γ-氨基丁酸产生菌的选育及发酵工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要研究了发酵液中γ-氨基丁酸(γ-aminobutyric acid, GABA)的测定方法、GABA产生菌的选育及产酸条件优化,主要内容及结果如下:
     1)论文首先研究了GABA的测定方法,即用纸层析法定性分析GABA,纸层析-比色法定量分析GABA。确定了纸层析分析方法中展开剂和显色剂的组成,展开剂组分正丁醇∶冰醋酸∶水(V/V)=2∶1∶1为最优比例,显色剂茚三酮浓度为8g/L时较为合适,此时GABA和谷氨酸的Rf值有明显差异,分离效果最好。并确定了最佳分析条件:当波长在513nm处,显色温度为80℃、显色时间和洗脱时间均为30min时,实验效果最明显。并制作了GABA含量与吸光度值的关系曲线,即GABA标准曲线,为常规检验样品中的GABA含量提供了可靠的实验依据。进一步对样品重复性实验、加标回收率等进行了分析,试验结果表明,纸层析-比色法定量GABA的试验方案重复性较好,相对标准偏差仅为0.272%,加标回收试验的平均回收率为98.1%,说明此法测定具有较高的可靠性,为后续研究工作奠定了基础。
     2)实验从酸菜中分离、筛选到一株野生菌(乳酸菌35#),它能够将L-谷氨酸钠转化为GABA,产量为1.85g/L,是一株很有潜力高产GABA的菌株。随后对35#菌的形态学特征及生理生化特征进行了研究,在MRS培养基上30℃培养2d后,发现菌落较小,呈圆形乳白色,不透明,中间隆起,边缘整齐,周边有小皱纹,表面湿润光滑。其分类学研究发现:菌株为G+,兼性厌氧,石蕊牛乳试验使石蕊变红,不液化明胶,不产硫化氢,V-P试验阳性,不产过氧化氢酶,吲哚试验阴性,甲基红试验阳性,葡萄糖发酵产酸不产气,蔗糖、果糖、乳糖、甘露糖等发酵阳性,最适生长温度28~34℃,最适生长pH6.5~7.5。根据《伯杰细菌鉴定手册》,该菌株初步鉴定为乳酸链球菌。
     3)实验还对乳酸菌35#的发酵培养基和发酵条件进行了优化,得出培养基的组成(g/L):蔗糖10,丁二酸钠10;胰蛋白胨5,酵母膏5;L-谷氨酸钠10;优化后的最佳发酵条件:培养基初始pH6.5、培养温度32℃、接种量8%、培养时间为静置培养48h,比国内其他研究GABA高产乳酸菌种发酵周期缩短24h,在最佳培养基和发酵条件下,发酵液中GABA的含量达4.57g/L,比优化前有了显著提高。
The study mainly investigated the method for detection ofγ-aminobutyric acid (GABA), the breeding of GABA-producer 35# and the optimization of medium contents and fermentation conditions for 35#. Its contents and results are as follows:
     The method for detection of GABA was investigated in the beginning of this study. The paper chromatography accompanying colorimetry was used to measure the concentration of GABA. Then the composition of exhibition layer system and color system included in paper chromatography was determined. The best ratio of the exhibition layer agent was butanol: acetate:water (V/V) =2:1:1, and the proper concentration of coloring agent ninhydrin was 8g/L. It was found that the there was evident difference between Glu and GABA on Rf, which signified the condition for isolation was the best. And then we determined the best analytic conditions: the wavelength at 513nm, chromogenic temperature at 80℃, chromogenic time 30min, preserving time of eluent 30min. The relation curve of GABA content and OD513 was made out, which was also called standard curve of GABA and provided reliable experimental data for detecting the GABA content in samples. Furthermore, the repeated test and value add recovery rate of the sample was carried out. It turned on that using paper chromatography and colorimetry to quantitatively analyse GABA had a better repeatability, and the relative standard deviation was only 0.27%, meanwhile, the average value add recovery rate was 98.1%. These results signified that this method had higher reliability, which provided favorable base for the further study.
     In this study, a wilding bacterium (lactobacillus 35#) was isolated from pickled vegetable, which could transform L-MSG to GABA, and the GABA content of the culture reached 1.85g/L. Then the morphological characteristic and physiological characteristic of lactobacillus 35# was studied. After 2 days cultivation on MRS medium at 30℃, the germ was small, round, ivory-white and opaque, it was swelled up in the center, the edge was tidy, the periphery contained small crease, the surface was moist and smooth. It was found by its classification that the strain was a G+, facultative anaerobes, making the litmus red, glutin test negative, H2S test negative, V-P test positive, catalase test negative, indole test negative, M-R test positive, it produced acids but no gas by glucose zymolysis; sucrose, fructose, lactose, mannose test positive; the optimum growth temperature at 28~34℃, the optimum growth pH at 6.5~7.5. Basing on the Bergey’s Manual of Systematic Bacteriology, this strain was preliminarily identified as Streptococcus lactis.
