固体氧化物燃料电池的性能优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体氧化物燃料电池(SOFCs)作为一种举世公认的绿色能源,得到了世界范围内的广泛关注和大力研发,进展十分快速。但在走向实用化进程中,还有若干问题没有解决。其中一个令人困扰的问题是,尽管SOFCs与其他类型的燃料电池相比,具有燃料适应性强的特点,廉价易得的碳氢化合物燃料不会产生如质子交换膜燃料电池(PEMFC)那样的CO中毒问题,但SOFCs通常使用的镍基阳极对碳氢化合物的催化活性过高,因而容易产生电极积碳使电池性能退化,这个问题虽经长期研究但一直没得到很好的解决。另一方面,SOFCs技术首先市场化的方向是小型化、便携式的分散电源,首选的是液体燃料,醇类当然最为令人中意,但上述积碳问题甚至比目前广泛研究的天然气燃料还要严重。
     本实验室打破常规的思维,将被人们忽视的工业液氨用作SOFCs的燃料,研究结果表明具有可行性,但电池的性能水平还比较低。本论文就是在此基础上,以发展中低温SOFCs为目标,主要对YSZ和Sm掺杂的氧化铈(SDC)为电解质的SOFCs在制备技术和性能上进行优化,以便获得更高水平的电池功率输出。工作侧重于氨燃料在YSZ和SDC电解质基SOFCs中的应用研究,通过优化的电池材料和电池结构来提高电池性能。此外,氨燃料在新近发展的质子导体电解质SOFCs中的应用也进行了初步探索。
     本论文第一和第二章简要介绍了SOFCs的基本原理,论文所涉及到的电池材料,主要是电解质材料和阴极材料的基本性能。综述了SDC电解质粉体及薄膜制备的各种工艺和方法,并对SDC电解质基SOFCs性能研究的现状及存在的问题进行了总结,分析了SOFCs的发展趋势。以提高SOFCs功率输出为主线,提出本论文的研究目标及内容。
     从目前的研究现状来看,YSZ电解质的稳定性高、机械强度好,但其局限性就是中低温下电导率低。中低温下研究较多的就是具有高离子电导率的掺杂氧化铈类电解质,但掺杂氧化铈类材料的致密化温度一般很高(>1500℃左右)。本论文利用实验室发展的聚乙烯醇(PVA)辅助的燃烧合成方法获得的高活性的Ce_(0.8)Sm_(0.2)O_(2-δ)(SDC)电解质粉体,采用干压法这一简单、便捷、膜厚易于控制的工艺获得阳极支撑型、10μm厚度的SDC电解质薄膜,将SDC电解质膜的致密化烧结温度有效地降低到1250℃。以常用Sm_(0.5)Sr_(0.5)CoO_(3-δ)为阴极,在以3mol%H_2O+H_2为燃料的条件下获得了较好的电池性能。在650,600和550℃的温度下,电池的开路电压分别为0.803,0.844,0.87V,最大功率密度分别为936,470和189mW cm~(-2)。SDC电解质基燃料电池的性能优化的另一个考虑就是电池阴极材料的选择。新近发展的阴极材料Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ)(BSCF),在掺杂氧化铈基燃料电池中具有很好的相容性和高的活性已得到证实。为进一步提高电池的性能,本论文同样利用干压共烧工艺获得了10μm的SDC电解质膜。研究表明,采用BSCF作为阴极组装的电池获得了极高的功率输出。在650℃时,3mol%H_2O+H_2为燃料最大功率密度达到1872mW cm~(-2),这是迄今所知国际文献的最高报道值。更低的温度也显示了很好的电池性能,600和550℃的最大功率分别为1357,748mW cm~(-2)。电池的优越性能归因于薄的电解质膜和高催化性阴极的使用。但电池的开路电压却比预料的低,650,600和550℃的开路电压只有0.747,0.787,0.816V。通过SDC电解质基SOFCs开路电压的理论推导,并结合实验结果,开路电压偏低的主要原因可能是本论文中获得的薄的电解质膜及高的阳极室氧分压。
     SOFCs的燃料适应性强使得开发其他可替代氢的燃料成为研究热点之一。最近氨的开发利用呈现很好的前景。本实验室在氨燃料电池性能上进行了初步的探索,尝试了将氨燃料应用在氧离子导电的YSZ和SDC电解质基SOFCs上,从理论和实验两方面证实了氧离子导体基氨燃料电池无NO等毒性气体的产生,然而,电池性能输出并不理想,以YSZ为电解质时,750℃下电池最大功率密度只有299mW cm~(-2),同样SDC电解质基氨燃料电池性能也不高,700℃下电池最大功率密度只有253mW cm~(-2),这可能主要由于厚的电解质膜(约50μm),不完善的电池微结构及低的阴极催化活性有关。本论文中以优化的电池结构研究了氨燃料SOFCs的性能。以YSZ为电解质的氨燃料SOFCs的性能研究表明,采用优化的电池结构获得了高的电池性能。在中温(800℃和750℃)下操作,氨和氢燃料SOFCs性能没有明显的差异:在800℃时氢和氨为燃料的SOFCs的功率分别为1206,1137mW cm~(-2),而750℃时分别为645,637mW cm~(-2);低温(700℃)下氨燃料的电池性能要比氢燃料的电池性能要逊色。