煤基合成气平板式固体氧化物燃料电池性能研究与优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着节能减排和环境保护的呼声日益高涨,以煤炭为能源主体的我国面临着前所未有的压力。但在相当长一段时间里,煤炭仍是我国的主要能源,因此,高效、清洁地利用煤炭资源,对缓解我国能源压力、提高能源利用效率和减少温室气体排放有着重要的意义。煤气化燃料电池燃气轮机混合动力循环(IGFC/GT)使煤炭清洁利用成为可能,具有良好的发展前景与研究空间。高温固体氧化物燃料电池(SOFC)是IGFC/GT的关键部件,其性能对系统性能起决定性作用,但同时煤基合成气SOFC还存在很多不完善之处有待研究。因此,本文结合实验与数值模拟的方法,系统地对SOFC单电池进行了性能研究与优化。
     设计搭建了研究多孔介质内传热性能的实验台,制备了不同孔隙率的Ni/YSZ多孔阳极实验件,分别在以二氧化碳和氮气为工质工况下,研究了不同电池运行温度、气体流速、孔隙率工况下多孔介质内的传热性能,归纳出多孔介质内考虑温度修正的有效导热系数公式。实验表明,多孔介质有效导热系数随温度的升高略有上升,近似与孔隙率成线性函数关系,在实验条件下气体流速对其影响非常小。同时,对于不同单组分气体,温度对导热系数的影响规律相似,但分别以二氧化碳、氮气为工质时,两者获得有效导热系数差别在3.2%以内。
     建立了煤基合成气SOFC单电池全三维数值分析模型,包括了流动传热、电化学、电流场等模型,同时具有以下特点:以分析三维情况下的气体扩散过程来计算浓度过电势,代替了简单的浓度过电势计算;考虑了包括氢气、一氧化碳、二氧化碳、水蒸汽、甲烷以及碳等化学组分在内的十多种化学反应,能很好的描述单电池内真实的化学环境;能有效预测碳沉积可能性及位置;采用温度相关的气体特性函数以及实验获得的多孔介质有效导热系数和化学反应有效动力学等模型。以公布的氢气和天然气为燃料的实验数据对模型进行验证,计算结果与实验数据相吻合。
     利用上述模型,研究了多个重要参数对SOFC性能的影响,并进行了性能优化,详细结论如下:
     1)分析了顺流时单电池的性能,得到了单电池内温度、组分、电流及电势等参数的详细分布。对电池内流动传热、电化学等变化规律有清晰的认识,由分析结果可见:单电池内最高温度出现在阳极出口靠近三相界面处;活化损失是SOFC的主要损失,在平均电流密度为13000Am~(-2)工况下,占据了Nernst电动势的59%,而欧姆损失仅占4%;电流密度在电解质层呈波浪形分布,主要是由电池几何结构所决定。
     2)在满足电池内温度梯度限制的情况下,最优空气过量系数主要是由平均电流密度决定的,最优空气过量系数随着平均电流密度的增加逐渐上升,但上升幅度逐渐缩小,而随着空气过量系数的增加,输出电压及功率密度随之降低。根据上述研究,给出最优空气过量系数与平均电流密度的关系式。
     3)通过改变燃料供应量来研究电池调峰调谷的性能,由研究可见:增加燃料供应量SOFC最大温差降低,但变化幅度较小,且燃料流量对最大温差的影响逐渐减弱;燃料利用率则随着燃料流量的增加而降低;燃料的增加有助于提高输出电压,也增加了其可用的用电负荷范围。
     4)通过改变平均电流密度来研究负载对电池性能的影响。由研究可见:随着负载的增加,SOFC内部最大温差逐渐增加,但当平均电流密度大于10000Am~(-2)时,最大温差变化较为接近,而SOFC入口附近温度梯度增加明显;欧姆过电势随着平均电流密度的增加而增加,但是在计算工况范围内,最大的欧姆过电势也未超过0.04V;给出相应的性能曲线及最佳的工作范围。
     5)建立了碳沉积可能性的预测模型,研究了煤基合成气中各组分不同含量工况下碳沉积的可能性和位置。由研究可见:一氧化碳含量的增加会减小SOFC碳沉积的范围,但是会增强局部碳沉积活性;较低的氢气含量会导致SOFC碳沉积可能性增强;二氧化碳对碳沉积影响不明显,较小的碳沉积活性主要集中在SOFC近入口附近;水蒸汽的增加对碳沉积有明显的抑制作用,但考虑到对SOFC输出电压的影响,水蒸汽含量应在合理范围;甲烷存在会引起明显的碳沉积,且随着含量的增加而增加,因此,在以煤基合成气为燃料时,应尽量降低甲烷含量。
     6)利用ANSYS软件,分析了上述工况下单电池内的热应力。由研究可见:在以煤基合成气为燃料情况下,SOFC内部热应力分布均匀;空气过量系数越高,平均电流密度越低,则热应力越小;微晶玻璃加陶瓷材料密封可以有效降低电池内热应力。
With the requirements of energy saving, emission reduction and environmentprotection, China confronts great pressures with coal as main energy source. In quite along period of time, coal will still be the dominant energy source in China, thus, it isimportant to use coal efficiently and cleanly. Integrated Coal gasification and fuel cellgas turbine combined cycle (IGFC/GT) is one of the promising systems for its highenergy transform efficiency. This system has broad developing prospect andresearching space. Solid oxide fuel cell (SOFC) is the key device in IGFC/GT hybridsystem and should be fully investigated. Thus, by the methods of experiment andnumerical analysis, the performance and optimization of single SOFC areinvestigated.