     The experiment optimized the culture medium and conditions for lactobacillus 35#. Based on the results, a piece of better medium constitution as follows(g/L): sucrose 10, sodium succinate 10,tryptone 5, yeast extract 5; L-MSG 10; and the better fermentation conditions as follows: initial pH6.5, temperature 32℃, seed volume 8%, fermentation time 48h, which is less than other internal study for 24h. The content of GABA was over 4.57g/L in the optimum culture conditions, there was prominent improvement on the yield.
引文
1.许建军.γ-氨基丁酸(GABA)——一种新型的功能性食品因子[J].食品工业科技,2003,24:109-110
    2. Barrett G.C., Elmore D.T. Amino acid and peptide[M]. Cambridge University Press,1998.165-167
    3. Takayo Saikusa, Toshiroh Horino, Yutata Mori. Distribution of free amino, acids in the rice kernel and kernel fractions and the effect of watersoaking in the distribution[J]. Agric Food Chem,1994,(42):1122-1125
    4.万选才,杨天祝,徐承焘.现代神经生物学[M].北京医科大学中国协和医科大学联合出版社,1999.158-162
    5.蒋振晖,顾振新.高等植物体内γ-氨基丁酸合成、代谢及其生理作用[J].植物生理学通讯,2003,39(3):49-254
    6. Roberts E, Frankel S.γ-Aminobutyric acid in brain: its formation from glutamic acid[J]. Biol Chem,1950,187:55-63
    7. Krnjevic K, Schwartz S. Isγ-Aminobutyric acid an inhibitory transmitter[J]? Nature,1966,211:1372-1374
    8.叶惟泠.γ-氨基丁酸的发现史[J].生理科学进展,1986,17(2):187-189
    9. Defeudis F V.γ-Aminobutyrica cida and cardiovascular function. Experientia[J], 1983,39(8):845-848
    10. OmoriM, YanoT, Okamoto J, etc. Effect of anaerobically treated tea (gabaron tea) on blood pressure of spontaneously hypertensive rat[J]. Nippon Nogeikagaku Kaishi,2002,49(6): 409-415
    11.林智,大森正司.γ-氨基丁酸茶成分对大鼠血管紧张素I转换酶(ACE)活性的影响[J].茶叶科学,2002,22(l):43-46
    12. Kohama Y, Matsumoto S, Mimura T,etc. Isolation and identification of hypotensive principles in red-mold rice[J]. Chem Pharm Bull,1987,35(6):2484-2489
    13. Kazami D, Ogura N, Fukushi T,etc. Antihypertensive effect of Japanese taste seasoning containingγ-aminobutyric acid on mildly hypertensive and high-normal blood pressure subjects and normal subjects[J]. Nippon Shokuhin Kagaku Kaishi,2002,49(6):409-415
    14. Hayakawa K, Kimura M, Kasaha K,etc. Efect of aγ-aminobutyric acid-enriched dairy product on the blood pressure of spontaneously hypertensive and normotensive Wistar- Kyoto rats[J]. Br J Nutr,2004,92(3):411-417
    15.杨立川.高γ-氨基丁酸与癫病.国内外医学神经病学外科学分册[J],1993,16(3):19-20
    16.徐传伟,夏应和.γ-氨基丁酸控制哮喘急性发作临床疗效观察[J].滨州医学院学报,1999,22(2):181
    17.徐叔云主编.临床药物指南(修订版)[M].安徽科学出版社,1997.165-166
    18.穆小民,吴显荣.高等植物体内γ-氨基丁酸的代谢及生理作用[J].氨基酸杂志,1994,4: 44-46
    19.王来仪.γ-氨基丁酸、体药理学及对心血管活动的调节[J].心血管学报,1991,10(1): 46-49
    20.陆勤.γ-氨基丁酸的神经营养作用[J].国外医学生理、病理科学与临床分册,1995,15(3):187-188
    21.杨胜远,陆兆新,吕风霞.γ-氨基丁酸的生理功能和研究开发进展[J].食品科学,2005, 26(9):546-551
