神经甾体对氨基酸类神经递质系统作用初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:近年来研究发现许多甾体物质在中枢神经系统发挥着重要作用,广泛地影响脑内多种神经递质及其受体和离子通道的功能,调节神经元的兴奋性,这些具有神经精神活性的甾体被称为神经甾体和第四代神经递质。研究显示,神经甾体可参与多种神经精神疾病的发生,而氨基酸能神经系统亦在此类疾病的发病机制中发挥重要作用。因此,进一步研究神经甾体与氨基酸能神经系统之间的相互作用将有助于神经精神疾病发病机制的阐明。本研究拟将大鼠大脑皮质神经元进行体外原代培养,采用神经甾体孕酮( progesterone , PROG )和脱氢表雄酮(dehydroepiandrosterone,DHEA)分别作用不同时间后检测细胞培养液中谷氨酸(GLU)和γ-氨基丁酸(GABA)的浓度;采用不同浓度的PROG和DHEA分别作用后测定神经元氨基酸受体亚单位NMDAR2B(NR2B)和GABAR1(GBR1)的表达,以观察两种神经甾体对氨基酸类神经递质释放及其受体表达的影响,为神经精神类疾病发病机制的阐明提供基础实验依据。
     方法:
     1大鼠大脑皮质神经元原代培养方法的建立
     取孕17-18天SD大鼠胎鼠的大脑皮质,采用胰蛋白酶消化辅以机械分离法分离细胞,悬浮于含10%血清的DMEM培养基中,调整活细胞密度为1.2×109 L-1,接种于预先包被L-多聚赖氨酸的培养板中,在37oC,5% CO2及饱和湿度的细胞培养箱中孵育,24 h后首次换液为neurobasal培养基,以后每隔两天半量换液,并对神经元进行纯度测定,在倒置显微镜下随机选择3个视野(不重复,不重叠),分别记数所有的细胞和神经元,计算神经元的纯度。
     2氨基酸测定方法的建立
     荧光检测-高效液相法(HPLC-FLD)检测氨基酸含量的色谱条件为C18保护柱(5μm,4.6×12 mm,安捷伦公司);C18反相分析柱(5μm,4.6×150 mm,安捷伦公司)。流动相为A液和B液,梯度洗脱。A液为0.02 mol·L-1NaAc·3H2O,每500 ml加90μl二乙胺,以2%HAc调pH = 7.2,0.45μm微孔水相滤膜过滤后,每500 ml加1.5 ml四氢呋喃。B液为0.1 mol·L-1NaAc·3H2O,以2%HAc调pH = 7.2后,每100 ml加甲醇200 ml、乙腈200 ml,0.45μm微孔油相滤膜过滤。流动相流速为1.0 ml·min-1;柱温为40oC;激发波长为340 nm;发射波长为450 nm。
     3分组和药物处理方案
     3.1神经甾体影响神经元GLU和GABA释放实验
     神经元培养第11天,随机分为对照组、PROG组和DHEA组,分别用1%的溶剂DMSO、10μmol·L-1的PROG和DHEA处理后,依次在0.5、1、1.5、2、24、36、48、72 h收集细胞和细胞培养液;每组每个时间点设8个复孔。药物处理后,裂解细胞收集蛋白,采用Lowry法测细胞蛋白浓度用作定量;采用OPA-巯基乙醇柱前衍生,HPLC-FLD法检测细胞培养液中GLU和GABA的浓度。
     3.2神经甾体影响神经元NR2B和GBR1表达实验
     神经元培养第11天,随机分为7组:对照组(1% DMSO)、PROG低剂量组(1μmol·L-1)、PROG中剂量组(10μmol·L-1)、PROG高剂量组(100μmol·L-1)、DHEA低剂量组(1μmol·L-1)、DHEA中剂量组(10μmol·L-1)、DHEA高剂量组(100μmol·L-1);对照组设5个复孔(一孔染色时作为阴性对照),其余每组设4个复孔。药物处理24 h后吸出细胞培养液,冷丙酮固定细胞;采用免疫细胞化学法检测神经元氨基酸受体亚单位NR2B和GBR1的表达水平。
     结果:
     1大鼠大脑皮质神经元的形态学观察和纯度测定
     在倒置显微镜下可见,刚种植的细胞呈圆形,接种24 h后几乎全部贴壁,少数细胞伸出短小的突起,以后突起逐渐增多延长,第10天后神经元互相迁移靠近,聚集成团,突起相互连接形成网络;更换neurobasal培养基后,神经元的纯度逐渐提高,至培养第11天纯度可达95%以上。
     2氨基酸测定方法学确证
     本实验所用氨基酸测定方法GLU和GABA与细胞培养液中各杂质成份分离良好,无干扰;GLU在0.2~20μmol·L-1,GABA在10~1000μmol·L-1范围内具有良好的线性关系,日内和日间变异分别小于7.4%和8.6%(n = 4),回收率在97.4%~106.5%(n = 4)之间,检测限均为0.1μmol·L-1。
     3 PROG和DHEA对神经元GLU释放的影响
     与对照组相比,PROG处理1、1.5、2、24、36、48、72 h后,神经元培养液中的GLU水平分别降低66.5%、66.7%、64%、79.8%、89.7%、67.4%、58.9%(P<0.01);与对照组相比,DHEA处理相同的时间后,神经元培养液中的GLU水平分别降低63.8%、59.8%、54.8%、14.3 %、59.6%、60.9%、39.4%(P<0.05或P<0.01)。
     4 PROG和DHEA对神经元GABA释放的影响
     与对照组相比,PROG处理0.5、1、1.5、2、24、36、48、72 h后,神经元培养液中的GABA水平分别升高16.4%、43.3%、33.8%、24.5%、35.5%、62.7%、56.9%、46.2%(P<0.05或P<0.01);与对照组相比,DHEA处理1、1.5、2、24、36、48、72 h后,神经元培养液中的GABA水平分别升高37.5%、32.1%、31.7%、25.4%、57.1%、63.3%、58.9%(P<0.01)。
