MK-801对利多卡因致大鼠中毒惊厥效应的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:应用盐酸利多卡因致大鼠中毒惊厥模型,测定中毒惊厥过程中海马CA1区细胞外液谷氨酸(Glu)和γ-氨基丁酸(GABA)含量,并应用N-甲基-D-天门冬氨酸受体(NMDAR)拮抗剂MK-801,观察的NMDAR1活性以及Glu和GABA含量的变化,探讨MK-801在利多卡因致大鼠中毒惊厥过程中的作用机制。
     方法:
     1实验分组及动物模型的制备
     22只Wistar雄性大鼠,体重250±20 g(河北医科大学实验动物中心提供)。随机分为3组,对照组(C组,6只)、利多卡因组(L组,8只)、MK-801+利多卡因组(MK-801+L组,8只)。大鼠异氟烷(isoflurane)麻醉后气管插管,手术过程中持续吸入3 %异氟烷维持麻醉,右股静脉切开置管以1ml/h的速度输入乳酸钠林格氏液。刺入电极持续监测心电图(ECG)和脑电图(EEG)。用微型颅钻在左侧海马CA1区(前囟[bregma]后方3.6 mm和中线左旁开2 mm处)打开一直径约2 mm的圆孔,小心挑开硬脑膜,将微透析针垂直刺入大脑皮层2 mm,以2μl/min的速度持续输注乳酸钠林格氏液。手术操作完成后,持续吸入1.5 %异氟烷维持麻醉。微透析针置入60 min后开始收集脑组织微透析液,每隔10 min收集一次,首先收集20 min,之后按照实验分组给与不同的处理。(1)C组:腹腔注射生理盐水0.5 mg/kg,30 min后继续收集透析液40 min,于-20℃冰箱内保存待测。(2)L组:腹腔注射生理盐水0.5 mg/kg,30 min后2%利多卡因2 mg静注,然后以4 mg·kg-1·min-1的速度经股静脉持续泵入,C组以相同速度静注或泵入乳酸钠林格氏液。观察惊厥波(EEG上出现振幅超过100μV宽大快速的棘波并持续10 s以上)出现后,停止泵入利多卡因,其他两组泵入利多卡因或乳酸钠林格氏液时间与所求得的预试验中L组输入利多卡因时间的95%可信区间相当,记录惊厥波发生及持续时间,呼吸抑制及持续时间,余操作与C组相同。(3)MK-801+L组:静脉泵入利多卡因前30 min腹腔注射MK-801 0.5 mg/kg,余操作与L组相同。各组分别在微透析针置入60分钟及L组开始出现惊厥波时(其他两组于相应时间点)两个时间点采集股动脉血测动脉血氧分压(PaO2)和二氧化碳分压(PaCO2),呼吸抑制期间给与辅助呼吸,以维持PaO2和PaCO2在正常范围。
     2标本的采集及检测方法
     2.1 NMDAR1表达的检测
     实验进行2.5小时后,大鼠深麻醉下经心脏用0.9%生理盐水和4%多聚甲醛溶液各50 ml灌流固定,完整取出脑组织,冠状切取前囟部位3~13mm的组织,浸入4%多聚甲醛溶液中保存备用。之后酒精脱水,二甲苯透明,浸蜡,包埋,连续冠状切片(片厚5μm),用抗NMDAR1多克隆抗体进行免疫组化染色(ABC法)。在右侧海马CA1区相同部位分别取4个相邻的40倍视野,以胞浆或胞核染成棕黄色作为阳性细胞,计阳性细胞数,计算出平均数和标准差,数据以x_±s表示,采用SPSS 11.5软件进行方差分析及t检验, P < 0. 05表示差异有显著性。
     2.2海马CA1区谷氨酸和GABA浓度的检测
     利用柱前衍生高效液相色谱-荧光法测定出各种浓度的谷氨酸和GABA标准品的峰面积,并绘制标准曲线、求得回归方程。利用该方法测出每个样品中上述两种氨基酸的峰面积,根据回归方程求得氨基酸的浓度。
     结果:
     1各组间体重、心率、微透析针置入并稳定60 min及L组开始出现惊厥波时(其他两组于相应时间点)两个时间点动脉血气指标比较差异无统计学意义。
     2各组间惊厥波出现时间、呼吸抑制出现时间及持续时间的比较
     C组未见惊厥波,后两组均见惊厥波出现,其中L组每只均见惊厥波,而MK-801组只有两只出现了惊厥波。与L组比较,MK-801+L组呼吸抑制出现较晚(P<0.05),呼吸抑制持续时间较短(P < 0.05)。
     3各组间海马CA1区NMDAR1表达的比较
     与C组比较,L组、MK-801+L组NMDAR1免疫阳性细胞数均显著增多(P < 0.05);与L组比较,MK-801+L组NMDAR1免疫阳性细胞数显著减少(P < 0.05)。
     4各组间海马CA1区Glu和GABA浓度的比较
     与C组比较,相同时间点L组Glu浓度显著升高(P < 0.05);与L组比较,相同时间点MK-801+L组Glu浓度显著降低(P < 0.05)。
     各组间相同时间点与C组相应时间点比较,T2时L组GABA浓度升高(P < 0.05);余差别无统计学意义。
     结论:MK-801能够抑制利多卡因中毒惊厥效应,机制与NMDA受体活性降低有关。
Objective: Using the model of seizure induced by hydrochloride lidocaine to detect the concentration of glutmate (Glu) and GABA in extracellular fluid of the brain in rats during the convulsion; and the N-methy-D-aspartate receptor (NMDAR) antagonist MK-801 was administered to observe the NMDAR’s activity and the variations of Glu and GABA’s concentration, and to investigate the effect of MK-801 on the brain against convulsion induced by lidocaine in rats and the underlying mechanism.