     In this work, an experimental bed was designed and built to be used to study theeffective thermal conductivity in porous media. The Ni/YSZ experimental sampleswith different porosities (0.2348,0.3471and0.4178) were made by the process of ballmilling, drying, pressing, sintering and reduction. The effective thermal conductivityin porous media is obtained with various operating temperature, gas flow rates andporosities, when carbon dioxide and nitrogen are supplied, respectively. From theexperiment results, the effective thermal conductivity in porous media increases withincrease of operating temperature and is proximately linear with the porosity. Theeffects of operating temperature on the effective thermal conductivity are similar withdifferent gas. The difference of the effective thermal conductivities is less than3.2%when carbon dioxide and nitrogen are supplied in the experiment, respectively.
     The fully3-dimensional numerical models are developed to analyze theperformances and characteristics of SOFC. In the models, the diffusion of species iscalculated by Darcy’s model with molecular diffusion and Knudsen diffusion. Mainchemical reactions considering equilibrium constants and kinetic rates are consideredto describ the real chemical environment. The carbon deposition in SOFC could bepredicted. With hydrogen and methane as fuel, the results calculated by these modelsat the same experiment conditions meet the measured data. The models are validated.
     Using the above models, the effects of key parameters on the performance ofSOFC are analyzed. From the results, some conculsion could be draw as follows:
     1) At coflow, the detailed distributions of main parameters, such as temperature,species and current, are obtained. Form the result, the highest temperature region isnear the fuel outlet in anode. The dominant loss is activation overpotential, which iseven59%of Nernst potential with average current density of13000Am~(-2). The currentdensity changes wavely in electrolyte layer. And the distribution is determined by thestructure of SOFC.
     2) Under the limitation of temperature gradient (1000Km~(-1)) in SOFC, theoptional range of air excessive coefficient is mainly deterimined by the averagecurrent density. The optimal air excessive coefficient increases with increase ofaverage current density. However, the output voltage and power density decrease withincreasing air excessive coefficients. The function of air excessive coefficient to theaverage current density is obtained.
     3) In order to analyzing the off-design performance of SOFC, the effects of thesupplied fuel flow rate are investigated. The increase of syngas flow rate may makethe max temperature difference in SOFC reduce. The reduction is not obvious,especially at large air excessive coefficient, but it leads to the increment of theactivation overpotential. The fuel utilization coefficient reduces with increase of fuelflow rate. Totally, the increase of fuel flow rate makes the output voltage enhance atthe same current density and enlarges the range of operating current density.
     4) The effect of average current density is used to simulate the effects of the loadchange on the performance of SOFC. With the increase of the load, the maxtemperature difference and the ohmic overpotential in SOFC are increasing as well.However, when the average current density is higher than10000Am~(-2), the maxtemperature difference in SOFC almost unchanges. But the temperature gradient nearthe SOFC inlet increases gradually. In all calculation conditions, the max ohmicoverpotential is not larger than0.04V in this work.
     5) The model of carbon deposition is introduced. The activity and position ofcarbon deposition are investigated. From the calculation results, the reduction of COmolar fraction may inhibit the carbon deposition, and narrow down the region ofcarbon deposition in SOFC. But it will enhance the activity of carbon deposition nearthe fuel inlet. The activity of carbon deposition will increase when the H2molarfraction decreases. The effect of CO_2molar fraction is unobvious, and the carbon maybe deposited in the anode near the fuel inlet with decrease of CO_2. The addition ofwater will inhibit carbon deposition effectively. However, considering the reduction ofoutput voltage, water should be added properly. The increase of CH_4molar fractionmay lead to carbon deposition significantly, thus, methane in syngas should beremoved as clear as possible.
     6) The thermal stress is investigated under the above operating conditions usingANSYS software. The distribution of thermal stress is nearly uniform with syngas asfuel. And when the air excessive coefficient is larger and average current density issmaller, the thermal stress is lower. The seal of glass-ceramics can reduce the thermalstress effectively.
引文
[1]. Perdikaris N, Panopoulos K D, Fryda L, etc. Design and optimization of carbon-free powergeneration based on coal hydrogasification integrated with SOFC[J]. Fuel,2009,88(8):1365-1375.
    [2]. Grol E. Technical assessment of an integrated gasification fuel cell combined cycle withcarbon capture[A]. In2009:4307-4313.
    [3]. Sasaki K, Hori Y, Kikuchi R, etc. Current-voltage characteristics and impedance analysis ofsolid oxide fuel cells for mixed H2and CO gases[J]. Journal of the Electrochemical Society,2002,149(3): A227-A233.
    [4]. Kharlamova T, Pavlova S, Sadykov V, etc. Catalytic properties and coking stability of newanode materials for internal methane reforming in the intermediate temperature solid oxidefuel cells[J]. Catalysis Today,2009,146(1-2):141-147.
    [5]. Bao J, Krishnan G N, Jayaweera P, etc. Effect of various coal contaminants on theperformance of solid oxide fuel cells: Part I. Accelerated testing[J]. Journal of Power Sources,2009,193(2):607-616.