     5 PROG和DHEA对神经元NR2B和GBR1表达的影响
     体外培养的大鼠大脑皮质神经元经NR2B和GBR1免疫细胞化学染色后在普通光学显微镜下可观察到:神经元胞浆、胞膜及部分突起呈棕黄色着色,为其阳性表达。
     与对照组相比,PROG和DHEA处理均使NR2B表达增加。低、中、高剂量PROG分别使其增加29.6%、33.9%、46.9%(P<0.05或P<0.01);与PROG低、中剂量组相比,高剂量组显著增加(P<0.05或P<0.01)。与对照组相比,低、中、高剂量DHEA分别使NR2B表达增加13.5%、16.6%、33.1%(P<0.05或P<0.01);与DHEA低、中剂量组相比,高剂量组显著增加(P<0.05或P<0.01)。
     与对照组相比,PROG和DHEA处理均使GBR1表达增加。低、中、高剂量PROG分别使其增加31.5%、63.2%、67.9%(P<0.01);与PROG低剂量组相比,中、高剂量组显著增加(P<0.01)。与对照组相比,中、高剂量DHEA分别使GBR1表达增加16.7%、36.9%(P<0.05或P<0.01);与DHEA低、中剂量组相比,高剂量组显著增加(P<0.05或P<0.01)。
     结论:
     1 PROG和DHEA均对神经元GLU的释放起抑制作用,对GABA的释放起促进作用。
     2 PROG和DHEA处理均可浓度依赖性地增强NR2B和GBR1的表达。
Objective:In recent years, it has been demonstrated that some steroid substances play important roles in the central nervous system. The brain neurosteroids are 4th generation neuromessengers which are synthesized within the neurons and are responsible for acute modulation of neuron-neuron communication through neurotransmitter receptors. Previous studies have shown that both neurosteroid and amino acids nervous system participate in the nosogenesis of many kinds of neuron-mental disorders. Further investigations of the interactions between neurosteroids and amino acids nervous system will be helpful in elucidating the pathogenesis of neuron-mental disorders. In the present study, rat cerebral cortical neurons were primary cultured, and the levels of glutamate and gama-aminobutyric were detected after being treated with PROG and DHEA at the different time. The expression of amino acids receptor subunit NR2B and GBR1 were also detected after being treated with PROG and DHEA at the different concentrations by immunocytochemistry. The present study will provide the basis for clarifying the mechanisms of some neuron-mental disorders.
     Methods:
     1 The primary culture of rat cerebral cortical neurons
     Cortical neurons were obtained from E17-18 SD rat fetuses by mild digestion and mechanical dissection. The cells were seeded on the culture plates pre-coated with poly-L-lysine in the DMEM containing 10% fetal bovine serum at the density of 1.2×109 L-1. Cultures were maintained at 37oC, saturation humidity in an atmosphere containing 5% CO2. The neurobasal medium were changed after 24 hours culture and followed by changing half medium every 2 days. The purity of the neurons was determined by selecting 3 fields randomly under the inverted microscope.