     Methods: Twenty-two male Wistar rats weighing 200±50g were randomly divided into 3 groups : controling group/ group C (n=6); Lidocaine group / group L (n=8); MK-801+lidocaine group/group MK-801+L (n=8). The model of seizure was induced by lidocaine and confirmed by EEG (five electrodes were implanted under the epicranium of rats respectively) on which multiple sharp waves were seen. Anesthesia was induced with 5% isoflurane in oxygen in a container. The trachea was cannulated via endotracheal intubation. Needle electrodes were placed for recording lead II of the electrocardiogram (ECG) and frontooccipital electroencephalogram (EEG). During surgical preparation, anesthesia was maintained with 3% isoflurane in oxygen. A cannula was placed through the right femoral vein into the vena cava for local anesthetic and sodium lactated Ringer’s solution infusion. EEG, and ECG were continuously recorded.
     A constant infusion of sodium lactated Ringer’s solution was started at the rate of 1 ml·h-1. A microdialysis probe was pricked 2 mm depth into the pallium of the left hippocampal CA1 field of a rat, and the sodium lactated Ringer’s solution exchanged was drived at the flow rate of 2μl·min-1 . After surgical preparation, anesthesia was maintained with 1.5% isoflurane in oxygen. 60 mins later, the dialysate was collected every 10 mins, after the first 20 mins’collection , the rats were dealt differrently according to subgroups. (1) group C: Normal saline was injected into abdominal cavity at a dose of 0.5mg·kg-1, 30 mins later, dialysate was collected for about 40 mins continiously. (2) group L: Normal saline was injected into abdominal cavity at a dose of 0.5ml·kg-1, 30 mins later, lidocaine hydrochloride with the concentration of 2% was quickly infused about 2 mg ,then it was continuously infused at a rate of 4 mg·kg-1·min-1 until the multiple sharp waves were seen on a relatively calm backgroud on EEG (confirmed by two independent persons). Sodium lactated Ringer’s solution was infused in group C at the same time. Then, the infusion of lidocaine was stopped and the sodium lactated Ringer’s solution was infused at the formal rate. At the same time the emergency time of convulsion and the emergency time and duration of respiratory depression were recorded. (3) group MK-801+L: All of the steps were same with group L except that MK-801 was injected via peritoneal injection at a dose of 0.5mg·kg-1 30 mins before lidocaine’s infusion. Arterial blood was collected when the microdialysis probe was implanted into the pallium of the left hippocampal CA1 field of a rat and when the high spike wave appeared on a relatively calm backgroud in EEG in group L to detect PaO2 and PaCO2.
     After the experiments, all rats were fixed with 4% PFA perfused via ascending aorta. Then, the rats’brain were carefully sampled and stored under 4℃. What’s more, specimans of the brain were used in immunohistochemical test to observe the expression of N-methy-D-aspartate receptor 1 (NMDAR1). The dialysate was stored under -20℃and would be used to determine the concentration of Glu and GABA by high-performance liquid chromatography (HPLC).
