钙钛矿型质子导体的制备、性质表征及其在铝液脱氢和传感测氢中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自八十年代初期,掺杂Yb3+的SrCeO3被发现在高温含氢或水蒸气气氛中表现出良好的质子传导性以来,钙钛矿型质子导体在固体氧化物燃料电池、气体传感器、氢泵、水蒸气电解制氢、有机化合物的加氢和脱氢、常压合成氨等电化学装置日益显示重要的应用价值和广阔的应用前景,引起了世界各国专家学者的广泛关注。
     本论文综述了钙钛矿型质子导体的晶体结构、质子的形成、传导机理和应用前景,并按照化学成分分类讨论其电学性质的特点;介绍了常用的钙钛矿型质子导体的制备和表征方法;讨论了制备过程中的原料球磨时间对BaCe0.90Y0.10O3-α和Ba3Ca1.18Nb1.82O9-δ的粉体粒度、晶体结构、微观形貌及导电性能的影响;尝试采用热压铸方法来成型CaZr0.9In0.1O3-α管,摸索出一套合理的工艺参数,并对CaZr0.9In0.1O3-α的性质进行了表征;概述了目前国内外铝和铝合金熔体的测氢和脱氢技术现状,分别以CaZr0.9In0.1O3-α、BaCe0.90Y0.10O3-α、BaCe0.85Y0.15O3-α和BaCe0.90Sm0.10O3-α为电解质制作电化学氢泵,以CaZr0.9In0.1O3-α为电解质制作氢传感器,运用电化学方法对铝熔体进行了脱氢和测氢研究;总结全文,提出了钙钛矿型质子导体进一步研究的发展方向。
     通过实验和分析所取得的主要研究结果为:
     (1)适度延长原料球磨时间,原料颗粒得到进一步细化,不仅能降低BaCe0.90Y0.10O3-α或Ba3Ca1.18Nb1.82O9-δ的合成温度,还能使合成粉体保持粒度小、分布窄和比表面积大的特性,其烧结样品的致密度和导电性能也得到相应提高。
     (2) BaCe0.90Sm0.10O3-α、BaCe0.90Y0.10O3-α和BaCe0.85Y0.15O3-α质子导体在空气中573~873K内的电导率依次提高,电导激活能依次降低,表明提高Y元素的掺杂含量或掺杂与Ce4+离子半径接近的小半径离子有利于改善BaCeO3基材料的电学性质。
     (3)一套合理的热压铸成型CaZr0.9In0.1O3-α管的工艺参数为:压力0.5MPa,持续时间15s,模具温度30℃,蜡浆温度73℃,蜡浆成分配比粉体:石蜡:蜂蜡:油酸=87.8%:11%:1%:0.2%,排蜡温度1000℃。CaZr0.9In0.1O3-α烧结样品中In含量降低,是由于样品在烧结过程中分解出少量的In2O3离解为InO+O2, InO升华造成的。
     (4)由CaZr0.9In0.1O3-α作电解质制作电化学氢泵分别在真空抽取、气体携带和外加电压条件下对铝液进行脱氢。结果表明,外加电压1.5V时的脱氢速度最快,其次为真空抽取法。气体携带法的脱氢效率相对较低,而氧气的携带效果相对好于氩气携带。
     (5)由BaCe0.90Y0.10O3-α、BaCe0.85Y0.15O3-α和BaCe0.90Sm0.10O3-α作电解质分别制作的电化学氢泵,在铝液温度760℃、780℃和800℃,铝液上方的水蒸气分压4122.8Pa~4754.7Pa,外加电压0.4V、0.8V和1.2V时对铝熔体进行脱氢。结果表明,氢泵中的电流随铝液温度的升高,铝液上方水蒸气分压的增加和外加电压的增大而增大。
     (6)制备了一种新型的参比电极材料YH0.55+YH0.9,并用于CaZr0.9In0.1O3-α作电解质的铝液测氢传感器中,传感器的响应时间约20s。
Since it was reported that SrCeO3 doped Yb3+ion showed good protonic conduction under atmosphere containing hydrogen or steam at high temperature in early 1980's, the applications of perovskite-type proton conductors on electrochemical devices such as solid oxide fuel cells, gas sensors, hydrogen pump, steam electrolyzer for hydrogen production, hydrogenation and dehydrogenation of organic compound have exihibited very important values and wide prospect and attracted extensive attention all over the world.