     2 The amino acids assay
     HPLC-FLD was used for the determination of amino acids concentrations. The analytical column was C18 reversed-phase column with a C18 guard column. The column temperature was kept at 40oC. The mobile phase consisted of solution A and B with gradient elution. Solution A was 0.02 mol·L-1 NaAc·3H2O, solution B consisted of 0.1 mol·L-1 NaAc·3H2O, methanol and acetonitrile (1:2:2). The flow rate of mobile phase was 1.0 ml·min-1. The length of excitation wave was 340 nm; The length of emission wave was 450 nm.
     3 Drug treatment
     3.1 The effects of neurosteroids on GLU and GABA release in neuron
     On 11-day in culture, the neurons were divided into 3 groups randomly (with 8 in each group).①control group: treated with 1% DMSO②PROG group: treated with 10μmol·L-1PROG③DHEA group: treated with 10μmol·L-1DHEA. The Cells and medium were collected respectively after being treated 0.5、1、1.5、2、24、36、48、72 h. The cells protein content was measured by Lowry method. The concentration of GLU and GABA in the medium were detected by HPLC-FLD.
     3.2 The effects of neurosteroids on NR2B and GBR1 expression in neuron
     On 11-day in culture, the neurons were divided into 7 groups randomly (with 4 in each group except control group) Cells were treated with 1% DMSO(control group, n=5); 1, 10, 100μmol·L-1PROG(PROG-L, M, H groups) or 1, 10, 100μmol·L-1DHEA(DHEA-L, M, H groups) respectively. Cells were fixed with cold acetone after being treated 24 h.The expression of neuron receptor subunit NR2B and GBR1 were detected by immunocytochemistry.
     Results:
     1 Morphology and purity of the rat cerebral cortical neurons
     The cells were bright and round just plating. After 24 hours, most of the cells attached to the bottom of the plates. Some possessed small and short processes. After prolonged incubation, the processes multiplied and enlarged. On day 10, the neurons aggregates had interconnected by bundles of neuritis. The purity of the neurons increased gradually after changed to the neurobasal medium and was more than 95% on the 11-day culture.
     2 The identification of amino acids assay
     In the present study, the linear calibration curves of GLU and GABA were obtained in the range of 0.2~20μmol·L-1 and 10~1000μmol·L-1. The recoveries of them were between 97.4%~106.5%(n = 4). Inter-day and intra-day coefficient of variation were less than 7.4% and 8.6%(n = 4).The limit of quantitation of amino acids were 0.1μmol·L-1.
     3 Effects of PROG and DHEA on GLU release in neuron
     Compared with control group,the level of GLU in the medium decreased by 66.5%、66.7%、64%、79.8%、89.7%、67.4%、58.9% at 1、1.5、2、24、36、48、72 h after PROG treatment(P<0.01). The level of GLU in the medium increased by 63.8%、59.8%、54.8%、14.3%、59.6%、60.9%、39.4% after DHEA treatment(P<0.05 or P<0.01).
     4 Effects of PROG and DHEA on GABA release in neuron
     Compared with control group,the level of GABA in the medium increased by 16.4%、43.3%、33.8%、24.5%、35.5%、62.7%、56.9%、46.2% at 0.5、1、1.5、2、24、36、48、72 h after PROG treatmen(tP<0.05 or P<0.01).The level of GABA in the medium increased by 37.51%、32.09%、31.72%、25.39%、57.14%、63.33%、58.91% at the time of 1、1.5、2、24、36、48、72 h after DHEA treatment(P<0.01).
     5 Effects of PROG and DHEA on the expression of NR2B and GBR1 receptor subunit in neuron
     Compared with control group,the expression intensity of NR2B was enhanced by29.6%、33.9%、46.9% after PROG-L、PROG-M、PROG-H treatmen(tP<0.05 or P<0.01). Compared with PROG-L group and PROG-M group, the intensity of PROG-H group enhanced significantly(P<0.05 or P<0.01). Compared with control group,the expression intensity of NR2B enhanced by13.5%、16.6%、33.1% after DHEA-L、DHEA-M、DHEA-H treatmen(tP<0.05 or P<0.01). Compared with DHEA-L group and DHEA-M group, the intensity of DHEA-H group enhanced significantly(P<0.05 or P<0.01).