    22. Streeter JG, Thompson JF. In vivo and in vitro studies onγ-amino butyricacid metabolism with the radish plant[J]. Plant Physiol,1972,49:579 -584
    23.陈颖,沈艳,姚惠源.γ-氨基丁酸的研究现状[J].粮油加工与食品机械,2005,4:82-83
    24.杨昌军,宛晓春,黄继珍.γ-氨基丁酸茶(Gabalon Tea)的研究现状[J].茶业通报, 2004,26(1):13-15
    25.孙威江,张翠香.茶资源利用及茶产品开发现状与趋势[J].福建茶叶,2004,1:35-37
    26.金丰秋,金其荣.富含γ-氨基丁酸的桑茶的生理功能[J].山西食品工业,2001,(4):5-6
    27.杨海霞,朱样瑞,陆洪省.叶保健制品开发利用研究进展[J].科技通报,2003,19(1):72-76
    28. Ogawa Y.,Yamaguchi H. Shimaokay.γ-aminobutyric acid containing natural food material and method for manufacturing the same[P]. United States Patent, 20020106424.2002-06-187
    29.游祖持.日本对于超γ-氨基丁酸研究与利用[J].食品与发酵工业,2002,3:42-43
    30.张晖,姚惠源,姜元荣.富含γ-氨基丁酸保健食品的研究与开发[J].食品与发酵工业, 2002.9:69-72
    31.贾兰齐,江焕峰.γ-氨基丁酸类似物的合成新进展[J].有机化学,1999,19(4):356-363
    32.刘治军,胡欣.促智药奥拉西坦的临床和基础研究[J].中华神经外科疾病研究杂志,2005, 4(3):286-288
    33. Hamandi K, Sander J W. Pregabalin: a new antiepileptic drug for refractory epilepsy[J]. Seizure,2006,15(2):73-78
    34.陈忠,王婷,黄丽明,等.γ-氨基丁酸对热应激仔鸡生产性能影响的研究(快报)[J].海南师范学院学报(自然科学版),2002,15(1):82-83
    35.韦习会,漆兴桂,夏东,等.日粮添加γ-氨基丁酸对育肥猪生长和饲料利用的影响[J].家畜
    36.生态,2004,25(2):10-12
    37.雷琦,闫剑群,施京红,等. GABA在摄食和味觉机制中的作用[J].世界华人消化杂志, 2006,14(19):1096-1911
    38. Kumar S, Punekar N S, SatyaNarayan V,etc. Metabolic fate of glutamate and evaluation of flux through the 4-aminobutyrate(GABA) shunt in Aspergillus niger[J]. Biotechnol Bioeng, 2000,67:575-584
    39. Tsushida T, Murai T. Conversion of glutamic acid toγ-aminobutyric acid in tea leaves under anaerobic conditions[J]. Agr Biol Chem,1987,51:2865-2871
    40.林少琴,吴若红等.米胚芽中γ-氨基丁酸的分离提取及鉴定[J].食品科学,2004.1:76-78
    41.张晖,姚惠源,姜元荣.大米胚芽研究开发新进展[J].中国油脂,2002,27(3):81-84
    42.赵丽珺,齐凤兰,瞿晓华,等.桑叶的营养保健作用及综合利用[J].中国食物与营养,2004, 2:22-25
    43. A. Yu. Plokhov ,M. M. Gusyatiner et al. Preparation ofγ-Aminobutyric Acid Using E. coli Cells With High Activity of Glutamate Decarboxylase[J]. Applied Biochemistry and Biotechnology,2000,88:257-265
    44.赵景联.固定化大肠杆菌细胞生产γ-氨基丁酸的研究[J].生物工程学报,1989, 5(2):124-128
    45.章汝平,何立芳.用后道味精母液提取谷氨酸后的废液生产γ-氨基丁酸[J].长沙电力学院学报(自然科学版),1998,13(4):433-435
    46. Kohama Y, Matsumoto S, Mimura T, et al. Isolation and Identification of hypotensive principle sinred-moldrice[J]. Chem Pharm Bull,1987,35(6):2484-2489
    47. Kono I, Himeno K. Changes in gamma-aminobutyric acid content during beni-koji making [J]. Biosci Biotechnol Biochem,2000,64(3):617-619
    48. Wang J J, Lee C L, Pan T M. Improvement of monacolin K,γ-aminobutyric acid and citrinin production ratio as a function of environmental conditions of Monascus purpureus NTU 601 [J]. J Ind Microbiol Biotechnol,2003,30:669-676
    49. Su Y C, Wang J J, Lin T T, et al. Production of the secondary metabolites gamma- amino- butyric acid and monacolin K by Monascus purpureus [J]. J Ind Microbiol Biotechnol, 2003,30(1):41-46
