质子导体固体氧化物燃料电池的制备及其电化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源和环保已成为世界各国可持续发展必须要面对的主要问题。燃料电池作为一种高效、环境友好的将化学能转化为电能的装置受到了人们广泛的关注,其中固体氧化物燃料电池(SOFC)又是领域研究的一个热点。传统的固体氧化物燃料电池由于需要较高的工作温度,会带来一系列的问题,如电极的烧结、界面的扩散以及难于封接等。因此降低操作温度已成为固体氧化物燃料电池主要研究发展方向。以质子导体为电解质的质子导体固体氧化物燃料电池是实现固体氧化物燃料电池低温化的一个重要途径。本论文针对传统BaCeO_3基质子导体固体氧化物燃料电池的化学稳定性、烧结活性、电化学性能及薄膜制备工艺进行研究。
     论文第一章简要介绍了质子导体固体氧化物燃料电池的应用前景、工作原理和研究进展,着重阐述了质子导体固体氧化物燃料电池的核心-电解质材料在化学稳定性和电导率方面存在的问题。
     第二章发展了一种原位反应的方法来制备高质量的电解质薄膜。通过直接将金属氧化物混合然后沉积到阳极基底表面,利用金属氧化物在高温烧结时发生反应,使质子陶瓷膜电解质层的成相与致密在一步烧结过程中完成。研究结果表明借助原位反应制备出的质子陶瓷膜具有膜厚度小、致密度高等特点,是制备电解质薄膜的一种简便有效的方法。
     第三章采用原位反应的方法成功地在阳极基底上制备出厚度仅为15μm的Ba_3Ca_(1.18)Nb_(1.82)O_(9-δ)(BCN18)电解质薄膜,首次实现BCN18电解质的薄膜化,并且通过反应烧结使得BCN18的烧结温度降低到1400℃。此外,研究表明BCN18在CO_2和H_2O环境中具有极好的化学稳定性,虽然以BCN18为电解质的燃料电池的输出功率不如传统的BaCeO_3基质子导体燃料电池高,但BCN18极好的化学稳定性使它适用于比较苛刻的工作条件中,使其成为质子导体固体氧化物燃料电池电解质材料一种适合的选择。
     第四章通过在BaCeO_3中引入10%摩尔的Ta,研究Ta的掺杂对于传统BaCeO_3基质子导体化学稳定性和电化学性能的影响。研究结果表明,Ta的掺杂在保持其电化学性能不过度损失的情况下极大地提高了材料的化学稳定性,BaCe_(0.7)Ta_(0.1)Y_(0.2)O_(3-δ)(BCTY10)电解质膜可以在纯CO_2环境中稳定存在,以BCTY10薄膜为电解质的单电池在700℃时的最高功率可以达到约200mW/cm~2并且可以稳定工作100小时,而没有掺入Ta的BaCeO_3基电解质材料短短几个小时的运行就发生了电池性能的明显衰减。
     第五章提出一种全固相法制备质子导体固体氧化物燃料电池,同时研究了阳极造孔剂含量对于BaCe_(0.7)Ta_(0.1)Y_(0.2)O_(3-δ)薄膜致密度的影响。研究结果表明BCTY10薄膜的致密度随着阳极造孔剂加入量的增多而提高,当阳极含有质量比30%的造孔剂时,薄膜已经完全致密,符合作为燃料电池电解质的要求。此外我们还探讨比较了BCTY10薄膜与传统Zr掺杂的BaCe_(0.7)Zr_(0.1)Y_(0.2)O_(3-δ)薄膜的化学稳定性,研究结果表明Ta掺杂BaCeO_3的方法比传统的Zr掺杂BaCeO_3的方法更能提高材料的化学稳定性。而以全固相法制备的BCTY10单电池也表现出良好的电池输出功率,表明全固相法为制备质子导体燃料电池提供了一种切实可行的途径,而BCTY10良好的化学稳定性和较好的电池输出功率表明其是一种很有前途的电解质材料。
     第六章深入研究了In的掺杂对于传统BaCeO_3材料在化学稳定性、烧结活性和电化学性能上的影响。研究结果表明In的掺杂可以有效提高BaCeO_3的烧结活性,并且样品的烧结活性随着In掺杂量的增加而提高。BaCe_(0.7)In_(0.3)O_(3-δ)(BCI30)薄膜经过1150℃烧结即可致密,它比稀土掺杂的BaCeO_3的致密化温度要低200-300℃。在提高烧结活性的同时,In的掺杂还有助于BaCeO_3材料化学稳定性的提高。研究涉及的不同浓度(10%-30%)In掺杂的BaCeO_3材料都显示出比稀土Y掺杂BaCeO_3样品更好的化学稳定性,其化学稳定性也优于加入少量Zr的样品(BaCe_(0.7)Zr_(0.1)Y_(0.2)O_(3-δ)。电导测量表征反映BCI30薄膜的膜电导率与传统稀土掺杂的BaCeO_3样品相当。我们知道,用传统的Zr掺杂来稳定BaCeO_3的方法虽然提高了其化学稳定性,但却大大降低了离子电导和样品的烧结活性;而用In对BaCeO_3进行掺杂,不仅起到了提高化学稳定性的作用,也提高了样品的烧结活性,同时还没有降低样品的电导率,故In元素可称为BaCeO_3的一种理想掺杂剂。电池性能评价反映BCI30薄膜电解质燃料电池在700℃的最大功率密度为342mW/cm~2,而单电池的开路电压保持100个小时没有衰减,显示该材料未来实际运用中的巨大潜力。
     第七章中通过一种单步共烧的方法制备质子导体SOFC,单步共烧法制备质子导体SOFC在文献中还未见报道。研究表明以BaCe_(0.7)In_(0.3)O_(3-δ)薄膜为电解质的燃料电池可以实现单步共烧法制备,并且共烧温度对于单电池的性能有着决定性的影响。较低的共烧温度(1150℃)制备的电池虽然极化电阻比较小,但较大的欧姆电阻却限制其发展;而较高的烧结温度(1350℃)虽然可以减小电解质的膜电阻,但较为剧烈的界面反应以及较大的极化电阻使其性能急剧下降。只有通过适中的共烧温度(1250℃)制备的单电池才能达到较高的电池输出性能,虽然在该温度下制备的单电池的膜电阻和极化电阻均不是最低的,但适中的共烧温度却在膜电阻和极化电阻之间找到一个平衡点,在保证在不过度增加极化电阻的情况下提高电解质膜的电导率,使得在1250℃共烧的单电池有着最小的电池内阻,从而使其单电池的性能与其它温度烧结的单电池相比有较大的提高。
     第八章对本论文的工作进行了总结,并对质子导体SOFC今后的研究工作进行了展望。
Energy crisis and environmental pollutions are problems that all country is now facing for the sustainable development.Fuel cells,which have been seen as a keystone for the future energy economy,have received considerable attention for their high energy conversion efficiency and low impact to environment as a mean of generating electricity.Among the fuel cell community,the solid oxide fuel cell (SOFCs) is a currently hot topic.However,the traditional SOFCs work at high temperatures,leading to many problems,such as electrode sintering,diffusion at interface and difficulty in preparation of seals and interconnect.The current trend in SOFC developments is the reduction of their working temperatures.Ceramic proton conductors have received much attention from the SOFC community because proton-conducting SOFCs would permit a reduction of the working temperature, which meet the demand of current trend of reducing the working temperature of SOFCs.This thesis investigates the chemical stability,sinterability,electrochemical performance and the thin-film preparation techniques for the BaCeO_3 based proton-conducting SOFCs.
     Chapter 1 describes the potential applications of proton-conducting SOFCs as well as its working principle and research progress.The trade-off relation between chemical stability and conductivity of proton-conducting electrolyte materials is intensively discussed.
     In Chapter 2,an in-situ reaction method is presented for preparing the proton-conducting electrolyte membrane with high quality.The key part of this method is to directly spray well-mixed suspension of metal oxides instead of pre-synthesized ceramic powders on the anode substrate in order to make the membrane dense and form the pure ceramic phase at the same time.Further,the in-situ reaction method promotes the densification of the supported membrane,which is proven to be a facile method for preparing protonic ceramic membranes.