    [6]. Kee R J, Zhu H, Goodwin D G. Solid-oxide fuel cells with hydrocarbon fuels[A]. In2005:2379-2404.
    [7]. Peters R, Dahl R, Klüttgen U, etc. Internal reforming of methane in solid oxide fuel cellsystems[J]. Journal of Power Sources,2002,106(1-2):238-244.
    [8]. Li M, Rao A D, Brouwer J, etc. Design of highly efficient coal-based integrated gasificationfuel cell power plants[J]. Journal of Power Sources,2010,195(17):5707-5718.
    [9]. Jansen D, Oudhuis A B J, van Veen H M. CO2reduction potential of future coal gasificationbased power generation technologies[J]. Energy Conversion and Management,1992,33(5-8):365-372.
    [10]. Jansen D, van der Laag P C, Oudhuis A B J, etc. Prospects for advanced coal-fuelled fuel cellpower plants[J]. Journal of Power Sources,1994,49(1-3):151-165.
    [11]. Lobachyov K V, Richter H J. High efficiency coal-fired power plant of the future[J]. EnergyConversion and Management,1997,38(15-17):1693-1699.
    [12]. Kivisaari T, Bj rnbom P, Sylwan C, etc. The feasibility of a coal gasifier combined with ahigh-temperature fuel cell[J]. Chemical Engineering Journal,2004,100(1-3):167-180.
    [13]. Kuchonthara P, Bhattacharya S, Tsutsumi A. Combination of thermochemical recuperativecoal gasification cycle and fuel cell for power generation[J]. Fuel,2005,84(7-8):1019-1021.
    [14]. Rao A D, Verma A, Samuelsen G S. Engineering and economic analyses of a coal-fueled solidoxide fuel cell hybrid power plant[A]. In2005:545-553.
    [15]. Verma A, Rao A D, Samuelsen G S. Sensitivity analysis of a Vision21coal based zeroemission power plant[J]. Journal of Power Sources,2006,158(1):417-427.
    [16]. Ghosh S, De S. Exergy analysis of a cogeneration plant using coal gasification and solid oxidefuel cell[J]. International Journal of Energy Research,2006,30(9):647-658.
    [17]. Ghosh S, De S, Saha S. Improved performance and reduced emission from coal and gasfuelled GT-SOFC and GT-MCFC plants: Some studies[A]. In2006:423-431.
    [18]. Romano M C, Campanari S, Spallina V, etc. SOFC-based hybrid cycle integrated with a coalgasification plant[A]. In2009:197-206.
    [19]. Duan L, Wang X, Yang Y, etc. Study on parametric optimization of IGCC-SOFC hybridsystem[A]. In2009:399-406.
    [20].程健许.高温燃料电池发电系统研究[J].中国电力,2007,40(3):18-22.
    [21].麦倉良啓森.高温形燃料電池の現狀の性能評価および適用可能性調查[J].日本電力中央研究所報告,2007,2-30.
    [22].彭珍珍,杜洪兵,陈广乐, etc.国外SOFC研究机构及研发状况[J].硅酸盐学报,2010,(03):542-548.
    [23].新型能源燃料电池[J].精细化工基地信息通讯,2000,(06):23.
    [24].程振彪.西门子开发出燃料电池驱动叉车[J].汽车科技,1998,(03):28.
    [25].刘清华.英国燃料电池研究与开发[J].全球科技经济瞭望,1999,(01):28.
    [26].贾旭平.美国能源部定位燃料电池市场目标[J].电源技术,2011,(07):757-758.
    [27].贾旭平.美国Bloom energy公司推出固体氧化物燃料电池微型电站[J].电源技术,2010,(06):525-528.
    [28].燃料电池新技术扫描[J].技术与市场,2011,(07):563.
    [29].固体氧化物燃料电池(SOFC)发电系统示范工程(2):美国ZTEK公司的SOFC系统[J].中国电力,2009,(04):88.
    [30].韩敏芳,彭苏萍.固体氧化物燃料电池发展及展望[J].新材料产业,2005,(07):39-41.
    [31].安连锁,张健,刘树华, etc.固体氧化物燃料电池与燃气轮机混合发电系统[J].可再生能源,2008,(01):62-64.
    [32].固体氧化物燃料电池(SOFC)发电系统示范工程(1):Sulzer Hexis公司的SOFC系统[J].中国电力,2009,(04):88.
    [33].固体氧化物燃料电池(SOFC)发电系统示范工程(3):日本三菱重工的SOFC系统[J].中国电力,2009,(04):88.
    [34].陈梅.日本新型低温固体氧化物燃料电池[J].电源技术,2011,(03):239-240.
    [35].李志刚,淮秀兰,王绍荣, etc.平板式阳极支撑SOFC多场耦合数值模拟[J].工程热物理学报,2010,(04):629-632.
    [36].李松丽,王绍荣,聂怀文, etc. La_(0.85)Sr_(0.15)Cr_(0.9)Ni_(0.1)O_(3-δ)-Ce_(0.8)Sm_(0.2)O_(1.9)作为SOFC阳极材料的研究[J].无机材料学报,2006,(05):1121-1126.