     In this paper, we reviewed crystal structure, forming of proton, conduction mechanism and application prospect of perovskite-type proton conductors, and characteristics of perovskite-type proton conductors were classified and discussed according to their chemical constituents (1 st Chapter). And then the common preparation and characterization methods of perovskite-type proton conductors were introduced (2nd Chapter); The influence of milling time for original mixture during the preparation process on partical size distribution, crystal structure, micro-topography and electrical property of BaCe0.90Y0.10O3-αand Ba3Ca1.18Nb1.82O9-δpowders and sintered samples were discussed (3rd,5th Chapter); This paper attempts to form CaZr0.9In0.1O3-αtubes by hot pressure casting. And a set of reasonable process parameters were found. Meanwhile, properties of CaZr0.9In0.1O3-αproton conductor were characterized (4th Chapter). The present situation about dehydrogenation and detection of hydrogen in molten aluminium and aluminium alloy was introduced at home and abroad at present; Electrochemical hydrogen pumps constructed by CaZr0.9In0.1O3-α, BaCe0.90Y0.10O3-α, BaCe0.85Y0.15O3-αand BaCe0.90Sm0.10O3-αas electrolytes were used to dehydrogenate molten aluminium and the hydrogen content was detected by the sensors constructed by CaZr09In0.1O3-αas electrolyte by electrochemical method (6th Chapter); At the end of the paper, the discussions were summed up (7th Chapter) and further studying on perovskite-type proton conductors and its development direction was described (8th Chapter).
     The main research results of this work were reported as follows:
     (1) The powder particles were refined by prolonging the milling time of original mixture properly, which can not only lower the synthesis temperature of BaCe0.90Y0.10O3-αor Ba3Ca1.18Nb1.82O9-δ, but also can synthesize the powders with small particle size, narrow particle size distribution and large specific surface area. As a result, the densities and electrical properties of sintered samples were improved, respectively.
     (2) The conductivities of BaCe0.90Sm0.10O3-α,BaCe0.90Y0.10O3-αand BaCe0.85Y0.15O3-αproton conductors increased, whose activation energies decreased in turn at 573-873K in air. This result indicates that the electrical properties of BaCeO3-based materials also can be improved by means of increasing the concent of Y3+ion or doping the ion whose radius is close to the radius of Ce4+ion.
     (3) A set of reasonable parameters for forming CaZr0.9In0.1O3-αtubes by hot pressure casting included the casting pressure 0.5MPa, the duration of pressure 15s, the mold temperature 30℃, the wax material temperature 73℃, the wax material composed of powders 87.8%, paraffin 11%, beeswax 1%, oleic acid 0.2% and the wax removal temperature 1000℃. The content of In3+ion decreased in the sintered samples, which was due to the dissociation of In2O3 for InO and O2 during the sintering.
     (4) Electrochemical hydrogen pump constructed by CaZr0.9In0.1O3-αas electrolyte was used to dehydrogenate the molten Aluminium by vacuum extracting, gas carrying or applied voltage method, respectively. The results showed that the fastest dehydrogenating rate was realized by applying voltage 1.5V, and then vacuum extracting. The dehydrogenating rate by gas carrying was relatively low. The effect of oxygen gas carrying was better than that of argon gas carrying.
     (5) The molten Aluminium is dehydrogenated by an electrochemical hydrogen pump constructed by BaCe0.90Sm0.10O3-α, BaCe0.85Y0.15O3-αand BaCe0.90Y0.10O3-αas electrolyte in molten aluminium at 760℃,780℃and 800℃, at water vapor pressure between 4122.8Pa and 4754.7Pa and applied voltage of 0.4V,0.8V and 1.2V, respectively. The results exhibited that the current in the pumps became larger when the temperature in molten Aluminium, water vapor pressure or applied voltage increased.
     (6) The mixture of YH0.55+YH0.9 was synthesized as a new type of reference electrode material. The response time of the hydrogen sensor constucted by CaZr0.9In0.1O3-αas electrolyte and YH0.55+YH0.9 as reference electrode was about 20s.
引文
1.王常珍主编.冶金物理化学研究方法[M],北京:冶金工业出版社,2002,136
    2. Faraday M, in Philosophical Transactions of the Royal Society of London, Richard and John Taylor, London,1838:90
    3.足立吟也,岛田昌彦,南努编.新无机材料科学[M],东京:化学同人,1993,102
    4. 王常珍编.固体电解质与化学传感器[M],北京:冶金工业出版社,2004,1
    5. Owens B B. Solid state electrolytes:overview of materials and applications during the last third of the Twentieth Century[J], J Power Sources,2000,90:2-8
    6.徐志弘,温廷琏,吕之奕.质子导体[J],上海硅酸盐,1993,4:193-200
    7. Alberti G, Casciola M. Solid state protonic conductors, present main applications and future prospects[J], Solid State Ionics,2001,145(1-4):3-16
    8. Stotz S, Wanger C, Bunsenges Ber. The solubility of water vapor and of hydrogen in solid oxides[J], Phys Chem,1966,70:781-788
    9. Tkahashi T, Iwahara H. Solid-state ionics:protonic conduction in perovskite type oxide solid solutions[J], Rev Chim Miner.1980,17(4):243-253
    10. Iwahara H, Esaka T, Uchida H, Maeda N. Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production[J], Solid State Ionics,1981,3-4: 359-365
    11. Iwahara H, Uchida H, Ogaki K. Proton conduction in sintered oxides based on BaCeO3[J], J Electrochem Soc,1988,135(2):529-533
    12. Misul A, Miyayama M, Yanagida H. Evaluation of the activation energy for proton conduction in perovskite-type oxides[J], Solid State Ionics,1987,32(2-3):213-217
    13. Yajima T, Kazeoka H, Yogo T, Iwahara H. Proton conduction in sintered oxides based on CaZrO3[J], Solid State Ionies,1991,47(3-4):271-275
    14. Shin S, Huang H H, Ishigame M. Protonic conduction in the single crystals of SrZrO3 and SrCeO3 doped with Y2O3[J], Solid State Ionics,1992,51(40-41):101-103
    15. Tanigushi N, Hatoh K, Niikura J, Gamo T. Proton conductive properties of gadolinium-doped barium cerates at high temperatures[J], Solid State Ionics,1992, 53-56(pt2):998-1003
    16. Liang K C, Nowick A S. High-temperature protonic conduction in mixed perovskite ceramics[J], Solid State Ionics,1993,61(1-3):77-81
    17. Bonanos N, Knight K S, Ellis B. Perovskite solid electrolytes:Structure,transport properties and fuel cell applications[J], Solid State Ionics,1995,79:161-170.