     In Chapter 3,a thin Ba_3Ca_(1.18)Nb_(1.82)O_(9-δ)(BCN18) membrane electrolyte is prepared by the in-situ reaction method.It is the first time to realize the preparation of a thin-film BCN18 membrane.The obtained BCN18 membrane,which is about 15μm in thickness and showes high chemical stability against H_2O and CO_2,reaches high density after sintering at 1400℃.Furthermore,we study the electrochemical properties of a BCN18-based fuel cell.Although the cell performance of the BCN18-based fuel cell is not as good as the traditional BaCeO_3 based fuel cell, considering its high chemical stability,it still makes this material interesting for SOFCs at elevated temperatures,especially in an aggressive condition.
     In Chapter 4,Ta is introduced into BaCeO_3 lattice to form a new composition of BaCe_(0.7)Ta_(0.1)Y_(0.2)O_(3-δ)(BCTY10) for increasing the chemical stability of BaCeO_3-based materials.The research result shows that partially replacement of Ce by Ta can increase the chemical stability of barium cerate with only a little loss of electrical performance.The BCTY10 membrane can remain stable in 100%CO_2 at high temperatures.The BCTY10-based fuel cell generates a maximum power density of about 200 mW/cm~2 at 700℃.The BCTY10-based fuel cell remains stable in fuel cell working environment for more that 100 h,whereas the Ta-free BaCeO_3 fuel cell decays in a few hours.
     Chapter 5 describes an all solid state reaction for preparing a proton-conducting SOFC and also investigates the influence of the amounts of the pore forming additives in the anode substrates on the densification of the BCTY10 membranes.The result indicates that the supported BCTY10 membrane becomes denser with the increasing amount of pore forming additive in the anode.The BCTY10 membrane on a NiO-BCTY10 anode containing 30 wt.%starch achieves a high density and meet the requirement for using as an electrolyte for SOFCs.Furthermore,we find that Ta-doping strategy shows even better stability than the traditional Zr-doping strategy for stabilizing BaCeO_3.The single cell shows desirable cell performance,implying the all solid state reaction is a novel and easy way to prepare single ceils.The high stability of BCTY10 and the good cell performance indicates that BCTY10 is a promising material for proton-conducting SOFCs.
     In Chapter 6,we intensively study the influence of the doping of In on the chemical stability,sinterability and electrical performance for BaCeO_3-based materials.The result shows that indium is quite beneficial to the improvement of the sinterability for BaCeO_3 materials and the sinterability increases with the increasing doping amount of In.The supported BaCe_(0.7)In_(0.3)O_(3-δ)(BCI30) membrane reaches dense after firing at 1150℃,about 200-300℃lower than other rare earth doped-BaCeO_3 materials.The element of In increases the chemical stability of the BaCeO_3 materials.All the different levels of In-doped samples(from 10%to 30%) show much better chemical stability than that of the traditional rare earth doped BaCeO_3.The chemical stability of the In-doped samples is even better than that of BaCe_(0.7)Zr_(0.1)Y_(0.2)O_(3-δ).The BCI30 membrane conductivity can compare with that of the traditional rare earth doped-BaCeO_3.Unlike the traditional strategy for stabilizing BaCeO_3,which indeed increases the chemical stability but greatly lowers the sinterability and conductivity of the samples,the In-doping strategy is beneficial to the improvement of the chemical stability of BaCeO_3 samples and enhances their sinterability in the meantime with little loss of electrical performance.A BCI30-based fuel cell generates a maximum power density of about 342 mW/cm~2 at 700℃and the open circuit voltage of the cell keeps stable for more than 100 h,indicating the In-doped BaCeO_3 materials are quite promising for application.
     Chapter 7 describes a single step co-firing process to prepare proton-conducting SOFCs,which has not been achieved before.The result proves the proton-conducting SOFC with the BaCe_(0.7)In_(0.3)O_(3-δ)(BCI30) electrolyte can be prepared by a single step co-firing process.Furthermore,we find that the co-firing temperature has great influence on the single cell performance.Although the cell co-fired at 1150℃shows the lowest polarization resistance and the cell co-fired at 1350℃shows the highest membrane conductivity,the cell co-fired at 1250℃seems to reach a proper compromise between the polarization resistance and the membrane conductivity, which leads to the lowest total cell resistance and the best cell performance.
     In Chapter 8,the researches presented in this dissertation are evaluated and future work concerning the development of proton-conducting SOFCs is discussed.
引文
[1]Z.L.Zhan and S.A.Barnett,"An octane-fueled olid oxide fuel cell," Science,308:(2005)844-847.
    [2]T.Hibino,A.Hashimoto,T.Inoue,J.Tokuno,S.Yoshida,and M.Sano,"A low-operating-temperature solid oxide fuel cell in hydrocarbon-air mixtures," Science,288:(2000) 2031-2033.
    [3]J.R.Wilson,W.Kobsiriphat,R.Mendoza,H.Y.Chen,J.M.Hiller,D.J.Miller,K.Thornton,P.W.Voorhees,S.B.Adler,and S.A.Barnett,"Three-dimensional reconstruction of a solid-oxide fuel-cell anode," Nature Materials,5:(2006) 541-544.
    [4]S.W.Tao and J.T.S.Irvine,"A redox-stable efficient anode for solid-oxide fuel cells," Nature Materials,2:(2003) 320-323.
    [5]S.D.Park,J.M.Vohs,and R.J.Gorte,"Direct oxidation of hydrocarbons in a solid-oxide fuel cell," Nature,404:(2000) 265-267.
    [6]毛宗强 等编著,“可再生能源丛书-燃料电池”,化学工业出版社(2005).
    [7]S.M.Halle,"Fuel cell materials and components," Acta Materialia,51:(2003) 5981-6000.
    [8]H.Li,Y.H.Tang,Z.W.Wang,Z.Shi,S.H.Wu,D.T.Song,J.L.Zhang,K.Fatih,J.J.Zhang,H.J.Wang,Z.S.Liu,R.Abouatallah,and A.Mazza,"A review of water flooding issues in the proton exchange membrane fuel cell," Journal of Power Sources,178:(2008) 103-117.
    [9]K.J.Chae,M.Choi,F.F.Ajayi,W.Park,I.S.Chang,and I.S.Kim,"Mass transport through a proton exchange membrane(Nation) in microbial fuel cells," Energy & Fuels,22:(2008)169-176.
    [10]R.M.Ormerod,"Solid oxide fuel cells," Chemical Society Reviews,32:(2003) 17-28.
    [11]S.J.Litzelman,J.L.Hertz,W.Jung,and H.L.Tuller,"Opportunities and Challenges in Materials Development for Thin Film Solid Oxide Fuel Cells," Fuel Cells,8:(2008)294-302.
    [12]K.Kendall,"Progress in solid oxide fuel cell materials," International Materials Reviews,50:(2005) 257-264.
    [13]P.Holtappels,U.Vogt,and T.Graule,"Ceramic materials for advanced solid oxide fuel cells," Advanced Engineering Materials,7:(2005) 292-302.
    [14]L.Jia,Z.Lu,X.Q.Huang,Z.G.Liu,Z.Zhi,X.Q.Sha,G.Q.Li,and W.H.Su,"Preparation of YSZ film by gravity-electrophoretic deposition and its application in SOFC," Ceramics International,33:(2007) 631-635.
    [15]L.Zhou,M.J.Cheng,B.L.Yi,Y.L.Dong,Y.Cong,and W.S.Yang,"Performance of an anode-supported tubular solid oxide fuel cell(SOFC) under pressurized conditions," Electrochimica Acta,53:(2008)5195-5198.
    [16]S.P.Jiang,L.Z.Ab,and Y.Zhang,“Lanthanum strontium manganese chromite cathode and anode synthesized by gel-casting for solid oxide fuel cells,” Journal of Materials Chemistry,17:(2007)2627-2635.
    [17]X.S.Xin,Z.Lu,Q.S.Zhu,X.Q.Huang,and W.H.Su,“Fabrication of dense YSZ electrolyte membranes by a modified dry-pressing using nanocrystalline powders,” Journal of Materials Chemistry,17:(2007)1627-1630.
    [18]J.B.Goodenough,“Oxide-ion electrolytes,” Annual Review of Materials Research,33:(2003)91-128.
    [19]D.Beckel,A.Bieberle-Hutter,A.Harvey,A.Infortuna,U.P.Muecke,M.Prestat,J.L.M.Rupp,and L.J.Gauckler,“Thin films for micro solid oxide fuel cells,” Journal of Power Sources,173:(2007)325-345.
