Guo YP, Rockstraw DA. Physical and chemical properties of carbons synthesized from xylan, cellulose, and Kraft lignin by H_3PO_4 activation. Carbon, 2006, 44(8):1464-1475.
    [163]Suhas, Carrott PJM, Carrott MMLR. Lignin-from natural adsorbent to activated carbon: a review. Bioresource Technology, 2007, 98(12): 2301-2312.
    [164]Fierro V, Torne-Fernandez V, Celzard A. Methodical study of the chemical activation of Kraft lignin with KOH and NaOH. Microporous and Mesoporous Materials, 2007, 101(3): 419-431.
    [165]Puziy AM, Poddubnaya OI, Zaitsev VN, et al. Modeling of heavy metal ion binding by phosphoric acid activated carbon. Applied Surface Science, 2004, 221(1-4): 421-429.
    [166] Ozer A, Tumen F. Cd(Ⅱ) adsorption from aqueous solution by activated carbon from sugar beet pulp impregnated with phosphoric acid. Fresenius Environmental Bulletin, 2003,12(9): 1050-1058.
    [167] Khalil LB. Adsorption characteristics of activated carbon obtained from rice husks by treatment with phosphoric acid. Adsorption Science and Technology, 1996, 13(5): 317-325.
    [168] Macias-Garcia A, Diaz-Diez M, Gomez-Serrano V, et al. Preparation and characterization of activated carbons made up from different woods by chemical activation with H_3PO_4. Smart Materials and Structures, 2003, 12(6): N24-N28.