    [37].郑群,陈云贵,吴朝玲, etc.平板型SOFC合金连接板的研究进展[J].功能材料,2005,(12):1817-1819+1823.
    [38].郑群,陈云贵,吴朝玲, etc. Fe-21Cr-RE合金连接板的抗氧化性[J].功能材料,2006,(08):1273-1275.
    [39].郑锐,聂怀文,陈文霞, etc.等离子喷涂在制备中温平板式固体氧化物燃料电池中的应用[J].硅酸盐学报,2003,(06):598-603.
    [40].高濂,严东生,郭景坤.固体氧化物燃料电池[J].无机材料学报,1991,(02):129-134.
    [41].卢立柱,胡湖生,谢慧琴.二氧化锆电泳沉积膜的致密化烧结[J].材料科学与工艺,1998,(01):1-4+12.
    [42].孙春文,胡万起,李道昭, etc.金属有机物热分解成膜技术研究进展[J].现代化工,2000,(11):13-16+34.
    [43].戴学刚.固体氧化物燃料电池材料的发展前景[J].中国有色金属学报,1998,(S2):1-4.
    [44].李英,唐子龙,谢裕生, etc.缓冲溶液法制备SOFC用Ni/YSZ负极材料[J].材料科学与工艺,2001,(01):91-94.
    [45].赵兵,卢立柱,谢慧琴.中低温固体氧化物燃料电池(SOFC)电解质材料[J].稀土,1998,(04).
    [46].尹艳红,李少玉,杨书廷, etc.采用碳氢燃料的SOFC阳极的研究进展[J].电池,2006,(02):155-156.
    [47].朱威.以碳氢化合物为燃料的中温固体氧化物燃料电池的新型阳极[D].中国科学技术大学,2006.
    [48].林子敬,张晓华.固体氧化物燃料电池电化学与热分析耦合的二维模型[J].无机材料学报,2003,(03):661-666.
    [49].毕武喜.平板式固体氧化物燃料电池气道模拟与优化[D].中国科学技术大学,2009.
    [50].袁哲.中温固体氧化物燃料电池联合系统分析及实验研究[D].中国科学技术大学,2009.
    [51].赵飞.中温固体氧化物燃料电池阴极材料的制备与表征[D].中国科学技术大学,2009.
    [52].陈代芬.固体氧化物燃料电池性能的微结构理论与多尺度多物理场模拟[D].中国科学技术大学,2010.
    [53].马千里.氨燃料质子导体固态氧化物燃料电池的研究[D].中国科学技术大学,2006.
    [54].包成,蔡宁生. SOFC-MGT混合发电系统的半实物仿真方案研究[J].动力工程学报,2011,(06):475-480.
    [55].张斌,倪维斗,李政. IGCC及煤气化固体氧化物燃料电池混合循环的技术经济性分析[J].动力工程,2005,(01):141-146.
    [56].张珺,周和平,刘志辉, etc. NiO包覆YSZ固体氧化物燃料电池阳极材料的制备研究[J].稀有金属材料与工程,2007,(S2):606-608.
    [57].赵玺灵,张兴梅,段常贵, etc.直接内部重整固体氧化物燃料电池的性能模拟[J].哈尔滨工业大学学报,2009,(02):97-100.
    [58].刘江.直接碳氢化合物固体氧化物燃料电池[J].化学进展,2006,(Z2):1026-1033.
    [59].揭雪飞,董新法,林维明.甲烷在固体氧化物燃料电池阳极重整反应的研究进展[J].天然气化工,2002,(01):43-48.
    [60].王毓娟. SOFC阳极甲烷直接氧化电催化剂的研究[D].华南理工大学,2001.
    [61].江义,李文钊,王世忠.高温固体氧化物燃料电池(SOFC)进展[J].化学进展,1997,(04).
    [62].王振卫. ScSZ电解质及其在IT-SOFCs中的应用[D].中国科学院研究生院(大连化学物理研究所),2005.
    [63].阎景旺.中温固体氧化物燃料电池的研制与电极过程的研究[D].中国科学院研究生院(大连化学物理研究所),2002.
    [64].纪登峰. SOFC中SDC电解质和NiO-SDC阳极材料的制备和表征[D].2006.
    [65].李彦.固体氧化物燃料电池的电极材料研究和单电池数值模拟[D].2006.
    [66]. Martinez A, Gerdes K, Gemmen R, etc. Thermodynamic analysis of interactions betweenNi-based solid oxide fuel cells (SOFC) anodes and trace species in a survey of coal syngas[J].Journal of Power Sources,2010,195(16):5206-5212.
    [67]. Weber A, Sauer B, Mul ler A C, etc. Oxidation of H2, CO and methane in SOFCs withNi/YSZ-cermet anodes[J]. Solid State Ionics,2002,152-153543-550.
    [68]. Alzate-Restrepo V, Hill J M. Carbon deposition on Ni/YSZ anodes exposed to CO/H2feeds[J].Journal of Power Sources,2010,195(5):1344-1351.
    [69]. Miao H, Wang W G, Li T S, etc. Effects of coal syngas major compositions on Ni/YSZanode-supported solid oxide fuel cells[J]. Journal of Power Sources,2010,195(8):2230-2235.