    [20]L.C.De Jonghe,C.P.Jacobson,and S.J.Visco,“Supported electrolyte thin film synthesis of solid oxide fuel cells,” Annual Review of Materials Research,33:(2003)169-182.
    [21]B.C.H.Steele and A.Heinzel,“Materials for fuel-cell technologies,” Nature,414:(2001)345-352.
    [22]T.Ishihara,Y.Hiei,and Y.Takita,“Oxidative Reforming of Methane Using Solid Oxide Fuel-Cell with LaGaO_3-Based Electrolyte,” Solid State ionics,79:(1995)371-375.
    [23]T.Ishihara,M.Honda,T.Shibayama,H.Minami,H.Nishiguchi,and Y.Takita,“Intermediate temperature solid oxide fuel cells using a new LaGaO_3 based oxide ion conductor-I.Doped SmCoO_3 as a new cathode material,” Journal of the Electrochemical Society,145:(1998)3177-3183.
    [24]T.Ishihara,T.Shibayama,S.Ishikawa,K.Hosoi,H.Nishiguchi,and Y.Takita,“Novel fast oxide ion conductor and application for the electrolyte of solid oxide fuel cell,” Journal of the European Ceramic Society,24:(2004)1329-1335.
    [25]T.Ishihara,T.Shibayama,M.Honda,H.Nishiguchi,and Y.Takita,“Solid oxide fuel cell using Co doped La(Sr)Ga(Mg)O_3 perovskite oxide with notably high power density at intermediate temperature,” Chemical Communications(1999)1227-1228.
    [26]P.N.Huang and A.Petric,“Superior oxygen ion conductivity of lanthanum gallate doped with strontium and magnesium,” Journal of the Electrochemical Society,143:(1996)1644-1648.
    [27]K.Yamaji,H.Negishi,T.Horita,N.Sakai,and H.Yokokawa,“Vaporization process of Ga from doped LaGaO3 electrolytes in reducing atmospheres,” Solid State Ionics,135:(2000)389-396.
    [28]吴修胜,“氧分离膜材料的输运性能及低频内耗研究”,中国科学技术大学博士学位论文,合肥(2007).
    [29]J.M.Im,H.J.You,Y.S.Yoon,and D.W.Shin,"Synthesis of nano-crystalline Gd_(0.1)Ce_(0.9)O_(2-x)for IT-SOFC by aerosol flame deposition," Ceramics International,34:(2008) 877-881.
    [30]H.Kim,J.M.Vohs,and R.J.Gorte,"Direct oxidation of sulfur-containing fuels in a solid oxide fuel cell," Chemical Communications(2001) 2334-2335.
    [31]S.Pinol,M.Morales,and F.Espiell,"Low temperature anode-supported solid oxide fuel cells based on gadolinium doped ceria electrolytes," Journal of Power Sources.169:(2007) 2-8.
    [32]T.Mori,H.Yamamura,and S.Saito,"Preparation of an alkali-element-doped CeO_(2-)Sm_2O_3system and its operation properties as the electrolyte in planar solid oxide fuel cells," Journal of the American Ceramic Society,79:(1996) 3309-3312.
    [33]M.Mogenscn,N.M.Sammcs,and G.A.Tompsett,"Physical,chemical and electrochemical properties of pure and doped ceria," Solid State Ionics,129:(2000) 63-94.
    [34]Z.P.Shao and S.M.Hailc,"A high-performance cathode for the next generation of solid-oxide fuel cells," Nature,431:(2004) 170-173.
    [35]F.Zhao,Z.Y.Wang,M.F.Liu,L.Zhang,C.R.Xia,and F.L.Chen,"Novel nano-network cathodes for solid oxide fuel cells," Journal of Power Sources,185:(2008) 13-18.
    [36]H.Z.Zhang and W.S.Yang,"Highly efficient clectrocatalysts for oxygen reduction reaction," Chemical Communications(2007) 4215-4217.
    [37]C.R.Xia and M.L.Liu,"Novel cathodes for low-temperature solid oxide fuel cells,"Advanced Materials,14:(2002) 521-+.
    [38]Q.J.Zhou,T.M.He,Q.He,and Y.Ji,"Electrochemical performances of LaBaCuFeO_(5+x) and LaBaCuCoO_(5+x) as potential cathode materials for intermediate-temperature solid oxide fuel cells," Electrochemistry Communications,11:(2009) 80-83.
    [39]C.D.Zuo,S.W.Zha,M.L.Liu,M.Hatano,and M.Uchiyama,"Ba(Zr_(0.1)Ce_(0.7)Y_(0.2))O_(3-δ) as an electrolyte for low-temperature solid-oxide fuel cells," Advanced Materials,18:(2006)3318-3320.
    [40]H.Iwahara,H.Uchida,and K.Morimoto,"High-Temperature Solid Electrolyte Fuel-Cells Using Perovskite-Type Oxide Based on BaCeO_3," Journal of the Electrochemical Society,137:(1990) 462-465.
    [41]H.Iwahara,H.Uchida,K.Ogaki,and H.Nagato,"Nernstian Hydrogen Sensor Using BaCeO_(3-)Based,Proton-Conducting Ceramics Operative at 200-Degrces-C-900-Degrees-C,"Journal of the Electrochemical Society,135:(1991) 295-299.
    [42]T.Norby,"Solid-state protonic conductors:principles,properties,progress and prospects," Solid State Ionics,125:(1999) 1-11.
    [43]G.Y.Meng,G.L.Ma,Q.L.Ma,R.R.Peng,and X.Q.Liu,"Ceramic membrane fuel cells based on solid proton electrolytes," Solid State Ionics,178:(2007) 697-703.
    [44]J.M.Serra,O.Buchler,W.A.Meulenberg,and H.P.Buchkremer,"Thin BaCe_(0.8)Gd_(0.2)O_(3-δ)protonic electrolytes on porous Ce_(0.8)Gd_(0.2)O_(1.9-)Ni substrates," Journal of the Electrochemical Society,154:(2007) B334-B340.
    [45]K.D.Kreuer,"Proton-conducting oxides," Annual Review of Materials Research,33:(2003)333-359.
    [46]仇立于,“Ba_xCe_(0.8)RE_(0.2)O_(3-δ)陶瓷的合成结构离子导电性及其燃料电池性能”,苏州大学博士学位论文,苏州(2005).
    [47]K.Xie,R.Q.Yan,D.H.Dong,S.L.Wang,X.R.Chen,T.Jiang,B.Lin,M.Wei,X.Q.Liu,and G.Y.Meng,"A modified suspension spray combined with particle gradation method for preparation of protonic ceramic membrane fuel cells," Journal of Power Sources,179:(2008)576-583.
    [48]L.Yang,C.D.Zuo,S.Z.Wang,Z.Cheng,and M.L.Liu,"A novel composite cathode for low-temperature SOFCs based on oxide proton conductors," Advanced Materials,20:(2008)3280-3282.
    [49]R.R.Peng,Y.Wu,L.Z.Yang,and Z.Q.Mao,"Electrochemical properties of intermediate-temperature SOFCs based on proton conducting Sm-doped BaCeO_3 electrolyte thin film," Solid State Ionics,177:(2006) 389-393.
    [50]T.Hibino,A.Hashimoto,M.Suzuki,and M.Sano,"A solid oxide fuel cell using Y-doped BaCeO_3 with Pd-loaded FeO anode and Ba_(0.5)Pr_(0.5)CoO_3 cathode at low temperatures," Journal of the Electrochemical Society,149:(2002) A 1503-A 1508.
    [51]Q.L.Ma,R.R.Peng,Y.J.Lin,H.F.Gao,and G.Y.Meng,"A high-performance ammonia-fueled solid oxide fuel cell," Journal of Power Sources,161:(2006) 95-98.
    [52]N.Ito,M.Iijima,K.Kimura,and S.Iguchi,"New intermediate temperature fuel cell with ultra-thin proton conductor electrolyte," Journal of Power Sources,152:(2005) 200-203.
    [53]Y.Lin,R.Ran,Y.Zheng,Z.P.Shao,W.Q.Jin,N.P.Xu,and J.M.Ahn,"Evaluation of Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ) as a potential cathode for an anode-supported proton-conducting solid-oxide fuel cell," Journal of Power Sources,180:(2008) 15-22.