     Result
     1 There are no differences of the rats’weight、HR、PaO2 and PaCO2 in the three groups.
     2 Comparision of the emergency time of convulsion wave and the emergency time and duration of respiratory depresion. No high spike waves appeared on the EEG in group C.
     Each of the rats in group L was found of high spike waves appeared in EEG. But only two of the rats in group MK-801+L was found high spike waves appeared in EEG. Compared with group L, resperatory depresion occurred later in group MK-801 (P<0.05), and the duration of resperatory depresion lasted shorter in group MK-801 (P<0.05).
     3 The expression of NMDAR1 level in hippocampal CA1 field
     Compared with group C , the expression of NMDAR1 level in hippocampal CA1 field was significantly higher in both group L and group MK-801+L (P<0.05) ; Compared with group L , the expression of NMDAR1 level in hippocampal CA1 field was significantly lower in group MK-801+L (P<0.05).
     4 The concentration of Glu in dialysate
     The average of the Glu’s concentration of the first two points was definited as a control value .
     Compared with group C, the concentrations of the corresponding time points are significant higher in group L (P<0.05); Compared with group L, the concentrations of the corresponding time points are significant lower in group MK-801+L (P<0.05).
     5 The concentration of GABA in dialysate
     The average of the concentration GABA of the first two points was definited as a control value .
     Compared with the concentrations of the corresponding time point in group C, only the concentration of 40 min is higher in group L (P<0.05), and there are no statistical significance during every other time points of the three groups (P>0.05).
     Conclusion
     MK-801 play a positive role in the convulsion induced by lidocaine in the hippocampal CA1 field of the rats’brain, the decrease of the activity of NMDAR is involved in the mechanism.
引文
1 Moore JM, Liu SS, Neal JM, et al. Premedication with fentanyl and midazolam decreases the reliability of intravenous lidocaine test dose. Anesth Analg, 1998, 86(5):1015
    2 McEwen B S, de Leon M J, Lup ien S J, Meaney M J. Corticosteroids, the aging brain and cognition[ J ]. TEM ,1999, 10 (3): 92 -6
    3 Sattler R, Xiong Z, Lu Wy, ea tal. Specific coupling of NMDA receptor activation to nitric oxcide neurotoxicity by PSD-95, protein. Science, 1999, 284, (5421): 1845-8
    4 徐世元.局麻药的中枢神经系统毒性与临床治疗展望.国外医学·麻醉学与复苏分册,2002,23(4):195-197
    5 吴安石,岳云,龙健晶,等.不同浓度异氟醚对大鼠大脑皮层乙酰胆碱含量的影响.中华麻醉学杂志,2005,25(11):832-834
    6 Lin KANG, Zheng-Ze DAI, Hao-Hong LI,ea tal. Environmental cues associated with morphine modulate release of glutamate and γ-aminobutyric acid in ventral subiculum. Neuroscience Bulletin, 2006, 22(5): 255-260
    7 Cazevieille C, Safa R, Osborne N N. Melatonin p rotects p rimary cultures of rat cortical neurones from NMDA excitotoxicity and hypoxia /reoxygenation[ J ]. Brain Res, 1997, 768 (1 - 2): 120 – 124
    8 怀珍, 范晓棠, 张金海, 等. 高原低氧对大鼠下丘脑谷氨酸、天门冬氨酸和 NOS 的影响[ J ]. 中国病理生理杂志, 2000, 16 ( 11):1198-1201
    9 Watanabe Y, Dohi S, La H, et al. The effects of bupivacaine and ropivacaine on baroreflex sensitivity with or without respiratory acidosis and alkalosis in rats. Anesth Analg, 1997,84(2):398
    10 Ohmura S, Kawada M, Ohta T, et al. Systemic toxicity and resuscitation in bupivacaine-, levobupivacaine-, or ropivacaine-infused rats. Anesth Analg, 2002, 94(2):479