     Compared with control group,the expression intensity of GBR1 increased after 31.5%、63.2%、67.9% by PROG-L、PROG-M、PROG-H treatment(P<0.01). Compared with PROG-L group, PROG-M group and PROG-H group enhanced significantly(P<0.01). Compared with control group,the expression intensity of GBR1 increased by 36.9%、16.7% after DHEA-H and DHEA-M treatment(P<0.05 or P<0.01). Compared with DHEA-L group and DHEA-M group, the intensity of DHEA-H group enhanced significantly(P<0.05 or P<0.01).
     Conclusions:
     1 Both neurosteroids PROG and DHEA inhibit GLU but promote GABA release from primary culture cortical neurons.
     2 PROG and DHEA enhance the expression of neuron receptor subunit NR2B and GBR1 in a concentration-dependent manner.
引文
1 Kawato S,Yamada M,Kimoto T. Brain neurosteroids are 4th generation neuromessengers in the brain: Cell biophysical analysis of steroid signal transduction. Adv Biophy,2001,37: 1-30
    2 Young AH,Gallangher P,Portre RJ. Elevation of the cortisoldehydroepiandrosterone ratio in drug-free depressed patients. Am J Psychiatry,2002,159: 1237-1239
    3 Weill-engerer S , David JP , Sazdovitch V , et al. Neurosteroid quantification in human brain regions :comparision between Alzheimer's and nondemented patients. Clin Endocrinol Metab,2002,87: 5138-5143
    4 吴红海,王娜,侯艳宁. 孕酮对大鼠吗啡位置偏爱效应及氨基酸递 质水平的影响. 中国医院药学杂志(印刷中)
    5 Yang N,Liu YY,Zuo PP. Dehydroepiandrosterone and hippocampal neurons against neurotoxicity induced by glutamate. Chin Pharmacol Bul(l中国药理学通报),2004,20(7): 750-753
    6 Cardounel A , Regelson W , Kalimi M. Dehydroepiandrosterone protects hippocampal neurons against neurotoxininduced cell death: Mechanism of action. Proc Soc Exp Biol Med,1999,222: 145-149
    7 Astianetto S,Ramassamy C,Poirier J,et al. Dehydroepiandrosterone(DHEA) protects hippocampal cells from oxidative stress-induce damage. Mol Brain Res,1999,66: 35-41
    8 周雪瑞,朱剑琴,李晓煜. 孕烯醇酮和孕烯醇酮硫酸盐对小鼠全脑切片摄取 3H-γ-氨基丁酸的影响.辽宁师范大学学报(自然科学版),2002,956: 332-338
    9 Li DL,Wang XY,Han H,et al. Effect of progesterone on the activity of SOD and GSH-Px in brain tissue with hypoxic-ischemicence-pholopathy in newborn rats. Chin Pharmacol Bull,2007,23(2): 276-277
    10 Hou YN,Wang N,Wu HH,et al. Effects of progesterone on morphine-induced conditioned place preference and levels of monoamine transmitters in rat brain. Chin Pharmacol Bull,2006,22(8): 980-983
    11 Xie L,Sun HY,Gao J,et al. Functions and mechanisms of dehydroepiandrosterone in nervous system. Progr PhysiolSci(生理科学进展),2006,37(4): 335-338
    12 Wang D,Lu YQ,Yu R. The synthesis and metabolism of neyrosteroids and the effects on the nervous system. Chin J Clin Pharmacol Ther,2004,9(7): 725-729
    13 Chakraborty TR,Gore AC. Aging-related changes in ovarian hormones,their receptors,and neuroendocrine function. Exp Biol Med,2004,229(10): 977-987
    14 Lhullier FLR, Riera NG,Nicolaidis R,et al. Effect of dhea glutamate release from synaptosomes of rats at different ages. Neurochemical Research,2004,29(2): 335-339
    15 任铁玲,胡前胜,傅洪军,等. 大鼠海马神经元无血清元代培养技术的建立. 中国卫生检验杂志,2004,14(2): 178-179
    16 Jing P , Hou YN. Effcets of morphine on neurosteroidogenesis of primary cultured rat cerebral cortical neurons. Chin Pharmacol Bul(l中国药理学通报),2006,22(12): 1489-1493
    17 Mei HS. Protective effects of dipfluzine on focal cerebral ischemia-reperfusion injury in rats .Shijiazhang: Hebei Medical University,2004