    [54]K.Xie,Q.L.Ma,B.Lin,Y.Z.Jiang,J.F.Gao,X.Q.Liu,and G.Y.Meng,"An ammonia fuelled SOFC with a BaCe_(0.9)Nd_(0.1)O_(3-δ) thin electrolyte prepared with a suspension spray,"Journal of Power Sources,170:(2007) 38-41.
    [55]L.Bi,S.Q.Zhang,B.Lin,S.M.Fang,C.R.Xia,and W.Liu,"Screen-printed BaCe_(0.8)Sm_(0.2)O_(3-δ)thin membrane solid oxide fuel cells with surface modification by spray coating,” Journal of Alloys and Compounds,473:(2009)48-52.
    [56]N.Maffei,L.Pelletier,J.P.Charland,and A.McFarlan,“A direct ammonia fuel cell using barium cerate proton conducting electrolyte doped with gadolinium and praseodymium,”Fuel Cells,7:(2007)323-328.
    [57]J.W.Phair and S.P.S.Badwal,“Review of proton conductors for hydrogen separation,”Ionics,12:(2006)103-115.
    [58]E.Fabbri,A.D'Epifanio,E.Di Bartolomeo,S.Licoccia,and E.Traversa,“Tailoring the chemical stability of Ba(Ce_(0.8-x)Zr_x)Y_(0.2)O_(3-δ)protonic conductors for Intermediate Temperature Solid Oxide Fuel Cells(IT-SOFCs),” Solid State Ionics,179:(2008)558-564.
    [59]K.D.Kreuer,“Aspects of the formation and mobility of protonic charge carriers and the stability of perovskite-type oxides,” Solid State Ionics,125:(1999)285-302.
    [60]Z.M.Zhong,“Stability and conductivity study of the BaCe_(0.9-x)Zr_xY_(0.1)O_(2.95)systems,” Solid State Ionics,178:(2007)213-220.
    [61]C.D.Zuo,S.E.Dorris,U.Balachandran,and M.L.Liu,"Effect of Zr-doping on the chemical stability and hydrogen permeation of the Ni-BaCe_(0.8)Y_(0.2)O_(3-δ)mixed protonic-electronic conductor,” Chemistry of Materials,18:(2006)4647-4650.
    [62]N.Taniguchi,C.Nishimura,and J.Kato,“Endurance against moisture for protonic conductors of perovskite-type ceramics and preparation of practical conductors,” Solid State Ionics,145:(2001)349-355.
    [63]J.M.Serra and W.A.Meulenberg,“Thin-film proton BaZr_(0.85)Y_(0.15)O_3 conducting electrolytes:Toward an intermediate-temperature solid oxide fuel cell alternative,” Journal of the American Ceramic Society,90:(2007)2082-2089.
    [64]S.W.Tao and J.T.S.Irvine,“A stable,easily sintered proton-conducting oxide electrolyte for moderate-temperature fuel cells and electrolyzers,” Advanced Materials,18:(2006)1581-1584.
    [65]S.W.Tao and J.T.S.Irvine,“Conductivity studies of dense yttrium-doped BaZrO_3 sintered at 1325 degrees C,” Journal of Solid State Chemistry,180:(2007)3493-3503.
    [66]E.Fabbri,D.Pergolesi,A.D'Epifanio,E.Di Bartolomeo,G Balestrino,S.Licoccia,and E.Traversa,“Design and fabrication of a chemically-stable proton conductor bilayer electrolyte for intermediate temperature solid oxide fuel cells(IT-SOFCs),” Energy & Environmental Science,1:(2008)355-359.
    [67]S.Barison,M.Battagliarin,T.Cavallin,L.Doubova,M.Fabrizio,C.Mortalo,S.Boldrini,L.Malavasi,and R.Gerbasi,“High conductivity and chemical stability of BaCe_(1-x-y)Zr_xY_y0_(3-δ) proton conductors prepared by a sol-gel method," Journal of Materials Chemistry,18:(2008)5120-5128.
    [68]S.Barison,M.Battagliarin,T.Cavallin,S.Daolio,L.Doubova,M.Fabrizio,C.Mortalo,S.Boldrini,and R.Gerbasi,"Barium Non-Stoichiometry Role on the Properties of Ba_(1+x)Ce_(0.65)Zr_(0.20)Y_(0.15)O_(3-δ) Proton Conductors for IT-SOFCs," Fuel Cells,8:(2008) 360-368.
    [69]K.Katahira,Y.Kohchi,T.Shimura,and H.Iwahara,"Protonic conduction in Zr-substituted BaCeO_3," Solid State Ionics,138:(2000) 91-98.
    [70]Y.Du and A.S.Nowick,"Galvanic cell measurements on a fast proton conducting complex perovskite electrolyte," Solid State Ionics,91:(1996) 85-91.
    [71]T.Schober,F.Krug,and W.Schilling,"Criteria for the application of high temperature proton conductors in SOFCs," Solid State Ionics,97:(1997) 369-373.
    [72]T.Schober,H.H.Bohn,T.Mono,and W.Schilling,"The high temperature proton conductor Ba_3Ca_(1.18)Nb_(1.82)O_(9-δ) Part Ⅱ:electrochemical cell measurements and TEM," Solid State Ionics,118:(1999) 173-178.
    [73]H.G.Bohn,T.Schober,T.Mono,and W.Schilling,"The high temperature proton conductor Ba_3Ca_(1.18)Nb_(1.82)O_(9-δ~-) Part Ⅰ:Electrical conductivity," Solid State Ionics,117:(1999)219-228.
    [74]B.Gross,S.Marion,K.Lind,D.Grambole,F.Herrmann,and R.Hemplemann,"Proton conducting Ba_3Ca_(1.18)Nb_(1.82)O_(8.73) H_2O:pressure-compositions isotherms in terms of Fermi-Dirac statistics,concentration and fuel-cell measurements,and impedance spectroscopy," Solid State Ionics,125:(1999) 107-117.
    [75]A.D'Epifani,E.Fabbri,E.Di Bartolomeo,S.Licoccia,and E.Traversa,"Design of BaZr_(0.8)Y_(0.2)O_(3-δ) protonic conductor to improve the electrochemical performance in intermediate temperature solid oxide fuel cells(IT-SOFCs)," Fuel Cells,8:(2008) 69-76.
    [76]S.Valkenberg,H.G.Bohn,and W.Schilling,"The electrical conductivity of the high temperature proton conductor Ba_3Ca_(1.18)Nb_(1.82)O_(9-δ,)" Solid State Ionics,97:(1997) 511-515.
    [77]Z.J.Li,R.Q.Liu,Y.H.Xie,S.Feng,and J.D.Wang,"A novel method for preparation of doped Ba_3Ca_(1.18)Nb_(1.82)O_(9-δ):Application to ammonia synthesis at atmospheric pressure," Solid State Ionics,176:(2005) 1063-1066.
    [78]王吉德,宿新泰,刘瑞泉,胡云霞,谢亚红,岳凡,“钙钛矿型高温质子导体研究进展,”化学进展,16:(2004)829-835.
    [79]W.S.Wang and A.V.Virkar,"Determination of ionic and electronic conductivities of Ba_3Ca_(1.18)Nb_(1.82)O_(9-δ) in dry and wet atmospheres," Journal of the Electrochemical Society,151:(2004) A 1565-A 1571.
    [80]G L.Ma,F.Zhang,J.L.Zhu,and G.Y.Meng,"Proton conduction in La_(0.9)Sr_(0.1)Ga_(0.8)Mg_(0.2)O_(3-δ,)" Chemistry of Materials,18:(2006) 6006-6011.
    [81]T.Fukui,S.Ohara,and S.Kawatsu,"Conductivity of BaPrO_3 based perovskite oxides,"Journal of Power Sources,71:(1998) 164-168.
    [82]A.Magraso,F.Espiell,M.Segarra,and J.T.S.Irvine,"Chemical and electrical properties of BaPr_(0.7)Gd_(0.3)O_(3-δ,)" Journal of Power Sources,169:(2007) 53-58.
    [83]T.Omata,K.Ikeda,R.Tokashiki,and S.Otsuka-Yao-Matsuo,"Proton solubility for La_2Zr_2O_7with a pyrochlore structure doped with a series of alkaline-earth ions," Solid State Ionics,167:(2004) 389-397.