    11 金英,王英,刘婉珠,等.N - 甲基- D - 天冬氨酸受体对清醒大鼠海马谷氨酸释放的调节作用,锦州医学院学报,2004 ,25 (1):1-4
    12 Jason D. Huber, Selina F. Darling, Kwan-kyun Park, Karam F.A. Soliman. The role of NMDA receptors in neonatal cocaine-induced neurotoxicity. Pharmacology, Biochemistry and Behavior ,2001, 69: 451–459
    13 黄晓,康学军,肖静,等. 高效液相色谱法快速测定氨基酸类神经递质[ J ]. 检验医学, 2006, 21(3): 215-218
    14 汪平,郭正成. 脑外伤患者血清兴奋性氨基酸水平与功能性恢复的分析[ J ]. 中华物理医学与康复杂志, 2000,22 (4): 231-233
    15 王锦,沈霖霖,曹银祥,等.高效液相色谱-荧光检测法快速测定脊髓和脑内氨基酸, 检验医学,2005,20(5): 424-427
    16 郭旭东,韩荣莲,李旭清.反相高效液相色谱法测定血浆游离氨基酸,氨基酸杂志,1993,1: 39-42
    17 Chang DH, Ladd LA, Wilson KA, Gelgor L, et al.Tolerobility of large dose of intravenous levobupivacaine in sheep. Anesth Analg. 2000, 91: 671-679
    18 Liu P, Feldaman HS, Giasis R, et al. Comparative CNS toxicity of Locain, entidocain, bupivacaine, and tetracain in awake dogs following rapid intravenous administration. Anesth Analg. 1983, 62: 375-379
    19 Masataka Yokoyama MD, Masahisa Hirakawa MD,Hiroshi Goto MD. Clonidine does not affect lidocaine seizure threshold in rats. CAN J ANAESTH. 1993, 40(12): 1205-9
    20 周仁龙. 局麻药的毒性及其防治措施进展. 实用疼痛学杂志,2007,2,3(1):64-68
    21 Miller RD. Anesthesia, 2001, 491
    22 Katoh-Semba K, Takeuchi I.K, Inaguma Y, Induction of brain-derived neurotrophic factor by convulsant drugs in the rat brain: involvement of region-specific voltage-dependent calcium channels.J Neurochem, 2001, 77: 71-83
    23 Walker BR, Easton A, Gale K. Regulation of limbic motor seizures by GABA and glutamate transmission in nucleus tractus solitarius. Epilepsia, 1999, 40: 1051-1057
    24 Gurden H,Takita M,Jay TM.  Essential role of D1 but not D2 receptors in the NMDA receptor  dependent long  term potentiation at hippocampal  prefrontal cortex synapses in vivo[ J ]  J Neurosci, 2000, 20(22): 106 
    25 Nakazawa T,Komai S,Tezuka T,et al. Characterization of Fyn  mediated tyrosine phosphorylation sites on GluR epsilon 2 NR2B subunit of the N-methyl-D-aspartate receptor[ J ]. J Biol Chem, 2001, 276(1): 693-9 
    26 Ozawa S , Kamiya H , Tsuzuki K. Glutamate receptors in the mammalian central nervous system[ J ] . Prog Neurobiol , 1998 , 54 : 581- 618
    1 俞晨,徐又佳, 张志琳,等. 脑微透析法研究大鼠脊髓损伤后脑内兴奋性氨基酸的动态变化. 苏州大学学报(医学版) 2006 , 26 (6): 923-926
    2 Larsson CI. The use of an" internal standard" for control of the recovery in microdialysis[ J ]. Life Sci , 1991 , 49: 93
    3 M enacherry S, Hubert W. Justice JB Tr. In vivo calibration of microdialysis probes for exogenous compounds[ J ]. A nal Chem, 1992, 64 (6): 577
    4 Yokel RA , Allen DD , Burgid E , et al. Antipyrine as a dialyzable reference to correct differences in efficiency among and within sampling devices during in vivo microdialysis[ J ]. J Pha rmacol to xicolMet h, 1992, 27: 135
    5 Bunguy PM,Moirison PF , Dedrick RL. Steady- state theory for quantitative microdialysis of solutes and water in vivo and in vitro. Life Sci , 1990 ,46 (2) : 105
    6 Benfel E, Serup J, Menne T. Microdialysis is suction blister technique for in vivo sampling of pharmacokinetics in the human dermis[ J ]. Acta Derm Venereol, 1999, 79(5): 338-342
    7 Wang W, Zhao DZ, Wang WX, et al. The measurement of tyrosine hydroxylase activity in the brain of conscious rats [ J ]. Chin J ChinMateria Medica, 2002, 27(2): 132-135
    8 wamata T, Katayama Y, Hovda DA, et al. Lactateaccumulation following concussive brain injury: the role of ioncic fluxes induced by excitatoy amino acids. Brain Res , 1995,674 (2): 196 – 204