    [70]. Cooper M, Channa K, De Silva R, etc. Comparison of LSV/YSZ and LSV/GDC SOFC anodeperformance in coal syngas containing H2S[J]. Journal of the Electrochemical Society,2010,157(11): B1713-B1718.
    [71]. Bierschenk D M, Haag J M, Poeppelmeier K R, etc. Effect of coal syngas fuel composition onthe performance and stability of oxide anodes[A]. In2009:2107-2116.
    [72]. Gür T M, Homel M, Virkar A V. High performance solid oxide fuel cell operating on drygasified coal[J]. Journal of Power Sources,2010,195(4):1085-1090.
    [73]. Elizalde-Blancas F, Pakalapati S R, Cayan F N, etc. Numerical simulations of solid oxide fuelcells operating on coal syngas: A parametric study[A]. In2009:1263-1272.
    [74]. Singh R, Guzman F, Khatri R, etc. Performance and byproduct analysis of coal gas solid oxidefuel cell[J]. Energy and Fuels,2010,24(2):1176-1183.
    [75]. Burnette D D, Kremer G G, Bayless D J. The use of hydrogen-depleted coal syngas in solidoxide fuel cells[J]. Journal of Power Sources,2008,182(1):329-333.
    [76]. Li T S, Miao H, Chen T, etc. Effect of simulated coal-derived gas composition on h2spoisoning behavior evaluated using a disaggregation scheme[J]. Journal of theElectrochemical Society,2009,156(12): B1383-B1388.
    [77]. Marina O A, Coyle C A, Thomsen E C, etc. Degradation mechanisms of SOFC anodes in coalgas containing phosphorus[J]. Solid State Ionics,2010,181(8-10):430-440.
    [78]. Gong M, Bierschenk D, Haag J, etc. Degradation of LaSr2Fe2CrO9-δ solid oxide fuel cellanodes in phosphine-containing fuels[J]. Journal of Power Sources,2010,195(13):4013-4021.
    [79]. Zhi M, Madhiri N, Finklea H, etc. Impedance analysis of phosphorous impurity effect onperformance of Ni-YSZ anode of SOFC[A]. In2008:71-77.
    [80]. Demircan O, Zhang W, Xu C, etc. The effect of overpotential on performance degradation ofthe solid oxide fuel cell Ni/YSZ anode during exposure to syngas with phosphinecontaminant[J]. Journal of Power Sources,2010,195(10):3091-3096.
    [81]. Xu C, Zondlo J W, Finklea H O, etc. The effect of phosphine in syngas on Ni-YSZanode-supported solid oxide fuel cells[J]. Journal of Power Sources,2009,193(2):739-746.
    [82]. Marina O A, Pederson L R, Edwards D J, etc. Effect of coal gas contaminants on solid oxidefuel cell operation[A]. In2008:63-70.
    [83]. Trembly J P, Gemmen R S, Bayless D J. The effect of coal syngas containing AsH3on theperformance of SOFCs: Investigations into the effect of operational temperature, currentdensity and AsH3concentration[J]. Journal of Power Sources,2007,171(2):818-825.
    [84]. Bao J, Krishnan G N, Jayaweera P, etc. Effect of various coal gas contaminants on theperformance of solid oxide fuel cells: Part III. Synergistic effects[J]. Journal of Power Sources,2010,195(5):1316-1324.
    [85]. Bao J, Krishnan G N, Jayaweera P, etc. Impedance study of the synergistic effects of coalcontaminants: Is Cl a contaminant or a performance stabilizer?[J]. Journal of theElectrochemical Society,2010,157(3): B415-B424.
    [86]. Marina O A, Pederson L R, Coyle C A, etc. Electrochemical, structural and surfacecharacterization of nickel/zirconia solid oxide fuel cell anodes in coal gas containingantimony[J]. Journal of Power Sources,2011,196(11):4911-4922.
    [87]. Kuramoto K, Matsuoka K, Suzuki Y, etc. Effects of impurities contained in coal-derivedsyngas on the performance of SOFCs[A]. In2009:2149-2154.
    [88]. Marina O A, Pederson L R, Coyle C A, etc. Ni/YSZ anode interactions with impurities in coalgas[A]. In2009:2125-2130.
    [89]. Marina O A, Pederson L R, Thomsen E C, etc. Reversible poisoning of nickel/zirconia solidoxide fuel cell anodes by hydrogen chloride in coal gas[J]. Journal of Power Sources,2010,195(20):7033-7037.
    [90]. Xu C, Gong M, Zondlo J W, etc. The effect of HCl in syngas on Ni-YSZ anode-supportedsolid oxide fuel cells[J]. Journal of Power Sources,2010,195(8):2149-2158.
    [91]. Chan S H, Khor K A, Xia Z T. Complete polarization model of a solid oxide fuel cell and itssensitivity to the change of cell component thickness[J]. Journal of Power Sources,2001,93(1-2):130-140.
    [92]. Cayan F N, Pakalapati S R, Elizalde-Blancas F, etc. A phenomenological model fordegradation of solid oxide fuel cell anodes due to impurities in coal syngas[A]. In2009:641-647.
    [93]. Gerdes K, Gemmen R. Porous anode model for coal syngas fuelled SOFC: Combined massand energy transport normal to cell plane[A]. In2008:165-175.