    [84]T.Omata,K.Okuda,S.Tsugimoto,and S.Otsuka-Matsuo-Yao,"Water and hydrogen evolution properties and protonie conducting behaviors of Ca~(2+)-doped La_2Zr_2O_7 with a pyrochlore structure," Solid State Ionies,104:(1997) 249-258.
    [85]T.Omata and S.Otsuka-Yao-Matsuo,"Electrical properties of proton-conducting Ca~(2+)-doped La_2Zr_2O_7 with a pyrochiore-type structure," Journal of the Electrochemical Society,148:(2001) E252-E261.
    [86]T.Shimura,M.Komori,and H.Iwahara,"Ionic conduction in pyrochlore-type oxides containing rare earth elements at high temperature," Solid State Ionics,86-8:(1996) 685-689.
    [87]R.Haugsrud and T.Norby,"Proton conduction in rare-earth ortho-niobates and ortho-tantalates," Nature Materials,5:(2006) 193-196.
    [88]K.D.Kreuer,T.Dippel,Y.M.Baikov,and J.Maier,"Water solubility,proton and oxygen diffusion in aceeptor doped BaCeO_3:A single crystal analysis," Solid State Ionics,86-8:(1996) 613-620.
    [89]K.D.Kreuer,S.J.Paddison,E.Spohr,and M.Schuster,"Transport in proton conductors for fuel-cell applications:Simulations,elementary reactions,and phenomenology," Chemical Reviews,104:(2004) 4637-4678.
    [90]R.C.T.Slade and N.Singh,"Generation of Charge-Carders and an H/D Isotope Effect in Proton-Conducting Doped Barium Cerate Ceramics," Journal of Materials Chemistry,1:(1991) 441-445.
    [91]T.Scherban,and A.S.Nowick,"Bulk Protonic Conduction in Yb doped SrCeO_3",Solid State Ionies,35:(1989) 189-194.
    [92]E.Kendrick,J.Kendrick,K.S.Knight,M.S.Islam,and P.R.Slater,"Cooperative mechanisms of fast-ion conduction in gallium-based oxides with tetrahedral moieties,"Nature Materials,6:(2007) 871-875.
    [93]S.Li,F.Schonberger,and P.Slater,"La_(1-x)Ba_(1+x)GaO_(4-x/2):a novel high temperature proton conductor," Chemical Communications,(2003) 2694-2695.
    [1]L.C.De Jonghe,C.P.Jacobson,and S.J.Visco,"Supported electrolyte thin film synthesis of solid oxide fuel cells," Annual Review of Materials Research,33:(2003) 169-182.
    [2]R.R.Peng,Y.Wu,L.Z.Yang,and Z.Q.Mao,"Electrochemical properties of intermediate-temperature SOFCs based on proton conducting Sin-doped BaCeO_3 electrolyte thin film," Solid State Ionics,177:(2006) 389-393.
    [3]马千里,“氨燃料质子导体固态氧化物燃料电池的研究”,中国科学技术大学博士学位论文,合肥(2006).
    [4]K.Xie,R.Q.Yan,D.H.Dong,S.L.Wang,X.R.Chen,T.Jiang,B.Lin,M.Wei,X.Q.Liu,and G.Y.Meng,"A modified suspension spray combined with particle gradation method for preparation of protonic ceramic membrane fuel cells," Journal of Power Sources,179:(2008)576-583.
    [5]K.Xie,Q.L.Ma,B.Lin,Y.Z.Jiang,J.F.Gao,X.Q.Liu,and G.Y.Meng,"An ammonia fuelled SOFC with a BaCe_(0.9)Nd_(0.1)O_3 thin electrolyte prepared with a suspension spray,"Journal of Power Sources,170:(2007) 38-41.
    [6]E.Fabbri,D.Pergolesi,A.D'Epifanio,E.Di Bartolomeo,G.Balestrino,S.Licoccia,and E.Traversa,"Design and fabrication of a chemically-stable proton conductor bilayer electrolyte for intermediate temperature solid oxide fuel cells(IT-SOFCs)," Energy & Environmental Science,1:(2008) 355-359.
    [7]N.Maffei,L.Pelletier,J.P.Charland,and A.McFarlan,"A direct ammonia fuel cell using barium cerate proton conducting electrolyte doped with gadolinium and praseodymium,"Fuel Cells,7:(2007) 323-328.
    [8]K.J.Yoon,W.H.Huang,G.S.Ye,S.Gopalan,U.B.Pal,and D.A.Seccombe,"Electrochemical performance of solid oxide fuel cells manufactured by single step Co-firing process," Journal of the Electrochemical Society,154:(2007) B389-B395.
    [9]R.Q.Yan,D.Ding,B.Lin,M.F.Liu,G.Y.Meng,and X.Q.Liu,"Thin yttria-stabilized zirconia electrolyte and transition layers fabricated by particle suspension spray," Journal of Power Sources,164:(2007) 567-571.
    [1]E.Fabbri,A.D'Epifanio,E.Di Bartolomeo,S.Licoccia,and E.Traversa,"Tailoring the chemical stability of Ba(Ce_(0.8-x)Zr_x)Y_(0.2)O_(3-δ) protonic conductors for Intermediate Temperature Solid Oxide Fuel Cells(IT-SOFCs)," Solid State Ionics,179:(2008) 558-564.
    [2]Z.M.Zhong,"Stability and conductivity study of the BaCe_(0.9-x)Zr_xY_(0.1)O_(2.95) systems," Solid State Ionics,178:(2007) 213-220.
    [3]K.Katahira,Y.Kohchi,T.Shimura,and H.Iwahara,"Protonic conduction in Zr-substituted BaCeO_3," Solid State Ionics,138:(2000) 91-98.
    [4]T.Schober,F.Krug,and W.Schilling,"Criteria for the application of high temperature proton conductors in SOFCs," Solid State Ionics,97:(1997) 369-373.
    [5]Y.Du and A.S.Nowick,"Galvanic cell measurements on a fast proton conducting complex perovskite electrolyte," Solid State Ionics,91:(1996) 85-91.
    [6]H.G.Bohn,T.Schober,T.Mono,and W.Schilling,"The high temperature proton conductor Ba_3Ca_(1.18)Nb_(1.82)O_(9-δ.) I.Electrical conductivity," Solid State Ionics,117:(1999) 219-228.
    [7]T.Schober,H.H.Bohn,T.Mono,and W.Schilling,"The high temperature proton conductor Ba_3Ca_(1.18)Nb_(1.82)O_(9-δ~-) Part Ⅱ:electrochemical cell measurements and TEM," Solid State Ionics,118:(1999) 173-178.
    [8]T.Schober,J.Friedrich,D.Triefenbach,and F.Tietz,"Dilatometry of the high-temperature proton conductor Ba_3Ca_(1.18)Nb_(1.82)O_(9-δ,)" Solid State Ionics,100:(1997) 173-181.
    [9]G.Fehringer,S.Janes,M.Wildersohn,and R.Clasen,"Proton-conducting ceramics as electrode/electrolyte - materials for SOFCs:Preparation,mechanical and thermal-mechanical properties of thermal sprayed coatings,material combination and stacks," Journal of the European Ceramic Society,24:(2004)705-715.
    [10]L.Zhang,Y.J.Zhang,Y.D.Zhen,and S.P.Jiang,"Lanthanum strontium manganite powders synthesized by gel-casting for solid oxide fuel cell cathode materials," Journal of the American Ceramic Society,90:(2007) 1406-1411.
    [11]E.Zimmer,K.Scharf,T.Mono,J.Friedrich,and T.Schober,"Preparation of the high temperature proton conductor Ba_3Ca_(1.18)Nb_(1.82)O_(8.73) via a wet chemical route," Solid State Ionics,97:(1997) 505-509.
    [12]X.T.Su,R.Q.Liu,Y.X.Hu,Y.H.Xie,and J.D.Wang,"Preparation of nanocrystalline Ba_3(Ca_(1.18)Nb_(1.82))O_(9-δ) powder by using citrate sol-gel method," Journal of Inorganic Materials,19:(2004) 229-233.
    [13]B.Gross,S.Marion,K.Lind,D.Grambole,F.Herrmann,and R.Hemplemann,"Proton conducting Ba_3Ca_(1.18)Nb_(1.82)O_(8.73):pressure-compositions isotherms in terms of Fermi-Dirac statistics,concentration and fuel-cell measurements,and impedance spectroscopy," Solid State Ionics,125:(1999) 107-117.