    18 Kurata K TM , Morinobu S , et al. Beta-estra-diol dehydroepiandrosterone and dehydroepiandrosterone sulfate protect against n-methyl-d-aspartate-induced neurotoxicity in rat hippocampsl neurons by different mechanisms. Pharmacol Exp Ther,2004,311: 237-245
    19 Kumar A,Zou L,Yuan X,et al. N-methyl-D-aspartate receptors: Transient loss of nr1/nr2a/nr2b subunits after traumatic brain injury in a rodentmodel. Neurosci Res,2002,67: 781-786
    20 Shear DA,Galani R,Hoffman SW,et al. Progesterone protects against necrotic damage and behavioral abnormalities caused by traumatic brain injury. Exp Neurol,2002,178: 59-67
    21 Djebaili M,Hoffman SW,Stein DG. Allopregnanolone and progesterone decrease cell death and cognitive deficits after a contusion of the rat pre-frontal cortex. Neuroscience,2004,123: 349-359
    22 He J,Hoffman SW,Stein DG. Allopregnanolone,a progesterone metabolite,enhances behavioral recovery anddecreases neuronal loss after traumatic brain injury. Restor Neurol Neurosci,2004(22): 19-31
    23 Ju G. Neurobiology(神经生物学).1 st ed. Beijing: The People Public Health Publishing,2004: 143-148
    24 Liao H,Xu LZ,Gao J,et al. Dehydroepiandrosterone against neurotoxicity of NMDA could be related to increased the levels of Ca2+ in the cells. J Nanjing Univ(Nat Sci)(南京大学学报(自然科版)),2004,3: 394-400
    25 Zou G. The Basical Neuropharmacology. The Second Edition. Science Publishing,1999: 143
    26 Mostallino MCM,Maria Luisa,Maciocco,et al. Changes in expression of the [delta] subunit of the gabaa receptorand in receptor function induced by progesterone exposure and withdrawal. Journal of Neurochemistry,2006,99(1): 321-332
    27 Follesa P,Porcu P,Sogliano C,et al. Chang in gabaa receptor γ2 subunit gene expression induced by long-term administration of oral contraceptives in rats. neuropharmacology, 2002, 42(3): 325-336
    28 Xilouri MP , Panagiota. Anti-apoptotic effects of allopregnanolone on p19 neurons. European Journal of Neuroscience, 2006, 23(1): 43-54
    29 Ozawa H. Steroid hormones,their receptors and neuroendocrine system. Nippon Med Sch,2005,72: 316-325
    1 Xie L,Sun HY,Gao J,et al. Functions and mechanisms of dehydroepiandrosterone in nervous system. Progr Physiol Sci(生理科学进展),2006,37(4): 335-338
    2 Weill-engerer S , David JP , Sazdovitch V , et al. Neurosteroid quantification in human brain regions:comparision between Alzheimer's and nondemented patients. Clin Endocrinol Metab,2002,87: 5138-5143
    3 李东亮,王小引,韩华,等. 孕酮对缺氧缺血新生大鼠脑组织 SOD 和 GSH-Px 活性的影响. 中国药理学通报,2007,23(2): 276-277
    4 Hou YN , Wang N , Wu HH , Ren JM. Effects of progesterone on morphine-induced conditioned place preference and levels of monoamine transmitters in rat brain. Chin Pharmacol Bull,2006,22(8): 980-983
    5 Clayton DA,Mesches MH. A hippocampal NR2B deficit can mimic age-related changes in long-term potentiation and spatial learning in the Fischer 344 rat . Neurosci,2002,22: 3628-3637
    6 Jones KA,Borowsky B,Tamm JA. GABAB receptors function as a heteromeric assembly of the subunits GABAB R1 and GABAB R2. Nature,1998,396: 673-675
    7 易宏伟,刘国卿. 选择性 NMDA 受体 NR2B 亚单位拮抗剂与神经元保护作用. 药学进展,2003,27(5): 269-274
    8 李华,左及.GABAB 受体及其临床意义. 中国临床神经科学,2001,9(1): 96-98
    9 Varju P,Schlett K,Elsel U,et al. Schedule of NMDA receptor subunit expression and functional channel formation in the course of in vitro-induced neurogenesis. J Neurochem,2001,77: 1444-1456