    18.王广建,秦永宁,马智,王永成.钙钛矿型复合氧化物材料[J],化学通报,2005,(2):117-122
    19.李中秋,侯桂芹,张文丽,仉小猛.钙钛矿型固体电解质材料的研究进展[J],山东陶瓷,2005,28(4):6-9
    20.李志杰.钙钛矿型高温质子导体的合成及其在电化学合成氨中的应用,新疆大学硕士研究生学位论文[D],2005
    21. Uchida H, Maeda N, Iwahara H. Relation between proton and hole conduction in SrCeO3-based solid electrolytes under water-containing atmospheres at high temperatures[J], Solid State Ionics,1983,11(2):117-124
    22. Uchida H, Yoshikawa H, Esaka T, Ohtsu S, Iwahara H. Formation of protons in SrCeO3-based proton conducting oxides. Part Ⅱ. Evaluation of proton concentration and mobility in Yb-doped SrCeO3[J], Solid State Ionics,1989,36(1-2):89-95
    23. Scherban T, Lee W K, Nowick A S. Bulk protonic conduction in Yb-doped SrCeO3 and BaCeO3[J], Solid State Ionics,1988,28-30(pt1):585-588
    24. Nowick A S, Scherban T. Bulk protonic conduction in Yb-doped SrCeO3[J], Solid State Ionics,1989,35(1-2):189-194
    25. Slade R C T, Singh N. Systematic examination of hydrogen ion conduction in rare-earth doped barium cerate ceramics[J], Solid State Ionics,1991,46(1-2):111-115
    26. Scherban T, Baikov Y M, Shalkova E. H+/D+isotope effect in Y-doped BaCeO3 crystals[J], Solid State Ionics,1999,66(1-2):159-164
    27.马千里.氨燃料质子导体固态氧化物燃料电池的研究[D],合肥:中国科学技术大学,2006
    28. Ma G L, Shimura T, Iwahara H. Simultaneous doping with La3+and Y3+ for Ba+ -and Ce4+-sites in BaCeO3 and the ionic conduction[J], Solid State Ionics,1999,120(1-4): 51-60
    29. Goldschmidt V M, Akad, Oslo I. Mat Nature,1926,2:7
    30. Hibino T, Mizutani K, Yajima T, Iwahara H. Characterization of proton in Yttrium-doped strontium zirconate(SrZrO3) polycrystal by IR spectroscopy[J], Solid State Ionics,1992, 58(1-2):85-88
    31. Yugami H, Shibayama Y, Hattori T, Ishigame M. Proton diffusivity in SrZrO3:Sc3+single crystals studied by infrared absorption spectroscopy[J], Solid State Ionics,1995,79: 171-176
    32. Sata N, Hiramoto K, Ishigame M, Hosoya S, Niimura N, Shin S. Site identification of protons in SrTiO3:mechanism for large protonic conduction[J], Phys Rev B Condens Matter,1996,54(22):15795-15799
    33. Yugami H, Matsuo S, Ishigame M. Persistent spectral hole-burning of Eu3+and Pr3+in SrZr1-xYxO3 Crystals[J], Solid State Ionics,1995,77:195-200
    34. Yugami H, Chiba Y, Ishigame M. Local Structures in Y3+-doped SrCeO3 crystals Studied by Site-Selective Spectroscopy[J], Solid State Ionics,1995,77:201-206
    35. Sata N, Matsuta H, Akiyama Y, Chiba Y, Shin S, Ishigame M. Fabrication of proton conducting thin films of SrZrO3 and SrCeO3 and their fundamental characterization[J], Solid State Ionics,1997,97(1-4):437-441
    36. Shimojo F, Hoshino K, Okazaki H. First-principles molecular-dynamics simulation of proton diffusion in perovskite oxides[J], Solid State Ionics,1998,113-115:319-323
    37. Shimojo F, Hoshino K. Microscopic mechanism of proton conduction in perovskite oxides from ab initio molecular dynamics simulations[J], Solid State Ionics,2001,145: 421-427
    38. Kreuer K D. Aspects of the formation and mobility of protonic charge carriers and the stability of perovskite-type oxides[J], Solid State Ionies,1999,125(1-4):285-302
    39. Munch W, Kreuer K D, Seiefrt G, Maier J. A quantum molecular dynamics study of proton diffusion in SrTiO3 and CaTiO3[J], Solid State Ionies,1999,125(1-4):39-45