    [14]T.Norby,"Solid-state protonic conductors:principles,properties,progress and prospects,"Solid State Ionics,125:(1999) 1-11.
    [15]S.Valkenberg,H.G.Bohn,and W.Schilling,"The electrical conductivity of the high temperature proton conductor Ba_3Ca_(1.18)Nb_(1.82)O_(9-δ,)" Solid State Ionics,97:(1997) 511-515.
    [16]R.R.Peng,Y.Wu,L.Z.Yang,and Z.Q.Mao,"Electrochemical properties of intermediate-temperature SOFCs based on proton conducting Sin-doped BaCeO_3 electrolyte thin film," Solid State Ionics,177:(2006) 389-393.
    [17]仇立干,“Ba_xCe_(0.8)RE_(0.2)O_(3-δ)陶瓷的合成结构离子导电性及其燃料电池性能”,苏州大学博士学位论文,苏州(2005).
    [1]H.Iwahara,H.Uchida,and K.Morimoto,"High-Temperature Solid Electrolyte Fuel-Cells Using Perovskite-Type Oxide Based on BaCeO_3," Journal of the Electrochemical Society,137:(1990) 462-465.
    [2]H.Iwahara,"Oxide-Ionic and Protonic Conductors Based on Perovskite-Type Oxides and Their Possible Applications," Solid State Ionics,52:(1992) 99-104.
    [3]T.Hibino,K.Mizutani,and H.Iwahara,"H/D Isotope Effect on Electrochemical Pumps of Hydrogen and Water-Vapor Using a Proton-Conductive Solid-Electrolyte," Journal of the Electrochemical Society,140:(1993) 2588-2592.
    [4]T.Norby,"Solid-state protonic conductors:principles,properties,progress and prospects,"Solid State Ionics,125:(1999) 1-11.
    [5]E.Fabbri,D.Pergolesi,A.D'Epifanio,E.Di Bartolomeo,G.Balestrino,S.Licoccia,and E.Traversa,"Design and fabrication of a chemically-stable proton conductor bilayer electrolyte for intermediate temperature solid oxide fuel cells(IT-SOFCs)," Energy & Environmental Science,1:(2008) 355-359.
    [6]S.W.Tao and J.T.S.Irvine,"Conductivity studies of dense yttrium-doped BaZrO_3 sintered at 1325 degrees C," Journal of Solid State Chemistry,180:(2007) 3493-3503.
    [7]J.M.Serra and W.A.Meulenberg,"Thin-film proton BaZr_(0.85)Y_(0.15)O_3 conducting electrolytes:Toward an intermediate-temperature solid oxide fuel cell alternative," Journal of the American Ceramic Society,90:(2007) 2082-2089.
    [8]Z.M.Zhong,"Stability and conductivity study of the BaCe_(0.9-x)Zr_xY_(0.1)O_(2.95) systems," Solid State Ionics,178:(2007) 213-220.
    [9]S.Barison,M.Battagliarin,T.Cavallin,L.Doubova,M.Fabrizio,C.Mortalo,S.Boldrini,L.Malavasi,and R.Gerbasi,"High conductivity and chemical stability of BaCe_(1-x-y)Zr_xY_yO_(3-δ)proton conductors prepared by a sol-gel method," Journal of Materials Chemistry,18:(2008)5120-5128.
    [10]K.Katahira,Y.Kohchi,T.Shimura,and H.Iwahara,"Protonic conduction in Zr-substituted BaCeO_3," Solid State Ionics,138:(2000) 91-98.
    [11]C.D.Zuo,S.W.Zha,M.L.Liu,M.Hatano,and M.Uchiyama,"Ba(Zr_(0.1)Ce_(0.7)Y_(0.2))O_(3-δ) as an electrolyte for low-temperature solid-oxide fuel cells,” Advanced Materials,18:(2006)3318-3320.
    [12]R.Haugsrud and T.Norby,“Proton conduction in rare-earth ortho-niobates and ortho-tantalates,” Nature Materials,5:(2006)193-196.
    [13]L.Bi,S.Q.Zhang,S.M.Fang,L.Zhang,K.Xie,C.R.Xia,and W.Liu,“Preparation of an extremely dense BaCe_(0.8)Sm_(0.2)O_(3-δ)thin membrane based on an in situ reaction,”Electrochemistry Communications,10:(2008)1005-1007.
    [14]J.W.Phair and S.P.S.Badwal,“Review of proton conductors for hydrogen separation,”Ionics,12:(2006)103-115.
    [15]P.K.Srivastava,T.Quach,Y.Y.Duan,R.Donelson,S.P.Jiang,F.T.Ciacchi,and S.P.S.Badwal,“Electrode supported solid oxide fuel cells:Electrolyte films prepared by DC magnetron sputtering,” Solid State Ionics,99:(1997)311-319.
    [16]K.D.Kreuer,T.Dippel,Y.M.Baikov,and J.Maier,“Water solubility,proton and oxygen diffusion in acceptor doped BaCeO_3:A single crystal analysis,” Solid State Ionics,86-8:(1996)613-620.
    [17]K.D.Kreuer,S.Adams,W.Munch,A.Fuchs,U.Klock,and J.Maier,“Proton conducting alkaline earth zirconates and titanates for high drain electrochemical applications,” Solid State Ionics,145:(2001)295-306.
    [18]K.D.Kreuer,E.Schonherr,and J.Maier,“Proton and Oxygen Diffusion in Baceo3 Based Compounds-a Combined Thermal Gravimetric Analysis and Conductivity Study,” Solid State Ionics,70:(1994)278-284.
    [19]K.D.Kreuer,S.J.Paddison,E.Spohr,and M.Schuster,“Transport in proton conductors for fuel-cell applications:Simulations,elementary reactions,and phenomenology,” Chemical Reviews,104:(2004)4637-4678.
    [1]K.Xie,R.Q.Yah,Y.Z.Jiang,X.Q.Liu,and G Y.Meng,"A simple and easy one-step fabrication of thin BaZr_(0.1)Ce_(0.7)Y_(0.2)O_(3-δ) electrolyte membrane for solid oxide fuel cells,"Journal of Membrane Science,325:(2008) 6-10.
    [2]T.Z.Wu,R.R.Peng,and C.R.Xia,"Sm_(0.5)Sr_(0.5)CoO_(3-δ)BaCe_(0.8)Sm_(0.2)O_(3-δ) composite cathodes for proton-conducting solid oxide fuel cells," Solid State Ionics,179:(2008) 1505-1508.
    [3]Y.Lin,R.Ran,Y.Zheng,Z.P.Shao,W.Q.Jin,N.P.Xu,and J.M.Ahn,"Evaluation of Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ) as a potential cathode for an anode-supported proton-conducting solid-oxide fuel cell," Journal of Power Sources,180:(2008) 15-22.
    [4]K.Xie,R.Q.Yan,D.H.Dong,S.L.Wang,X.R.Chen,T.Jiang,B.Lin,M.Wei,X.Q.Liu,and G.Y.Meng,"A modified suspension spray combined with particle gradation method for preparation of protonic ceramic membrane fuel cells,” Journal of Power Sources,179:(2008)576-583.
    [5]Q.L.Ma,R.R.Peng,L.Z.Tian,and G.Y.Meng,“Direct utilization of ammonia in intermediate-temperature solid oxide fuel cells,” Electrochemistry Communications,8:(2006)1791-1795.
    [6]F.Deganello,G.Marci,and G.Deganello,“Citrate-nitrate auto-combustion synthesis of perovskite-type nanopowders:A systematic approach,” Journal of the European Ceramic Society,29:(2009)439-450.
    [7]Y.J.Leng,S.H.Chan,S.P.Jiang,and K.A.Khor,“Low-temperature SOFC with thin film GDC electrolyte prepared in situ by solid-state reaction,” Solid State Ionics,170:(2004)9-15.
    [8]L.Bi,S.Q.Zhang,S.M.Fang,L.Zhang,K.Xie,C.R.Xia,and W.Liu,“Preparation of an extremely dense BaCe_(0.8)Sm_(0.2)O_(3-δ)thin membrane based on an in situ reaction,” Electrochemistry Communications,10:(2008)1005-1007.
    [9]L.Bi,S.Q.Zhang,S.M.Fang,Z.T.Tao,R.R.Peng,and W.Liu,“A novel anode supported BaCe_(0.7)Ta_(0.1)Y_(0.2)O_(3-δ)electrolyte membrane for proton-conducting solid oxide fuel cell,”Electrochemistry Communications,10:(2008)1598-1601.