    10 Clayton DA,Browing MD. Deficits in expression of the NR2B subunit in the Hippo campus of aged Fisher 344 rats.Nuerobiology of Aging,2001,22: 164-166
    11 Jenniffr ML,Aaron J. The N-methyl-D-aspartate receptor subunit NR2B: localization , functional properties ,regulation , and clinical implications. Pharmacology Therapeutics,2003,97: 55-85
    12 包龙,杨楠,刘雁勇,等. 脱氢表雄酮对慢性轻度应激小鼠认知功能的影响. 中国临床药理学和治疗学,2004,9(2): 153-156
    13 肖健,陈小红,耿晓峰. 脱氢表雄酮增强老龄大鼠免疫功能和记忆力的研究. 中国老年学杂志,2003,23(11): 755-757
    14 Chen CF , Lang SY , Xu YY , et al. Effects of dehydroepiandrosterone on body mass and memory and learning performances in aging rats. Chinese Journal of Clinical Rehabilitation,2006,10(10): 77-79
    15 Shear DA,Galani R,Hoffman SW,et al. Progesterone protects against necrotic damage and behavioral abnormalities caused by traumatic brain injury. Exp Neurol,2002,178: 59-67
    16 Djebaili M,Hoffman SW,Stein DG. Allopregnanolone and progesterone decrease cell death and cognitive deficits after a contusion of the rat pre-frontal cortex.Neuroscience,2004,123: 349-359
    17 He J,Hoffman SW,Stein DG. Allopregnanolone,a progesterone metabolite,enhances behavioral recovery anddecreases neuronal loss after traumatic brain injury.Restor Neurol Neurosci,2004(22): 19-31
    18 Beamarr Hall CW,Wainer BH,Eves E. Expression of glucocorticoid and mineralocorticoid receptors in an immortalized hippocampal neuronal cell line. Brain Res,1996,726(2): 146-148
    19 Yu ZF,Cheng GJ,Hu BR. Mechanism of colchicine impairment on learning and memory and protective effect of CGP36472 in mice. Brain Res,1997,750: 52-54
    20 Bowery NG. Metabotropic GABAB receptors. Neurotransmissions,1999,15(2): 2-4
    1 姚泰. 生理学(第 5 版). 北京: 人民卫生出版社,1999,305-314
    2 Kawato S,Tawadab M,Kimoto T. Brain neurosteroids are
    4th generation neuromessengers in the brain: cell biophysical analysis of steroi signal transduction[J]. Adv Biophy,2001,37: 1-30
    3 蔡亦蕴,施慎逊,徐三荣,等. 慢性应激对大鼠脑脊液单胺类神经递质的影响. 实用临床医药杂志,2005,9(1): 2–4
    4 袁勇贵,张心保,吴爱勤,等.抑郁症患者单胺类神经递质与血脂的相 关性. 临床精神医学杂志,2003,13(2): 67-68
    5 项宝玉,谢道珍,王岚芬,等. 脑血疏通对小鼠脑功能及脑内单胺类神经递质含量的影响. 中国中医基础医学杂志,1998,4(10): 30-32
    6 黄玉芳,卞慧敏,郭海英,等. 开心散对老年大鼠记忆力和单胺类神经递质的影响. Chin J Geriatr,1998,17(3): 154-157
    7 庞懿. 单胺类神经递质与脑缺血. 昆明医学院学报,1999,20(1): 63-66
    8 何鸣,杨德森,陈向一,等. 吗啡依赖与戒断大鼠伏隔核单胺、类阿片肽及下丘脑 POMC mRNA 改变的研究. 中国心理卫生杂志,1995,9(1): 9-12
    9 Li MB,Mao ZM,Wang M,et al. Alpha-2 adrenergic modulation of prefrontalcortical neuronal activity related to spatial working memory in monkey. Neuropsychopharmacology,1999,21(5): 601-610
    10 Wise PM. Norepinephrine and dorpamine activity in microdissected brain areas of the middle-aged and young rat on proestrus. Biol Reprod,1982,27(3): 562-574
    11 Orentreich N,Brind JL,Rizer RL,et al. Age changes and sex differences in serum dehydroepiandrosterone sulfate concentrations throughout adulthood. Clin Endocrinol Metab,1984,59: 551-555
    12 Orentreich N,Brind JL,Vogelman JH,et al. Long-term longitudinal measurements of plasma dehydroepiandrosterone sulfate in normal men. Clin Endocrinol Metab,1992,75: 1002-1004
    13 Vallee M , Mayo W , Darnaudery M , et al.Neurosteroids:deficient cognitive performance in aged rats depends on low pregnenolone sulfate levels in the hippocampus. PNAS USA,1997,94: 14865-14870
    14 Meyer TE , Habener JF. Cyclic adenosine 3?,5?-monophosphate response element bindingprotein(CREB)and related transcription-activating deoxyribonucleic acid-binding protein.Endocr Rev,1993,14: 269-290