    40. Pionke M, Mono T, Schweika W, Springer T, Schober H. Investigation of the hydrogen mobility in a mixed perovskite Ba[Ca(1+x)/3Nb(2-x)/3]O3-x/2 by quasielastic neutron scattering[J], Solid State Ionics,1997,97:497-504
    41. Matsushita E, Sasaki T. Theoretical approach for protonic conduction in perovskite-type oxides[J], Solid State Ionics,1999,125(1-4),31-37
    42. Matsushita E. Tunneling mechanism on proton conduction in perovskite oxides[J], Solid State Ionics,2001,145:445-450
    43.李芳.固体电解质质子导体的研究进展[J],化学研究,2006,17(2):108-112
    44. Hempelmann R. Hydrogen diffusion mechanism in proton conducting oxides[J], PhyB, 1996,226:72-77
    45. Iwahara H, Shimura T, Matsumoto H. Protonic conduction in oxides at elevated temperatures and their possible applications[J], Electrochemistry,2000,68:154-161
    46.王洪涛,马桂林,仇立干SrCe0.9Yb0.1O3-α陶瓷的导电性[J],化学学报,2004,62(23):2287-2291
    47. Iwahara H, Shimura T, Matsumoto H. Protonic conduction in oxides at elevated temperatures and their possible applications[J], Electrochemistry,2000,68:154-161
    48.陶宁,蒋凯BaCe1-xRExO3-δ稀土复合氧化物的合成、表征及电导率[J],化学世界,2001,8:399-401
    49. Iwahara H, Yajima T, Ushida H. Effect of ionic radii of dopants on mixed ionic conduction (H++O2-) in BaCeO3-based electrolytes[J], Solid State Ionies,1994, 70-71(pt1):267-271
    50. Guan J, Dorris E, Balaehandran U, Liu M. Transport properties of BaCeo.95Yo.o503-a mixed conductors for hydrogen separation[J], Solid State lonics,1997,100(1-2):45-52
    51. Iwahara H, Uxhida H, Moromoto K. High-temperature solid electrolyte fuel cells using perovskite type oxide base on BaCeO3[J],1990,137(2):462-465
    52. Frade J R. Theoretical behaviour of concentration cells based on ABO3 perovskite materials with protonic and oxygen ion conduction[J], Solid State Ionics,1995,78(1-2): 87-97
    53. Kreuer K D. Aspects of the formation and mobility of protonic charge carriers and the stability of perovskite-type oxides[J], Solid State Ionics,1999,125(1-4):285-302
    54. Le J, L N. Van R, R. C. van Landschoot and Schoonman J. A wet-chemical method for the synthesis of In-doped CaZrO3 ceramic powders[J], J European Ceramic Society,1999, 19(15):2589-2591
    55. Shimada T, Wen C, Taniguchi N, Otomo J, Takahashi H. The high temperature proton conductor BaZr0.4Ce0.4In0.2O3-σ[J], J Power Sources,2004,131(1-2):289-292
    56. Zuo C D, Lee T H, Dorris S E, Balachandran U, Liu M. Composite Ni-Ba(Zr0.1Ce0.7Y0.2)O3 membrane for hydrogen separation[J], J Power Sources,2006, 159(2):1291-1295
    57. Taniguchi N, Nishimura C, Kato J. Endurance against moisture for protonic conductors of perovskite-type ceramics and preparation of practical conductors[J], Solid State Ionics, 2001,145(1-4):349-355
    58. Ryu K H, Haile S M. Chemical stability and proton conductivity of doped BaCeO3-BaZrO3 solid solutions[J], Solid State Ionics,1999,125(1-4):355-367
    59. Katahira K, Kohchi Y, Shimura T, Iwahara H. Protonic conduction in Zr-substituted BaCeO3[J], Solid State Ionics,2000,138(1-2):91-98
    60. Ma G L, Shimura T, Iwahara H. Ionic conduction and nonstoichiometry in BaxCe0.90Y0.10O3-α[J], Solid State Ionics,1998,110:103-110
    61. Scherban T, Nowick A S, Boatner L A, Abraham M M. Protons and other defects in Fe-doped KTaO3[J], Applied Physics A,1992,55(10):324-331
    62. Shimura T, Suzuki K, Iwahara H. High temperature protonic conduction in Sr2TiO4-based ceramics with K2NiF4-type structure[J], Solid State Ionics,1997,104(1-2):79-88