    [10]J.M.Serra,O.Buchler,W.A.Meulenberg,and H.P.Buchkremer,“Thin BaCe_(0.8)Gd_(0.2)O_(3-δ)protonic electrolytes on porous Ce_(0.8)Gd_(0.2)O_(1.9)-Ni substrates,” Journal of the Electrochemical Society,154:(2007)B334-B340.
    [11]Z.M.Zhong,“Stability and conductivity study of the BaCe_(0.9-x)Zr_xY_(0.1)O_(2.95)systems,” Solid State Ionics,178:(2007)213-220.
    [12]R.Q.Yan,D.Ding,B.Lin,M.F.Liu,G Y.Meng,and X.Q.Liu,“Thin yttria-stabilized zirconia electrolyte and transition layers fabricated by particle suspension spray,” Journal of Power Sources,164:(2007)567-571.
    [13]J.Y.Hu,Z.Lu,K.F.Chen,X.Q.Huang,N.Ai,X.B.Du,C.W.Fu,J.M.Wang,and W.H.Su,“Effect of composite pore-former on the fabrication and performance of anode-supported membranes for SOFCs,” Journal of Membrane Science,318:(2008)445-451.
    [14]W.W.Sun,X.Q.Huang,Z.Lu,L.J.Zhao,B.Wei,S.Y.Li,K.F.Chen,N.Ai,and W.H.Su,“NiO plus YSZ anode substrate for screen-printing fabrication of YSZ electrolyte film in solid oxide fuel cell,” Journal of Physics and Chemistry of Solids,70:(2009)164-168.
    [15]S.Q.Zhang,L.Bi,L.Zhang,Z.T.Tao,W.P.Sun,H.Q.Wang,and W.Liu,“Stable BaCe_(0.5)Zr_(0.3)Y_(0.16)Zn_(0.04)O_(3-δ)thin membrane prepared by in situ tape casting for proton-conducting solid oxide fuel cells,” Journal of Power Sources,188:(2009)343-346.
    [1]T.Norby,"Solid-state protonic conductors:principles,properties,progress and prospects," Solid State Ionics,125:(1999)1-11.
    [2]J.W.Phair and S.P.S.Badwal,“Review of proton conductors for hydrogen separation,” Ionics,12:(2006)103-115.
    [3]S.W.Tao and J.T.S.Irvine,“A stable,easily sintered proton-conducting oxide electrolyte for moderate-temperature fuel cells and electrolyzers,” Advanced Materials,18:(2006)1581-1584.
    [4]S.W.Tao and J.T.S.Irvine,“Conductivity studies of dense yttrium-doped BaZrO_3 sintered at 1325 degrees C,” Journal of Solid State Chemistry,180:(2007)3493-3503.
    [5]A.D'Epifani,E.Fabbri,E.Di Bartolomeo,S.Licoccia,and E.Traversa,“Design of BaZr_(0.8)Y_(0.2)O_(3-δ)protonic conductor to improve the electrochemical performance in intermediate temperature solid oxide fuel cells(IT-SOFCs),” Fuel Cells,8:(2008)69-76.
    [6]J.M.Serra and W.A.Meulenberg,“Thin-film proton BaZr_(0.85)Y_(0.15)O_3 conducting electrolytes:Toward an intermediate-temperature solid oxide fuel cell alternative,” Journal of the American Ceramic Society,90:(2007)2082-2089.
    [7]K.Katahira,Y.Kohchi,T.Shimura,and H.Iwahara,“Protonic conduction in Zr-substituted BaCeO_3,”Solid State Ionics,138:(2000)91-98.
    [8]S.Barison,M.Battagliarin,T.Cavallin,S.Daolio,L.Doubova,M.Fabrizio,C.Mortalo,S.Boldrini,and R.Gerbasi,“Barium Non-Stoichiometry Role on the Properties of Ba_(1+x)Ce_(0.65)Zr_(0.20)Y_(0.15)O_(3-δ)Proton Conductors for IT-SOFCs,” Fuel Cells,8:(2008)360-368.
    [9]Z.M.Zhong,“Stability and conductivity study of the BaCe_(0.9-x)Zr_xY_(0.1)O_(2.95)systems,” Solid State Ionics,178:(2007)213-220.
    [10]E.Fabbri,A.D'Epifanio,E.Di Bartolomeo,S.Licoccia,and E.Traversa,“Tailoring the chemical stability of Ba(Ce_(0.8-x)Zr_x)Y_(0.2)O_(3-δ)protonic conductors for Intermediate Temperature Solid Oxide Fuel Cells(IT-SOFCs),” Solid State Ionics,179:(2008)558-564.
    [11]C.D.Savaniu,J.Canales-Vazquez,and J.T.S.Irvine,“Investigation of proton conducting BaZr_(0.9)Y_(0.1)O_(2.95):BaCe_(0.9)Y_(0.1)O_(2.95)core-shell structures,” Journal of Materials Chemistry,15:(2005)598-604.
    [12]E.Gorbova,V.Maragou,D.Medvedev,A.Demin,and P.Tsiakaras,“Influence of Cu on the properties of gadolinium-doped barium cerate,” Journal of Power Sources,181:(2008)292-296.
    [13]E.Gorbova,V.Maragou,D.Medvedev,A.Demin,and P.Tsiakaras,“Influence of sintering additives of transition metals on the properties of gadolinium-doped barium cerate,” Solid State Ionics,179:(2008)887-890.
    [14]P.Babilo and S.M.Haile,“Enhanced sintering of yttrium-doped barium zirconate by addition of ZnO,” Journal of the American Ceramic Society,88:(2005)2362-2368.
    [15]K.D.Kreuer,“Proton-conducting oxides,” Annual Review of Materials Research,33:(2003)333-359.
    [16]K.D.Kreuer,S.Adams,W.Munch,A.Fuchs,U.Klock,and J.Maier,“Proton conducting alkaline earth zirconates and titanates for high drain electrochemical applications,” Solid State Ionics,145:(2001)295-306.
    [17]H.Matsumoto,Y.Kawasaki,N.Ito,M.Enoki,and T.Ishihara,“Relation between electrical conductivity and chemical stability of BaCeO_3-based proton conductors with different trivalent dopants,” Electrochemical and Solid State Letters,10:(2007)B77-B80.
    [18]K.Kunstler,H.J.Lang,A.Maiwald,and G.Tomandl,“Synthesis,structure and electrochemical properties of In-doped BaCeO_3,”Solid State Ionics,107:(1998)221-229.
    [19]F.Giannici,A.Longo,A.Balema,K.D.Kreuer,and A.Martorana,“Indium doping in barium cerate:the relation between local symmetry and the formation and mobility of protonic defects,” Chemistry of Materials,19:(2007)5714-5720.
    [20]C.D.Zuo,S.W.Zha,M.L.Liu,M.Hatano,and M.Uchiyama,“Ba(Zr_(0.1)Ce_(0.7)Y_(0.2))O_(3-δ)as an electrolyte for low-temperature solid-oxide fuel cells,” Advanced Materials,18:(2006)3318-3320.
    [21]C.D.Zuo,T.H.Lee,S.E.Dorris,U.Balachandran,and M.L.Liu,“Composite Ni-Ba(Zr_(0.1)Ce_(0.7)Y_(0.2))O_3 membrane for hydrogen separation,” Journal of Power Sources,159:(2006)1291-1295.
    [22]C.D.Zuo,S.E.Dorris,U.Balachandran,and M.L.Liu,“Effect of Zr-doping on the chemical stability and hydrogen permeation of the Ni-BaCe_(0.8)Y_(0.2)O_(3-δ)mixed protonic-electronic conductor,” Chemistry of Materials,18:(2006)4647-4650.
    [23]K.Xie,R.Q.Yan,Y.Z.Jiang,X.Q.Liu,and G.Y.Meng,“A simple and easy one-step fabrication of thin BaZr_(0.1)Ce_(0.7)Y_(0.2)O_(3-δ)electrolyte membrane for solid oxide fuel cells,”Journal of Membrane Science,325:(2008)6-10.
    [24]Y.Lin,R.Ran,Y.Zheng,Z.P.Shao,W.Q.Jin,N.P.Xu,and J.M.Ann,“Evaluation of Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ)as a potential cathode for an anode-supported proton-conducting solid-oxide fuel cell,” Journal of Power Sources,180:(2008)15-22.