以SDC为电解质的氨燃料SOFCs的性能研究表明,虽然在测试温度范围内,氨为燃料的电池性能比氢为燃料的电池性能要低,并呈现出温度越低性能越差的趋势,但以氨为燃料仍可以获得理想的电池功率输出,650℃时的最大功率密度为1190mW cm~(-2),这也是目前以氨为燃料的电池最好的功率输出数据。详细对比了以氨和氢为燃料的SOFCs性能差异。业已查明,导致氨燃料电池性能差的主要原因可能是随着温度的降低,氨的分解反应要吸收热量,因此氨的分解率降低。通过对氢气和氨气下电池阻抗谱的检测分析得知,在采用氨作燃料时,电池的阻抗损失相对于用氢气燃料时要大,这也可能是以氨为燃料的SOFCs性能比以氢为燃料的SOFCs性能逊色的原因之一。氨作为燃料时,电池的电化学反应机理还有待于进一步研究。
     最近的研究表明质子导体在中低温下具有高的电导率,在SOFCs中有好的应用前景。在所有质子导体中,BaCeO_3电导率最高,因此倍受重视。本实验室在质子导体电解质的开发应用中已经开展了部分的研究工作,但仍有大量的相关工作还未进行。本论文的一部分工作就是以降低BaCeO_3基质子导体烧结温度为目的,研究BaCeO_3基质子导体电解质SOFCs的性能,并尝试使用氨燃料在BaCeO_3基SOFCs中的表现。首先采用燃烧合成工艺,并利用Zn离子的稳定剂和助烧结剂的作用,实现了BaCeO_3基材料的低温合成和烧结。不同温度粉体的XRD测试表明,粉体在700℃已经形成钙钛矿相主相,800℃煅烧的粉体只有极少量的BaCO_3杂相。在1000℃的处理温度下,可以得到纯相的BaCe_(0.5)Zr_(0.3)Y_(0.16)Zn_(0.04)O_(3-δ)(BCZYZ)粉体。对烧结体的表面成分分析表面,粉体中的不纯物将会在烧结过程中导致烧结体的相组成偏析。利用1000℃合成的BCZYZ粉体,在1250℃可获得完全致密的烧结体。其次,利用干压-共烧工艺,制备了不同厚度的BCZYZ的薄膜,以Ni-BCZYZ为阳极和La_(0.6)Sr_(0.4)CoO_(3-δ)为阴极组装的电池当以氢为燃料时,表现出了优良的电池性能。以厚度为14μm的BCZYZ为电解质的单电池产生了较高的功率输出。在700,650,600℃的最大功率密度分别为413mW/cm~2、242mW/cm~2和118mW/cm~2,相应地开路电压为0.935,0.993,1.008 V。降低膜厚到10μm,电池的功率输出大幅度提高,700℃时的最大功率密度达到了591mW cm~(-2),这是目前报道的质子导体电解质基SOFCs性能最好的。最后,初步探索了将氨燃料应用在所合成的材料组成的单电池上,在650和600℃下获得的最大功率分别为123,82mW cm~(-2)。氨燃料电池性能的输出不是很理想,还有待于进一步改进和提高。
     本论文通过对YSZ和SDC电解质基SOFCs的材料和结构的优化,实现了氨燃料在氧离子导体电解质基燃料电池中的应用,得到了极高的电池性能,达到了实用化和商品化的需求。利用优化的阴极材料,质子导体电解质基燃料电池也产生了优越的功率输出。氨燃料在质子导体燃料电池中的研究还有待于进一步改进。论文中对BCZYZ电解质基SOFCs的长期稳定性还没有涉及,应进一步研究。
As a clean energy conversion device, solid oxide fuel cells (SOFCs) received more attention. Existing fuel cell technologies face the challenge to provide a commercial path, where the system costs and fuel infrastructures are critical bottlenecks. Due good fuel flexibility, many gases could be used as fuels for SOFCs, such as hydrocarbon. The development of practical devices, however, has been still hindered by some problems, including the coking on the well-developed nickel-based anode when using hydrocarbon fuels that severely degrade the cell performance. During the time, SOFCs are directed to the orientation of portable devices, which makes liquid fuel favorable. Certainly alcohol is welcome, however, coking is severe than that of natural gas fuel.