    [94]. Lehnert W, Meusinger J, Thom F. Modelling of gas transport phenomena in SOFC anodes[J].Journal of Power Sources,2000,87(1):57-63.
    [95]. Deng X, Petric A. Geometrical modeling of the triple-phase-boundary in solid oxide fuelcells[J]. Journal of Power Sources,2005,140(2):297-303.
    [96]. Vijay P, Samantaray A K, Mukherjee A. Development of a thermodynamically consistentkinetic model for reactions in the solid oxide fuel cell[J]. Computers and ChemicalEngineering,2010,34(6):866-877.
    [97]. Iora P, Aguiar P, Adjiman C, etc. Comparison of two IT DIR-SOFC models: Impact of variablethermodynamic, physical, and flow properties. Steady-state and dynamic analysis[J].Chemical Engineering Science,2005,60(11):2963-2975.
    [98]. Hofmann P, Panopoulos K D. Detailed dynamic Solid Oxide Fuel Cell modeling forelectrochemical impedance spectra simulation[J]. Journal of Power Sources,2010,195(16):5320-5339.
    [99]. Xue X, Tang J, Sammes N, etc. Dynamic modeling of single tubular SOFC combiningheat/mass transfer and electrochemical reaction effects[J]. Journal of Power Sources,2005,142(1-2):211-222.
    [100]. Bessler W G. A new computational approach for SOFC impedance from detailedelectrochemical reaction-diffusion models[J]. Solid State Ionics,2005,176(11-12):997-1011.
    [101]. Hernández-Pacheco E, Singh D, Hutton P N, etc. A macro-level model for determining theperformance characteristics of solid oxide fuel cells[J]. Journal of Power Sources,2004,138(1-2):174-186.
    [102]. Pfafferodt M, Heidebrecht P, Stelter M, etc. Model-based prediction of suitable operatingrange of a SOFC for an Auxiliary Power Unit[J]. Journal of Power Sources,2005,149(1-2):53-62.
    [103]. Pisani L, Murgia G. An analytical model for solid oxide fuel cells[J]. Journal of theElectrochemical Society,2007,154(8): B793-B801.
    [104]. Nagata S, Momma A, Kato T, etc. Numerical analysis of output characteristics of tubularSOFC with internal reformer[J]. Journal of Power Sources,2001,101(1):60-71.
    [105]. Debenedetti P G, Vayenas C G. Steady-state analysis of high temperature fuel cells[J].Chemical Engineering Science,1983,38(11):1817-1829.
    [106]. Larrain D, Van Herle J, Maréchal F, etc. Generalized model of planar SOFC repeat element fordesign optimization[J]. Journal of Power Sources,2004,131(1-2):304-312.
    [107]. Yakabe H, Ogiwara T, Hishinuma M, etc.3-D model calculation for planar SOFC[J]. Journalof Power Sources,2001,102(1-2):144-154.
    [108]. Ho T X, Kosinski P, Hoffmann A C, etc. Transport, chemical and electrochemical processes ina planar solid oxide fuel cell: Detailed three-dimensional modeling[J]. Journal of PowerSources,2010,195(19):6764-6773.
    [109]. Martinez A S, Brouwer J. Modeling and comparison to literature data of composite solid oxidefuel cell electrode-electrolyte interface conductivity[J]. Journal of Power Sources,2010,195(21):7268-7277.
    [110]. Ahmed S, McPheeters C, Kumar R. Thermal-hydraulic model of a monolithic solid oxide fuelcell[J]. Journal of the Electrochemical Society,1991,138(9):2712-2718.
    [111]. Ackmann T, De Haart L G J, Lehnert W, etc. Modeling of mass and heat transport in planarsubstrate type SOFCs[J]. Journal of the Electrochemical Society,2003,150(6): A783-A789.
    [112]. Zeng Y, Tian C, Bao L. A modeling investigation on the electrochemical behavior of porousmixed conducting cathodes for solid oxide fuel cells[J]. Journal of Power Sources,2005,139(1-2):35-43.
    [113]. Vakouftsi E, Marnellos G, Athanasiou C, etc. A detailed model for transport processes in amethane fed planar SOFC[J]. Chemical Engineering Research and Design,2011,89(2):224-229.
    [114]. Costamagna P, Selimovic A, Del Borghi M, etc. Electrochemical model of the integratedplanar solid oxide fuel cell (IP-SOFC)[J]. Chemical Engineering Journal,2004,102(1):61-69.
    [115]. Campanari S, Iora P. Definition and sensitivity analysis of a finite volume SOFC model for atubular cell geometry[J]. Journal of Power Sources,2004,132(1-2):113-126.
    [116]. Ferguson J R, Fiard J M, Herbin R. Three-dimensional numerical simulation for variousgeometries of solid oxide fuel cells[J]. Journal of Power Sources,1996,58(2):109-122.
    [117]. Vural Y, Ma L, Ingham D B, etc. Comparison of the multicomponent mass transfer models forthe prediction of the concentration overpotential for solid oxide fuel cell anodes[J]. Journal ofPower Sources,2010,195(15):4893-4904.
    [118]. Recknagle K P, Ryan E M, Koeppel B J, etc. Modeling of electrochemistry and steam-methanereforming performance for simulating pressurized solid oxide fuel cell stacks[J]. Journal ofPower Sources,2010,195(19):6637-6644.