    63. Shimura T, Suzuki K, Iwahara H. Protonic and oxide-ionic conduction in Srm+1(Ti1-xInx)mO3m+1-α (m=1,2 and oo) at high temperature[J], Solid State Ionics,1998, 113-115:355-361
    64. Shimura T, Suzuki K, Iwahara H. Conduction properties of Mg-,Fe- or Co- substituted Sr2Ti04 at elevated temperatures[J], Solid State Ionics,1999,125(1-4):313-318
    65.邵玮,张宏力,方建慧,马金昌,胡君蓉,鲁雄刚,丁伟中SrCe0.95Yb0.05O3-α的直接固相法制备及其导电性能[J],中国有色金属学报,2004,14(1):42-46
    66. Wen T L, Lu Z Y, Xu Z. J Mat Sci Letters,1994,13:1032
    67.汪洁,丁伟中,方建慧,朱冬冬,吴敏艳BaCe0.5Zr0.4Y0.1O3-α的溶胶-凝胶法制备及其电性能[J],中国稀土学报,2005,23(4):449-454
    68. Gorbova E, Maragou V, Medvedev D, Demin A, Tsiakaras P. Investigation of the protonic conduction in Sm doped BaCeO3[J], J Power Sources,2008,181(2):207-213
    69.王金霞,王斯婷BaCe1-xYxO3-δ质子导体的制备与性能[J],吉林大学学报(理学版),2005,43(5):666-668
    70. Yamaguchi Shu, Kobayashi K, Higuchi T, Shin S, Iguchi Y. Electronic transport properties and electronic structure of In2O3-doped CaZrO3[J], Solid State Ionics,2000, 136-137:305-311
    71. Cervera R B, Oyama Y, Miyoshi S, Kobayashi K, Yagi T, Yamaguchi S. Structural study and proton transport of bulk nanograined Y-doped BaZrO3 oxide protonics materials[J], Solid State Ionics,2008,179(7-8):236-242
    72.吕敬德,王岭,赵艳琴,戴磊,郭红霞,郭强强,陈学钊,郝静然.质子导体BaCe0.4Zr0.4M0.2O3-δ(M=In,Y,Gd,Sm)化学稳定性及电性能[J],无机化学学报,2008,24(5):697-700
    73.吕敬德,王岭,樊丽华,李跃华,戴磊,郭红霞.高温质子导体BaZr0.45Ce0.45Gd0.1O3-δ的制备及性能[J],中国有色金属学报,2008,18(2):307-311
    74.吕敬德,王岭,戴磊,李跃华,郭红霞,赵艳琴BaZr0.45Ce0.45Y0.1O3-δ的合成及其电性能研究[J],2008,26(1):41-45
    75. Azad A K, Irvine J T S. High density and low temperature sintered proton conductor BaCe0.5Zr0.35Sc0.1Zn0.05O3-δ[J], Solid State Ionics,2008,179(19-20):678-682
    76. Nowick A S, Liang K C. Effect of non-stoichiometry on the protonic and oxygen-ionic conductivity of Sr2(ScNb)O6:a complex perovskite[J], Solid State Ionics,2000,129: 201-207
    77. Nowick A S, Du Yang, Liang K C. Some factors that determine proton conductivity in nonstoichiometric complex perovskites[J], Solid State Ionics,1999,125:303-311
    78. Du Y, Nowick A S. Galvanic cell measurements on a fast proton perovskite electrolyte conducting complex[J], Solid State Ionics,1996,91(1-2):85-91
    79. Iwahara H. Technological challenges in the application of proton conducting ceramics[J], Solid State Ionics,1995,77:289-298
    80. Iwahara H. Proton conducting ceramics and their applications[J], Solid State Ionics,1996, 86-88:9-15
    81. Iwahara H, Asakura Y, Katahira K, Tanaka M. Prospect of hydrogen technology using proton-conducting ceramics[J], Solid State Ionics,2004,168(3-4):299-310
    82. Yajima T, Koide K, Takai H, Fukatsu N, Iwahara H. Application of hydrogen sensor using proton conductive ceramics as a solid electrolyte to aluminum casting industries[J], Solid State Ionics,1995,79:333-337
    83. Iwahara H, Uchida H, Ogaki K. Nernstian hydrogen sensor using BaCeO3-based proton-conducting ceramics operative at 200-900℃[J], J Electrochem Soc,1991,138(1): 295-299
    84.陈威,王常珍,刘亮.测熔融铝合金中氢活度的传感法研究[J],金属学报,1995,31(7):305-310
    85.郑敏辉,陈祥SrCeO3基高温质子导体及A1液定氢探头[J],金属学报,1994,305(17):238-242
    86. Kurita N, Fukatsu N, Koide K. The continuous measurement of hydrogen activities in molten copper using proton-conductive[J], Solid Electrolyte,1997,45:113
    87.耿军平,费敬银,许家栋,秦熊浦.一种新型高温测氢传感器探头的研究[J],机械科学与技术,2000,19:122-123