    15 邹刚. 基础神经药理学(第 2 版). 北京: 科学出版社,1995,167-252
    16 Chamba G , Renard B. Distribution of tyrosine hydroxylase,dopamine-beta-hydroxylas and phenytel hanolamine-N-methy transferase activities in coronal sections of the rat lower brainstem.Brain Res,1983,259(1): 94-96
    17 Muneoka KT,Shirayama Y,Minabe Y,et al. Effects of a neurosteroids,pregnenlone,during the neonatal period on adenosine A1 receptor,dopamine metabolites in the fronto-parietal cortex and behavioral response in the open field.Brain Res,2002,956: 332-338
    18 Cabrera RJ,Diaz A,Pinter A,et al.In vitro progesterone effects on 3H-dopamine release from rat corpus striatum slices obtained under different endocrine conditions. Life Sci,1993,53: 1767-1777
    19 Cabrera RJ , Bergonzio C , Laconi M , et al. Allopregnanolone increase in striatal N-Methyl-D-aspartic acid evoked [3H] dopamine release is estrogen and progesterone dependent.Cellular and Molecular Neurobiology,2002,22: 445-454
    20 王娜,吴红海,仁进民,等. 孕酮对大鼠吗啡奖赏效应及下丘脑和纹状体内单胺递质水平的影响. 中国药物依赖性杂志,2006,15(2): 16-19
    21 Gajjar TM,Anderson LI,Ddluzen DE. Acute effects of estrogen upon methamphetamine induced neurotoxicity of the nigrosteriatal dopaminergic system. Neurral transm,2003,110: 1215-1224
    22 米芳芳. 雌激素生物作用的研究. 中医药研究,2002,4(2): 48-49
    23 D’Astous M , Morissette M , Tanguay B , et al. Dehydroepiandrosterone(DHEA) such as 17beta-estradial prevents MPTP-induced dompamine depletion in mice.Synapse,2003,47(1): 10-14
    24 Barrot M,Vallee M,Gingras MA,et al. The neurosteroids pregnenolone sulphate increases dopamine release and the dopaminergic response to morphine in the rat nucleus accumbents.European Journal of Neuroscience,1999,11(10): 3757-3760
    25 Rouge-Pont F , Mago W , Marinelli M , et al. The neurosteroids allopregnanolone increases dopamine release and dopaminergic response to morphine in the rat nucleus accumbens.European Journal of Neuroscience,2002,16(1): 169-173
    26 Charalampopoulos I,Dermitzaki E,Vardouli L,et al. Dehydroepiandrosterone sulfate and allopregnanolone directly stimulate catecholamine production via induction of tyrosine hydroxylase and secretion by affecting actin polymerization.Endocrinology,2005,146(8): 3309-3318
    27 Maciejak P,Krzascik P,Czlonkowska AI,et al. Antagonism of picrotoxin-induced changes in dopamine and serotonin metabolism by allopregnanolone and midazolam.Pharmacology Biochemistry and Behavior ,2002,72: 987-991
    28 Muneoka KT,Shirayama Y,Minabe Y,et al. Effects of a neurosteroids, pregnenolone, during the neonatal period on adenosine A1 receptor, dopamine metabolites in the frontoparietal cortex and behavioral response in the open field.Brain Reasearch,2002,956: 332-338
    29 周雪瑞,朱剑琴,李晓煜. 孕烯醇酮和孕烯醇酮硫酸盐对小鼠全脑切片摄取 3H-γ-氨基丁酸的影响.辽宁师范大学学报(自然科学版),2002,956: 332-338
    30 高东明,孔得玉. B 型-γ-氨基丁酸受体研究进展. 生理科学进展,1995,26(3): 246-248
    31 周雪瑞. 孕烯醇酮和孕烯醇酮硫酸盐对小鼠不同脑区3H-GABA 与 GABAB 受体结合的影响. 四川师范大学学报(自然科学版),2001,24(2): 182-184
    32 柳海珍,张晓东,朱剑琴. 孕酮对小鼠全脑切片积聚3H-γ-氨基丁酸的影响. 动物学报,1998,44(2): 203-208
    33 Anderson CM,Swanson RA. Astrocyte glutamate transport: Review of properties , regulation and physiological function.Glia,2000,32: 1-14
    34 Robinson MB,Dowd LA. Heterogeneity and functional subtypes of sodium-dependent glutamate transporters in the mammalian central central nervous system.Adv.Pharmacol,1997,37: 69-115