    50. Takahashi T, Furukawa A, Hara S, et al. Isolation and characterization of sake yeast mutants deficientin-amino butyric acid utilization in sake brewing[J]. Journal of Bioscience and Bioengineering,2004,97(6):412-418
    51. NomuraM, Kimoto H, Someya Y, et al. Production of gamma-aminobutyric acid by cheese starters during cheese ripening[J]. J Dairy Sci,1998,81:1486-1491
    52. Park K B , Oh S H. Cloning and expression of a full-length glutamate decarboxylase gene from Lactobacillus plantarum[J]. J. Food Sci. Nutri,2004,9:324-329
    53. Yokoyama S, Hiramatsu J , Hayakawa K. Production ofγ-Amino butyric acid from alcohol distillery lees by Lactobacillus brevis IFO-12005[J]. Biosci,2002,93:95-97
    54. Nomura M, Nakajima I, Fujita Y, et al. Lactococcus lactis contains only one glutamate decarboxylase gene[J]. Microbiology,1999,145:1375-1380
    55.许建军. Lactococcus lactis生物合成γ-氨基丁酸及谷氨酸脱羧酶的性质研究[D]:[博士学位论文].无锡:江南大学食品工程学院,2004
    56.刘清,姚惠源,张晖.生产γ-氨基丁酸乳酸菌的选育及发酵条件优化[J].氨基酸和生物资源,2004,26(1):40-43
    57. Zhang ZW (张兆旺),Sun XM(孙秀梅). The specialand application of semi-bionic extraction[J]. World Sci Tech-Modernization Chin Mater Med(世界科学技术-中药现代化),2000,2:35-38
    58.游力书,范俊源,贾永辉.氨基酸纸层析和纸电泳分析的新改进[J].化学通报,1994,3: 34-35
    59.彭义交,刘宗林.大豆异黄酮双向纸层析分析方法的研究[J].食品科学,2004 ,25(4):141-142
    60. Nahorski SR. A radioreceptor assay using 3H-muscimol for GABA in Human CSF[J]. Br J Pharmacal,1981,72:16
    61.王京辉,张小茜,周富荣.薄层扫描法测定茋蓉润肠合剂中黄茋甲贰的含量[J].中国中药杂志,1997,22(7):419
    62.胡红焱,杨树德.细菌荧光法酶生物发光分析法测定血清γ-氨基丁酸[J].临床检验杂志,1998,16(2):67-69
    63.朱珠.递质氨基酸的毛细管电泳-安培检测[J] .分析测试学报,1999,18(4):36-38
    64.张绍雨,林云珠,柯洪伟,等. GC-MS法测定尿中γ-羟基丁酸[J].分析仪器,2005,2:24-26
    65.张华,王静,王晴,等.南瓜中γ-氨基丁酸及18种氨基酸的测定[J].食品研究与开发, 2003,24(3):108-110
    66.徐小平,郭平,宋玉如,等.脑内γ-氨基丁酸的毛细管气相色谱测定法[J].华西药学杂志,1990,5(2):107-109
    67. Lindroth P , Mopper K. High-performance liquid chromatography determination of subpicomole of amino acids by fluorescence derivatization with ophthaldialdedyde[J]. Ann Chem,1975,51(10):1667-1669
    68. Liu H.J. Determination of amino acids by precolumn derivatization with 6-aminoquinolyl- N-hydroxysucciniomidyl carbamate and high-performance liquid chromatography with ultraviolet detection[J]. J Chromatogr,1994,670(1):59 -62
    69. Plokhov A.Yu .,Gusyatiner M M.,YamPolskaya T.A.,etal. PreParation ofγ-aminobutyric acid using E.coli cell with high activity of glutamate decarboxylase[J]. Applied Environment Microbiology,2000,88:257-265
    70.蒋冬花,后加衡,黄大年,等.酸菜中高产γ-氨基丁酸乳酸菌的筛选[J].微生物学杂志,2007,27(1):35-39
    71.诸葛健,王正祥.工业微生物实验技术手册[M].北京:中国轻工业出版社,1994,170-178
    72.凌代文,东秀珠.乳酸细菌分类鉴定及实验方法[M].北京:中国轻工业出版社,1999
    73. R. E.布坎南, N. E.吉布斯,等.伯杰细菌鉴定手册[M].北京:科学出版社, 1984, 8(2): 698-699