    88. Nishimura R, Toba K, Yamakawa K. The development of a ceramic sensor for the prediction of hydrogen attack[J], Corrosion Science,1996,38(4):611-621
    89. Matsumoto H, Iwahara H. Hydrogen isotope cell and its application to hydrogen isotope sensing[J], Solid State Ionics,2000,136-137:173-177,
    90. Iwahara H, Uchida H, Maeda N. High temperature fuel and steam electrolysis cells using proton conductive solid electrolytes[J], J Power Sources,1982,7(3):293
    91. Pelletier L, McFarlan A, Maffei N. Ammonia fuel cell using doped barium cerate proton conducting solid electrolytes[J], J Power Sources,2005,145(2):262-265
    92. Ito N, Iijima M, Kimura K, Iguchi S. New intermediate temperature fuel cell with ultra-thin proton conductor electrolyte[J], J Power Sources,2005,152(1):200-203
    93. Iwahara H. Hydrogen pumps using proton-conducting ceramics and their applications[J], Solid State Ionics,1999,125(1-4):271-278
    94. Iwahara H, Esaka T, Uchida H, Yamauchi T, Ogaki K. High temperature type protonic conductor based on SrCeO3 and its application to the extraction of hydrogen gas[J], Solid State Ionics,1986,18/19(pt2):1003-1007
    95. Maffei N, Pelletier L, Charland J P, McFarlan A. An intermediate temperature direct ammonia fuel cell using a proton conducting electrolyte[J], J Power Sources,2005, 140(2):264-267
    96. Iwahara H, Matsumoto H, Takeuchi K. Electrochemical dehumidification using proton conducting ceramics[J], Solid State Ionics,2000,136-137:133-138.
    97. Iwahara H. Proton conducting ceramics and their applications [J].Solid State Ionics,1996, 9-15:86-88
    98. Hamakawa S, Hibino T, Iwahara H. Electrochemical methane coupling using protonic conductors[J], J Electrichem Soc,93,140(2):459-462.
    99. Marnellos G, Stoukides M. Ammonia synthesis at atmospheric pressure[J], Science,1998, 282(2):98-100
    100.宿新泰,刘瑞泉,王吉德SrCe0.95Y0.05O3-δ在中温区的电化学性质及其在常压合成氨中的应用[J],化学学报,2003,61(4):505-509
    101.王吉德,宿新泰,刘瑞泉,胡云霞,谢亚红,岳凡.钙钛矿型高温质子导体研究进展[J],化学进展,2004,16(5):829-835
    102.王巍,兰中文,姬洪,梁魁,王豪才Ce:YIG粉体的制备及性能研究[J],电子元件与材料,2002,21(5):3-5
    103.高筠,李中秋,张文丽,朱书全,韩利华.共沉淀法制备Y2O3掺杂的BaZrO3粉体,稀有金属材料与工程,2007,8:188-191
    104.彭程,蒋凯,李五聚Ce1-xCaxO2-x的溶胶—凝胶法的合成及其性质[J],应用化学,2001,18(6):428-431
    105.蒋凯,何志奇,王鸿燕等BaCe0.8Ln0.2O2.9(Ln=Gd,Sm,Eu)固体电解质的低温制备及其燃料电池性质[J],中国科学B辑,1999,29(4):399-401
    106.梅辉,冯丽萍,费敬银.氢传感器材料前驱粉体的低温制备[J],腐蚀与防护,2004,25(6):252-255
    107.Dionysios D, Wang Q X, Lin Y S, Meng G, Peng D. Preparation and characterization of proton conducting terbium doped strontium cerate membranes[J], J Memb Sci,1999, 154(2):143-153
    108.何志奇,蒋凯,孟建,任玉芳,苏锵BaCe1-xRExO3-0.5x的溶胶-凝胶法合成及离子导电性[J],应用化学,1998,15(3):23-25
    109.贾定先,马桂林,石慧BaCe0.8Y0.2O3-α的溶胶-凝胶法合成及其电性能[J],化学学报,2002,60(10):1737-1741
    110.GroB B, Marion St, Hempelmann R, Grambole D, Herrmann F. Proton conducting Ba3Ca2.18Nb2.82O8.73/H2O:Sol-gel preparation and pressure/composition isotherms[J], Solid State Ionics,1998,109(1-2):13-23
    111.王力,卢建树,姚远Pechini法合成BaCe0.7Zr0.2Gd0.1O3-δ质子导体[J],浙江化工,2007,38(6):4-7
    112.卢利平,张希艳,柏朝晖,米晓云.低温燃烧合成法研究进展[J],长春理工大学学报,2008,31(3):82-85
    113.孟波,谭小耀,杨乃涛,张宝砚SrCe0.95Y0.05O3-δ固体电解质纳米陶瓷粉的低温燃烧合成和表征[J],材料工程,2005,6:31-35
    114.庞兆宝,孟波,谭小耀.高温质子导体Ba(Ce0.8Zr0.2)0.9Y0.1O3-δ的合成与性能[J],中国有色金属学报,2006,16(5):858-861
    115.王力.BaCeO0.9-xZrxM0.1O3-α(M=Gd, Nd)质子导体的制备及性能研究,浙江工业大学硕士学位论文[D],2007
    116.梁敬魁.粉末衍射图形拟合修正晶体结构[J],结构化学,1984,4(4):241-260