    [25]B.Lin,S.Q.Zhang,L.C.Zhang,L.Bi,H.P.Ding,X.Q.Liu,H.F.Gao,and G.Y.Meng,“Prontonic ceramic membrane fuel cells with layered GdBaCo_2O_(5+x)cathode prepared by gel-casting and suspension spray,” Journal of Power Sources,177:(2008)330-333.
    [26]N.I.Matskevich,“Enthalpy of formation of BaCe_(0.9)In_(0.1)O_(3-δ),” Journal of Thermal Analysis and Calorimetry,90:(2007)955-958.
    [27]K.Xie,Q.L.Ma,B.Lin,Y.Z.Jiang,J.F.Gao,X.Q.Liu,and G.Y.Meng,“An ammonia fuelled SOFC with a BaCe_(0.9)Nd_(0.1)O_(3-δ)thin electrolyte prepared with a suspension spray,”Journal of Power Sources,170:(2007)38-41.
    [28]K.Xie,R.Q.Yan,D.H.Dong,S.L.Wang,X.R.Chen,T.Jiang,B.Lin,M.Wei,X.Q.Liu,and G Y.Meng,“A modified suspension spray combined with particle gradation method for preparation of protonic ceramic membrane fuel cells,” Journal of Power Sources,179:(2008)576-583.
    [29]L.Bi,S.Q.Zhang,B.Lin,S.M.Fang,C.R.Xia,and W.Liu,“Screen-printed BaCe_(0.8)Sm_(0.2)O_(3-δ)thin membrane solid oxide fuel cells with surface modification by spray coating,” Journal of Alloys and Compounds,473:(2009)48-52.
    [30]K.T.Lee and A.Manthiram,“LaSr_3Fe_(3-y)Co_yO_(10-δ)(0 <= y<<= 1.5)intergrowth oxide cathodes for intermediate temperature solid oxide fuel cells,” Chemistry of Materials,18:(2006)1621-1626.
    [31]W.W.Sun,X.Q.Huang,Z.Lu,L.J.Zhao,B.Wei,S.Y.Li,K.F.Chen,N.Ai,and W.H.Su,“NiO plus YSZ anode substrate for screen-printing fabrication of YSZ electrolyte film in solid oxide fuel cell,” Journal of Physics and Chemistry of Solids,70:(2009)164-168.
    [32]J.Y.Hu,Z.Lu,K.F.Chen,X.Q.Huang,N.Ai,X.B.Du,C.W.Fu,J.M.Wang,and W.H.Su,“Effect of composite pore-former on the fabrication and performance of anode-supported membranes for SOFCs,” Journal of Membrane Science,318:(2008)445-451.
    [33]E.Fabbri,D.Pergolesi,A.D'Epifanio,E.Di Bartolomeo,G.Balestrino,S.Licoccia,and E.Traversa,“Design and fabrication of a chemically-stable proton conductor bilayer electrolyte for intermediate temperature solid oxide fuel cells(IT-SOFCs),” Energy & Environmental Science,1:(2008)355-359.
    [1]S.M.Halle,"Fuel cell materials and components," Acta Materialia,51:(2003) 5981-6000.
    [2]P.Aguiar,D.J.L.Brett,and N.P.Brandon,"Feasibility study and techno-economic analysis of an SOFC/battery hybrid system for vehicle applications," Journal of Power Sources,171:(2007) 186-197.
    [3]K.Alanne,A.Saari,V.I.Ugursal,and J.Good,"The financial viability of an SOFC cogeneration system in single-family dwellings," Journal of Power Sources,158:(2006)403-416.
    [4]K.Matsumoto and K.Kasahara,"Long-term commitment of Japanese gas utilities to PAFCs and SOFCs," Journal of Power Sources,71:(1998) 51-57.
    [5]L.C.De Jonghe,C.P.Jacobson,and S.Jo Visco,"Supported electrolyte thin film synthesis of solid oxide fuel cells," Annual Review of Materials Research,33:(2003) 169-182.
    [6]F.Zhao,Z.Y,Wang,M.F.Liu,L.Zhang,C.R.Xia,and F.L.Chen,"Novel nano-network cathodes for solid oxide fuel cells," Journal of Power Sources,185:(2008) 13-18.
    [7]H.Z.Zhang,H.Y.Liu,Y.Cong,and W.S.Yang,"Investigation of Sm_(0.5)Sr_(0.5)CoO_(3-δ)/Co_3O_4composite cathode for intermediate-temperature solid oxide fuel cells," Journal of Power Sources,185:(2008)129-135.
    [8]S.Q.Zhang,L.Bi,L.Zhang,Z.T.Tao,W.P.Sun,H.Q.Wang,and W.Liu,“Stable BaCe_(0.5)Zr_(0.3)Y_(0.16)Zn_(0.04)O_(3-δ)thin membrane prepared by in situ tape casting for proton-conducting solid oxide fuel cells,” Journal of Power Sources,188:(2009)343-346.
    [9]L.Yang,C.D.Zuo,S.Z.Wang,Z.Cheng,and M.L.Liu,“A novel composite cathode for low-temperature SOFCs based on oxide proton conductors,” Advanced Materials,20:(2008)3280-3282.
    [10]K.T.Lee and A.Manthiram,“LaSr_3Fe_(3-y)CoyO_(10-δ)(0 <= y<<= 1.5)intergrowth oxide cathodes for intermediate temperature solid oxide fuel cells,” Chemistry of Materials,18:(2006)1621-1626.
    [11]K.J.Yoon,P.Zink,S.Gopalan,and U.B.Pal,“Polarization measurements on single-step co-fired solid oxide fuel cells(SOFCs),” Journal of Power Sources,172:(2007)39-49.
    [12]K.J.Yoon,W.H.Huang,G.S.Ye,S.Gopalan,U.B.Pal,and D.A.Seccombe,“Electrochemical performance of solid oxide fuel cells manufactured by single step Co-firing process,” Journal of the Electrochemical Society,154:(2007)B389-B395.
    [13]M.F.Liu,D.H.Dong,F.Zhao,J.F.Gao,D.Ding,X.Q.Liu,and G.Y.Meng,“High-performance cathode-supported SOFCs prepared by a single-step co-firing process,”Journal of Power Sources,182:(2008)585-588.
    [14]L.Bi,S.Q.Zhang,B.Lin,S.M.Fang,C.R.Xia,and W.Liu,“Screen-printed BaCe_(0.8)Sm_(0.2)O_(3-δ)thin membrane solid oxide fuel cells with surface modification by spray coating,” Journal of Alloys and Compounds,473:(2009)48-52.
    [15]T.Z.Wu,R.R.Peng,and C.R.Xia,“Sm_(0.5)Sr_(0.5)CoO_(3-δ)-BaCe_(0.8)Sm_(0.2)O_(3-δ)composite cathodes for proton-conducting solid oxide fuel cells,”Solid State Ionics,179:(2008)1505-1508.
    [16]M.Asamoto,H.Shirai,H.Yamaura,and H.Yahiro,“Fabrication of BaCe_(0.8)Y_(0.2)O_3 dense film on perovskite-type oxide electrode substrates,” Journal of the European Ceramic Society,27:(2007)4229-4232.
    [17]H.Yamaura,T.Ikuta,H.Yahiro,and G.Okada,“Cathodic polarization of strontium-doped lanthanum ferrite in proton-conducting solid oxide fuel cell,” Solid State Ionics,176:(2005)269-274.
    [18]K.Xie,Q.L.Ma,B.Lin,Y.Z.Jiang,J.F.Gao,X.Q.Liu,and G Y.Meng,“An ammonia fuelled SOFC with a BaCe_(0.9)Nd_(0.1)O_(3-δ)thin electrolyte prepared with a suspension spray,”Journal of Power Sources,170:(2007)38-41.
    [19]R.R.Peng,Y.Wu,L.Z.Yang,and Z.Q.Mao,“Electrochemical properties of intermediate-temperature SOFCs based on proton conducting Sm-doped BaCeO_3 electrolyte thin film,” Solid State Ionics,177:(2006)389-393.
    [20]P.Von Dollen and S.Barnett,“A study of screen printed yttria-stabilized zirconia layers for solid oxide fuel cells,” Journal of the American Ceramic Society,88:(2005)3361-3368.