    35 Kumar A,Zou L,Yuan X,et al. N-methyl-D-aspartate receptors: Transient loss of NR1/NR2A/NR2B subunits after traumatic brain injury in a rodentmodel. Neurosci Res,2002,67: 781-786
    36 Kimonides VG , Khatibi NH , Svendesen CN. et al. Dehydroepiandrosterone(DHEA) and DHEA-sulfate(DHEAS) protect hippocampal neurons against excitatory amino acid-induced neurotoxicity.Proc Natl.Acad. Sci,1998,95: 1852-1857
    37 Cardounel A , Regelson W , Kalimi M. Dehydroepiandrosterone protects hippocampal neurons against neurotoxininduced cell death: Mechanism of action.Proc.Soc.Exp.Biol.Med,1999,222: 145-149
    38 Bastianetto S , Ramassamy C , Poirier J. et al. Dehydroepiandrosterone(DHEA) protects hippocampal cells from oxidative stress-induce damage. Mol Brain. Res,1999,66: 35-41
    39 Wolf TO,Kirschbaum C. Action of dehydroepiandrosterone and its sulfate in the central nervous system: Effects on cognition and emotion in animals and humans. Brain Res Rev,1999,30: 264-288
    40 Yang N,Liu YY,Zuo PP. Dehydroepiandrosterone and 7-oxo- dehydroepiandrosterone(7-oxo-DHEA) protected hippocampal neurons against neurotoxicity induced by glutamate. Chin Pharmacol Bul(l中国药理学通报),2004,20(7): 750-753
    41 Tavares GR,Tasca IC,Santos SEC,et al. Quinilinic acid stimulates synaptosomal glutamate release and inhibits glutamate uptake into astrocytes.Neurochem Int,2002,40: 621-627
    42 Lhullier FLR,Riera NG,Nicolaidis R,et al. Effect of DHEA glutamate release from synaptosomes of rats at different ages. Neurochemical Research,2004,29(2): 335-339
    43 Gursoy E,Csrdounel A,Kalimi M. Dregnenolone protects mouse hippocampal(HI-22)cells against glutamate and amuloid beta protein toxicity,Neurosteroid Research,2001,26(1): 15-21
    44 Dong Y,Fu Y-M,Sun JL,et al. Neurosteroid enhances glutamate release in rat prelimbic cortex via activation of α1adrenergic and σ1 receptors. Cellular and molecular life sciences,2005,62: 1003-1014
    45 Weaver C,Wu F,Gibbs T,et al. Prenenolone sulfate exacerbates NMDA-induced death of hippocampal neurons. Brain Res,1998,803: 129-136
    46 Foy MR,Xu J,Xie X,et al. 17beta-estradiol enhances NMDA receptor-mediated EPSPs and long-term poteneiation. Neurophysiol,1999,81(2): 925-929
    47 Frye CA,Sturgis JD. Neurosteroids affect spatial/reference working and long-term memory of female rats.Neurobiol Learn Mem,1995,64: 83-96
    48 王丹,鲁映青,姚明辉. 孕酮对东莨菪碱所致记忆损伤小鼠的作用及机制.中国临床药学杂志,2005,14(3): 164-166
    49 Meziane H,Mathis C,Paul SM,et al. The neurosteroids pregnenolone sulfate reduces learening deficits inducets by scopolamine and has promnestic effects in mice performing an appetitive learning task.Psychopharmacology(Berl) ,1996,126: 323-330
    50 Damaudery M,Koehl M,Piazza PV,et al. Pregnenolone sulfate increases hippocampal acetycholine release and spatial recognition.Brain Res,2000,852: 173-179
    51 Damaudery M , KoehL M , Pallares M , et al. The neurosteroids pregnenolone sulfate increases cortical acetylcholine release: a microdialysis study in freely moving rats. Neurochem,1998,71: 2028-2032
    52 Horishita T,Minami K,Vezono Y,et al. The effects of the neurosteroids: pregnenolone , progesterone and dehydroepiandrosterone on muscarinice receptor-induced responses in xenopus oocytes expressing M1 and M3 receptors.Naunyn-Schmiedeberg’s Arch Pharmacol,2005,371: 221-228
    53 Ackard MG,Teacher LA. Posttraining estradiol injections enhance memory in ovariectomized rats: cholinergic blockade and synergism.Neurobiol Learn Mem,1997,68(2): 172-188