    117.Uchida H, Yasuda A, Iwahara H. Some physical and chemical properties of high temperature-type proton conductor based on strontium cerium oxide SrCeO3[J], Denki Kagaku,1989,57(2):153-156
    118.黄培云.粉末冶金原理[M],北京:冶金工业出版社,1982,374
    119.曹楚南,张鉴清.电化学阻抗谱导论[M],北京:科学出版社,2002:21
    120.杨文治.固体电解质的电化学[J],化学通报,1981,10:37-43
    121.刘永辉.电化学测试技术[M],北京:航空航天出版社,1987:203
    122.崔忠波,陈民芳,刘德宝,由臣.EIS在医用钛合金表面改性研究中的应用[J],2007,23(4):30-33
    123.查全性.电极过程动力学导论[M],北京:科学出版社,1987,283
    124.Mitsui A, Miyayama M, Yanagida H. Evaluation of the activation energy for proton conduction in perovskite-type oxides[J], Solid State Ionics,1987,22(2-3):213-217
    125.Chiodelli G, Malavasi L, Tealdi C, Barison S, Battagliarin M, Doubova L, Fabrizio M, Mortalo C, Gerbasi R. Role of synthetic route on the transport properties of BaCe1-xYxO3 proton conductor[J]. J Alloys and Compounds,2008, In Press, Corrected Proof
    126.Takeuchi K, Loong C K, Richardson Jr. J W, Guan J, Dorris S E, Balachandran U. The crystal structures and phase transitions in Y-doped BaCeO3:their dependence on Y concentration and hydrogen doping[J], Solid State Ionics,2000,138(1-2):63-77
    127.Munch W, Seifert G, Kreuer K D, Maier J. A quantum molecular dynamics study of proton conduction phenomena in BaCeO3[J], Solid State Ionics,1996,86-88(pt1): 647-652
    128.Taniguchi N, Hatoh K, Niikura J, Gamo T, Iwahara H. Proton conductive properties of gadolinium-doped barium cerates at high temperatures[J], Solid State Ionics,1992, 53-56(pt2):998-1003
    129.Iwahara H, Mori T, Hibino T. Electrochemical studies on ionic conduction in Ca-doped BaCeO3[J], Solid State Ionics,1995,79:177-182
    130.Robert C, Slade T, Singh N. The perovskite-type proton-conducting solid electrolyte BaCe0.90Y0.10O3-α in high temperature electrochemical cells[J], Solid State Ionics,1993, 61(1-3):111-114
    131.Akimune Y, Matsuo K, Higashiyama H, Honda K, Yamanaka M, Uchiyama M, Hatano M. Nano-Ag particles for electrodes in a yttria-doped BaCeO3 protonic conductor[J], Solid State Ionics,2007,178(7-10):575-579
    132.Stuart P A, Unno T, Kilner J A, Skinner S J. Solid oxide proton conducting steam electrolysers[J], Solid State Ionics,2008,179(21-26):1120-1124
    133.Gorbova E, Maragou V, Medvedev D, Demin A, Tsiakara P. Investigation of the protonic conduction in Sm doped BaCeO3[J], J Power Sources,2008,181(2):207-213
    134.Pasierba P, Gajerski R, Rokita M, Rekas M. Studies on the binary system Li2CO3-BaCO3[J], Physica B,2001,304(1-4):463-476
    135.王秀文.以废瓷为原料热压铸生产工艺的探讨[J],陶瓷工程,1999:33(4):26-29
    136.杨南如,岳文海.无机非金属材料图谱手册[M],武汉:武汉工业大学出版社,2000:211
    137.费多洛夫,阿克楚林编,张启运,徐克敏译.铟化学手册[M],北京:北京大学出版社,2005:24
    138.王树楷编.铟冶金[M],北京:冶金工业出版社,2006:9
    139.Yajima T, Suzuki H, Yogo T, Iwahara H. Protonic conduction in SrZrO3-based oxides[J], Solid State Ionics,1992,51(1-2):101-107
    140.Schober T, Krug F, Schilling W. Criteria for the application of high temperature proton conductors in SOFCs[J], Solid State Ionics,1997,97(1-4):369-373
    141.Nowick A S, Du Y. High-temperature protonic conductors with perovskite-related structures[J], Solid State Ionics,1995,77:137-146
    142.Matsushita E, Sasaki T. Theoretical approach for protonic conduction in perovskite-type oxides[J], Solid State Ionics,1999,125(1-4):31-37
    143.Wang W S, Virkar A V. Determination of ionic and electronic conductivities of Ba3Ca1.18Nb1.82O9-δ in dry and wet atmospheres[J], J Electrochem Soc,2004,151(10): A1565-A1571