    [119]. Recknagle K P, Williford R E, Chick L A, etc. Three-dimensional thermo-fluidelectrochemical modeling of planar SOFC stacks[J]. Journal of Power Sources,2003,113(1):109-114.
    [120]. Li P W, Chyu M K. Electrochemical and transport phenomena in solid oxide fuel cells[J].Journal of Heat Transfer,2005,127(12):1344-1362.
    [121]. Autissier N, Larrain D, Van Herle J, etc. CFD simulation tool for solid oxide fuel cells[J].Journal of Power Sources,2004,131(1-2):313-319.
    [122]. Lockett M, Simmons M J H, Kendall K. CFD to predict temperature profile for scale up ofmicro-tubular SOFC stacks[J]. Journal of Power Sources,2004,131(1-2):243-246.
    [123].窦筱欣,刘朝,田辉, etc.固体氧化物燃料电池/燃气轮机混合模式的统计综述[J].燃气轮机技术,2010,(02):5-11.
    [124].赵红罡,简弃非.固体氧化物燃料电池与燃汽轮机混合系统技术现状[J].节能技术,2008,(02):155-158.
    [125].何一猛,邹介棠,张雁雁.燃料电池与燃气轮机联合循环的若干方案简介[J].上海汽轮机,2001,(03):29-34.
    [126]. Chan S H, Ho H K, Tian Y. Modelling for part-load operation of solid oxide fuel cell-gasturbine hybrid power plant[J]. Journal of Power Sources,2003,114(2):213-227.
    [127]. Vogler M, Horiuchi M, Bessler W G. Modeling, simulation and optimization of a no-chambersolid oxide fuel cell operated with a flat-flame burner[J]. Journal of Power Sources,2010,195(20):7067-7077.
    [128]. Bove R, Lunghi P, Sammes N M. SOFC mathematic model for systems simulations. Part one:From a micro-detailed to macro-black-box model[J]. International Journal of HydrogenEnergy,2005,30(2):181-187.
    [129]. Bove R, Lunghi P, Sammes N M. SOFC mathematic model for systems simulations-Part2:Definition of an analytical model[J]. International Journal of Hydrogen Energy,2005,30(2):189-200.
    [130]. Liu Q, Tian Y, Li H, etc. High efficiency chemical energy conversion system based on amethane catalytic decomposition reaction and two fuel cells: Part I. Process modeling andvalidation[J]. Journal of Power Sources,2010,195(19):6539-6548.
    [131].王宇,段立强,杨勇平. SOFC/GT/ST三重复合动力系统特性研究[J].工程热物理学报,2011,(03):382-386.
    [132].薛利超,王巍,黄钟岳, etc.管式固体氧化物燃料电池与微型燃气轮机复合系统模拟分析[J].燃气轮机技术,2008,(01):18-23+53.
    [133].贾俊曦,姜任秋,沈胜强, etc.三类固体氧化物燃料电池发电系统热力学分析[J].哈尔滨工程大学学报,2007,(09):990-997.
    [134].司广树,姜培学,李勐.单相流体在多孔介质中的流动和换热研究[J].承德石油高等专科学校学报,2000,(04):4-9.
    [135].胡玉坤,丁静.多孔介质内部传热传质规律的研究进展[J].广东化工,2006,(11):44-47.
    [136].宫克勤,孙苗苗.多孔介质中传热传质机理研究[J].油气田地面工程,2009,(04):15-16.
    [137]. Wang J, Carson J K, North M F, etc. A new structural model of effective thermal conductivityfor heterogeneous materials with co-continuous phases[J]. International Journal of Heat andMass Transfer,2008,51(9-10):2389-2397.
    [138]. Carson J K, Lovatt S J, Tanner D J, etc. Predicting the effective thermal conductivity ofunfrozen, porous foods[J]. Journal of Food Engineering,2006,75(3):297-307.
    [139]. Carson J K. Review of effective thermal conductivity models for foods[J]. InternationalJournal of Refrigeration,2006,29(6):958-967.
    [140]. Carson J K, Lovatt S J, Tanner D J, etc. An analysis of the influence of material structure onthe effective thermal conductivity of theoretical porous materials using finite elementsimulations[J]. International Journal of Refrigeration,2003,26(8):873-880.
    [141]. Wang J, Carson J K, North M F, etc. A new approach to modelling the effective thermalconductivity of heterogeneous materials[J]. International Journal of Heat and Mass Transfer,2006,49(17-18):3075-3083.
    [142]. Dul'nev G N, Zarichnyak Y P. Thermal conductivity of liquid mixtures[J]. Journal ofEngineering Physics,1969,11(6):400-402.
    [143]. Calmidi V V, Mahajan R L. Effective thermal conductivity of high porosity fibrous metalfoams[J]. Journal of Heat Transfer,1999,121(2):466-471.
    [144]. Bhattacharya A, Calmidi V V, Mahajan R L. Analytical-experimental study for thedetermination of the effective thermal conductivity of high porosity fibrous foams[J].American Society of Mechanical Engineers, Applied Mechanics Division, AMD,1999,23313-20.
    [145]. Miller M N. Bounds for effective electrical, thermal, and magnetic properties ofheterogeneous materials[J]. Journal of Mathematical Physics,1969,10(11):1988-2004.