    9 Dixon CE, Flinn P, Bao J, et al. Nerve growth factor attenuates cholinergic deficits following traumatic brain injury in rats. Exp Neurol ,1997, 146(2): 479 – 490
    10 Sakamoto KI , Fujisawa H , Koizumi H , et al . Effects of mild hypothermia on nitric oxide synthesis following contusion trauma in the rat . J Neurotrauma, 1997, 14(5) :349 – 353
    11 Bell MJ , Kochanek PM, Carcillo JA , et al . Interstitial adenosine , inosine ,and hypoxanthine are increased after experimental traumatic brain injury in the rat. J Neurorauma , 1998, 15 (3). 163 – 170
    12 Goodman JC , Valadka AB , Gopinath SP , et al. Lactate andexcitatory amino acids measured by microdialysis are decreased by pentobarbital coma in head injured patients, J Neurotrauma , 1996, 13 (10): 549 -556
    13 Palmer AM, Marion DW, Botscheller ML , et al . Traumatic brain injury induced exci totoxicity assessed in a controlled cortical impact model [ J ]. J Neurochem. 1993 , 61 (6) : 2015 – 24
    14 Kanthan R , Shuaib A , Griebel R , et al . Intracerebral human microdialysis: in vivo study of an acute focal ischemic model of the human brain [ J ] . Stroke,1995,26(5) : 870 – 3
    15 Grande PO , Moller AD , Nordstrom CH , etal . Lowdose prostacyclin in treatment of severe brain trauma evaluated with microdialysis and jugular bulb oxygen measurements[ J ] . Acta Anaesthesiol Scand. 2000, 44(7): 886 – 94
    16 Qureshi AI , Ali Z , Suri MF , et al. Extracellular glutamate and other amino acids inexperimental intracerebral hemorrhage : an invivo microdialysis study [ J ]. Crit Care Med,2003,31 (5) : 1482 – 9
    17 Sarrafzadeh A , Haux D , Sakowitz O , et al. Acute focal neurological deficits in aneurysmal subarachnoid hemorrhage : relation of clinical course , CT findings, and metabolite abnormalities monitored with bedside microdialysis [ J ] . Stroke,2003,34(6) : 1382 – 8
    18 Vespa PM, McArthur D , O’Phelan K, et al . Persistentlylow extracellular glucose correlates with poor outcome 6 months after human traumatic brain injury despite a lack of increased lactate: a microdialysis study [ J ]. J Cereb Blood Flow Metab,2003,23(7): 865 – 77
    19 Thomas PM, Phillips JP , O’Connor WT. Hippocampal microdialysis during spontaneous intraoperative epileptiform activity [J ]. Acta Neurochir (Wien). 2004 , 146(2): 143 – 51
    20 Fedele E , Mazzone P , Stefani A , et al .Microdialysis in Parkinsonian patient basalganglia: acute apomorphine- induced clinical and electrophysiological effects not paralleled by changes in the release of neuroactive amino acids [ J ]. Exp Neurol . 2001, 167(2): 356 – 65
    21 Benjamin RK, Hochberg FH , Fox E , et al. Review of microdialysis in brain tumors , from concept to application: first Annual Carolyn Frye2Halloran Symposium [ J ] .Neuro2oncol, 2004 , 6 (1): 65 – 74
    22 Hutchinson PJ, Al- Rawi PG, Oconnell MT, et al. Biochemical changes related to hypoxia during cerebral aneurysm surgeny: combined microdialysis and tissue oxygen monitorin case report[ J ]. Neurosurgery, 2004, 46(1): 201
    23 Devineni D, Klein-Szanto A, Galloj M1. In vivo microdialysis to characterize drug transport in brain tumors: analysis of methotrexate uptake in rat glioma22 (RG22)-bearing rats[ J ]. Cancer Chemother Pharmacol ,1996, 38(6): 499-507
    24 Yang H,Wang Q,Elmquist WF,et al. The design and vaLation of a novel intravenous microdialysis probe, application to fluconazole pharmacokineties in the freely-moving rat model[ J ].Pharm Res, 1997, 14(10): 1455