    144.Krug F, Schober T. The high-temperature proton conductor Ba3(Ca1.18Nb1.82)O-δ: Thermogravimetry of the water uptake[J], Solid State Ionics,1996,92(3-4):297-302
    145.Valkenberg S, Bohn H G, Schilling W. The electrical conductivity of the high temperature proton conductor Ba3Ca1.18Nb1.82O9-δ[J], Solid State Ionics,1997,97(1-4):511-515
    146.Shimoyama T, Tojo T, Kawaji H, Atake T, Igawa N, Ishii Y. Determination of deuterium location in Ba3Ca1.18Nb1.82O8.73[J], Solid State Ionics,2008,179(7-8):231-235
    147.Paria M K, Maiti H S. Electrical conduction in barium cerate doped with M2O3 (M=La, Nd, Ho)[J], Solid State Ionics,1984,13(4):285-292
    148.陆厚根.粉体技术导论[M],上海:同济大学出版社,1998:150
    149.胡会宁,李宁主编.电化学测量[M],北京:国防工业出版社,2007,230
    150.Bohn H G, Schober T, Mono T, Schilling W. The high temperature proton conductor Ba3Ca1.18Nb1.82O9-δ I. Electrical conductivity[J], Solid State Ionics,1999,117(3-4): 219-228
    151.Rooy E L. Hydrogen:the one-third solution[J], AFS Trans,1993:961-964
    152.王祝堂,田荣璋.铝合金及其加工手册[M],长沙:中南工业大学出版社,1988:102
    153.杨长贺,高钦编.有色金属净化[M],大连:大连理工大学出版社,1989:78
    154.Ransley C E, Talbot D E J. The solubility in aluminium and some aluminum alloys[J], Trans. AIME,188,1950:1237-1241
    155.施延藻主编.铸造实用手册[M],东北工学院出版社,1988:35
    156.《铸造有色合金及其熔炼》联合编写组.铸造有色合金及其熔炼[M],北京:国防工业出版社,1980
    157.周家荣主编.铝合金熔铸问答[M],冶金工业出版社,1989:153
    158.Chen X G. Efficiency of impeller degassing and regassing phenomena in aluminum melts[J], AFS Transactions,1994:191-197
    159.Bob M. Beyond rotary degassing[J], Foundry Trade Journal,1995(6):298-300
    160.David P, Wayne M. Processing molten aluminum-part 2:cleaning up your metal[J], Modern casting,1990,2:5-7
    161.Pattle D. Advances in degassing aluminum alloys[J], The Foundryman,1988,5:232-235
    162.Neff D V, Cooper P V. Clean metal or Aluminum forndries:new technology using a rotor degassing and filter pump[J], AFS Transactions,1990:579-584
    163.杨长贺.旋转喷头法除氢效率的剖析与探讨[J],轻合金加工技术,1995,23(2):5-10
    164.Popescu G, Gheorghe I. Vacuum degassing of Aluminum alloys[J], Materials science forum,1996,217:147-152
    165.蒋海燕,孙宝德,倪红军,丁文江.铝合金熔体净化工艺[J],特种铸造及有色合金,2001,2:47-50
    166.陈叙.铝及铝合金用测氢仪的新进展,铝加工[J],1994,17(6):8-13
    167.熊艳才,黄志光,王文清.铝及铝合金含氢量直接测定的研究与进展[J],特种铸造及有色合金,1995,4:12-15
    168.黄良余,严名山译.有色金属及其合金中的气体[J],北京:冶金工业出版社,1989:33
    169.Auyalebechi P N. Techniques for determination of the hydrogen content in aluminum and its alloys[J], Light Metals,1991,53:1025-1046
    170.张忠华,边秀房,秦敬玉,王伟民,刘相法.铝的熔体结构与氢含量[J],金属学报,2000,36(1):33-36
    171.刘东红,章红卫.哈培尔法——一种新的铝液含氢量测量方法[J],特种铸造及有色合金,1998,1:58-60
    172.Gee R, Fray D J. Instantaneous determination of hydrogen content in molten aluminum and its alloys[J], Met Trans B,1978,9B(3):427-430
    173.Mulazimoglu M H, Handiak N, Gruzleski J E. Some observation on the reduced pressure test and hydrogen concentration of modified A 356 alloy[J], AFS Trans,1989, (97): 225-232
    174.张林.浓差电池法测定铝液含氢量的探讨[J],山东工业大半学报,1986,3:51-56
    175.郑文君,庞文琴.钙钛矿型复合氧化物氢离子导体研究现状[J],功能材料,1997,28(3):242-246
    176.Gokcen N A, Chipman J.Trans AIME,1952,194:171
    177.Iwahara H. Proceeding the international seminar solid state ionics devices, Singapore, 1988:289
    178.Yannopoulos L N, Edwards R K, Wahlbeck P G. The thermodynamics of the Yttrium-Hydrogen system[J], J Physical Chemistry,1965,69(8):2510-2515
    179.李西前.铝熔体快速定量测氢系统的研究开发及应用[D],华中科技大学硕士学位论文,2006