    [146]. Petrasch J, Schrader B, Wyss P, etc. Tomography-based determination of the effective thermalconductivity of fluid-saturated reticulate porous ceramics[J]. Journal of Heat Transfer,2008,130(3).
    [147]. Haussener S, Coray P, Lipiński W, etc. Tomography-based heat and mass transfercharacterization of reticulate porous ceramics for high-temperature processing[J]. Journal ofHeat Transfer,2010,132(2):1-9.
    [148]. Shoshany Y, Prialnik D, Podolak M. Monte Carlo modeling of the thermal conductivity ofporous cometary ice[J]. Icarus,2002,157(1):219-227.
    [149]. Wang M, Wang J, Pan N, etc. Mesoscopic predictions of the effective thermal conductivity formicroscale random porous media[J]. Physical Review E-Statistical, Nonlinear, and SoftMatter Physics,2007,75(3).
    [150]. Wang M, Wang J, Pan N, etc. Three-dimensional effect on the effective thermal conductivityof porous media[J]. Journal of Physics D: Applied Physics,2007,40(1):260-265.
    [151]. Wang M, Pan N. Modeling and prediction of the effective thermal conductivity of randomopen-cell porous foams[J]. International Journal of Heat and Mass Transfer,2008,51(5-6):1325-1331.
    [152]. Huai X, Wang W, Li Z. Analysis of the effective thermal conductivity of fractal porousmedia[J]. Applied Thermal Engineering,2007,27(17-18):2815-2821.
    [153].李小川,施明恒.多孔介质热导率的数值计算[J].工程热物理学报,2008,(02):291-293.
    [154]. Lacroix M, Nguyen P, Schweich D, etc. Pressure drop measurements and modeling on SiCfoams[J]. Chemical Engineering Science,2007,62(12):3259-3267.
    [155].于立章,孙立成,孙中宁.多孔介质通道中单相流动压降预测模型[J].核动力工程,2010,(05):63-66+88.
    [156]. Boming Y. Analysis of flow in fractal porous media[J]. Applied Mechanics Reviews,2008,61(1-6):0508011-05080119.
    [157]. Jin L W, Leong K C. Pressure drop and friction factor of steady and oscillating flows inopen-cell porous media[J]. Transport in Porous Media,2008,72(1):37-52.
    [158].于建国,惠宇,王玉璋, etc.固体氧化物燃料电池阳极甲烷重整过程动力学模型[J].上海交通大学学报,2009,(05):777-782.
    [159]. Todd B, Young J B. Thermodynamic and transport properties of gases for use in solid oxidefuel cell modelling[J]. Journal of Power Sources,2002,110(2):186-200.
    [160]. Wilke C R. A Viscosity Equation for Gas Mixtures[J]. The Journal of Chemical Physics,1950,18(4):517-519.
    [161]. Xu J, Froment G F. Methane steam reforming, methanation and water-gas shift: I. Intrinsickinetics[J]. AIChE Journal,1989,35(1):88-96.
    [162].吴昊. SOFC核心部件PEN热应力场的数值模拟[D].华中科技大学,2007.
    [163]. Wang Y, Yoshiba F, Watanabe T, etc. Numerical analysis of electrochemical characteristics andheat/species transport for planar porous-electrode-supported SOFC[J]. Journal of PowerSources,2007,170(1):101-110.
    [164]. Wang Y, Yoshiba F, Kawase M, etc. Performance and effective kinetic models of methanesteam reforming over Ni/YSZ anode of planar SOFC[J]. International Journal of HydrogenEnergy,2009,34(9):3885-3893.
    [165]. Simbeck DR K N, Biasco FE, Vejtosa S, Dickenson RL. Coal Gasification Guidebook: Status,Applications, and Technologies[M]. USA: Elective Power Research Institute,1993.
    [166]. Noh H S, Lee H, Kim B K, etc. Microstructural factors of electrodes affecting the performanceof anode-supported thin film yttria-stabilized zirconia electrolyte (~1μm) solid oxide fuelcells[J]. Journal of Power Sources,2011,196(17):7169-7174.
    [167]. Park J S, Hasson I D, Gross M D, etc. A high-performance solid oxide fuel cell anode basedon lanthanum strontium vanadate[J]. Journal of Power Sources,2011,196(18):7488-7494.
    [168]. Vivanpatarakij S, Assabumrungrat S, Laosiripojana N. Improvement of solid oxide fuel cellperformance by using non-uniform potential operation[J]. Journal of Power Sources,2007,167(1):139-144.
    [169]. Lowrie F L, Rawlings R D. Room and high temperature failure mechanisms in solid oxide fuelcell electrolytes[J]. Journal of the European Ceramic Society,2000,20(6):751-760.
    [170].谢光远,崔崑,肖建中, etc.阳极支撑平板SOFC单电池热应力数学模型分析[J].华中科技大学学报(自然科学版),2002,(11):90-92.
    [171].李琛,姜乐华,佐晓波.平板状SOFC结构热应力特性分析[J].化学工程与装备,2008,(08):1-4+13.
    [172].陈弦,杨杰,蒲健, etc.平板式SOFC结构热应力的有限元分析[J].无机材料学报,2007,(02):339-343.
    [173]. Minh N Q. Science and technology of ceramic fuel cell[M]. New York: Elsevier Science,1995.