     Based on the studies results of our laboratory, the target of this research was to develop IT- SOFCs. First, YSZ-based and Ce_(0.8)Sm_(0.2)O_(2-δ)(SDC)-based SOFCs were optimized, the emphasis was to study the application of ammonia fuel on SOFCs. Second, the cell performance was tried to study with proton conducting electrolyte.
     The first chapter described the principle of SOFCs and the material related to this research. The second chapter summarized the preparation methods, the research state and the trend of SDC powder, membrane and cell performance. On the bases of description of the basis of SOFCs, the proposal of this research was presented in chapter 2.
     Though YSZ electrolyte has many advantage, such as chemical and mechanical stability, low conductivity at intermediate temperature limited the application temperature range. Doped ceria is favorable due high conductivity at intermediate temperature. Using SDC powders prepared by PVA combustion synthesis method, anode-supported electrolyte film with 10μm thickness were prepared by dry-pressing method, thus sintering temperature of SDC electrolyte film were lowered from traditional 1400℃to 1250℃. With general Sm_(0.5)Sr_(0.5)CoO_(3-δ)(SSC) cathode, the cell exhibited high performance when humidified hydrogen (3mol%H_2O) as the fuel and stationary air as the oxidant. The power density of 936 470 and 189 mW cm~(-2) was obtained at 650, 600 and 550℃, and the OCVs were 0.803, 0.844, 0.87 V, correspondingly. In order to enhance the cell performance, a novel cathode material BSCF was used on SDC-based SOFC. As the expected, a high cell performance was obtained, and the maximum power density at 650℃is 1872 mW cm~(-2), which represents the best performance ever reported for IT-SOFCs. The maximum power densities at 600 and 550℃were 1357, 748 mW cm~(-2). An abnormal phenomenon was that the OCVs at 650, 600 and 550℃were 0.747, 0.787, 0.816 V. Combing the theoretical and experimental results, the reason of low OCVs is probably thin electrolyte film and high oxygen partial pressure on the anode compartment.
     One of the most important advantages for SOFCs is their fuel flexibility.
     Less expensive, simpler, and cheaper materials can act as hydrogen carrier due to good fuel flexibility of SOFCs. Ammonia has been identified as a suitable hydrogen carrier. Our laboratory had made many efforts to apply ammonia as fuel in SOFCs with YSZ and SDC as the electrolyte, proved no NO produced from theoretical calculation and experiment. However, no satisfied cell performance was obtained due to poor structure and thick electrolyte (50μm). The maximum power densities were 299 and 253 mW cm~(-2) with YSZ and SDC as the electrolytes at 750 and 700℃, respectively. Therefore, one of the aims of this research was to enhance the cell performance by optimizing the cell materials and microstructure using ammonia as fuel. The studies of comparison of ammonia fueled SOFC and hydrogen fueled SOFC showed that there was no obvious difference at 800℃and 750℃. At 800℃, the maximum power densities were 1206 and 1137 mW cm~(-2), while at 750℃the values were 645, 637 mW cm~(-2) with hydrogen and ammonia fuel, respectively. However, at 700℃, the cell performance with ammonia fuel was lower than that with hydrogen fuel. Different from the result, the research of cell performance with SDC-based SOFC using hydrogen and ammonia fuel showed that the cell power densities with ammonia fuel is lower than that of hydrogen fuel over the range of operating temperature (550-650℃). In spite of the difference, the cell performance is high, and the maximum power density is 1190 mW cm~(-2) at 650℃. The power densities lower than that predicted, particularly at the lower operating temperatures for ammonia fuel cell, compared to hydrogen fuel cell, could be attributed to actual lower temperature than thermocouple display due to endothermic reaction of ammonia decomposition. The interfacial polarization resistances in NH_3 cell are higher then that for H_2 cell at all the operating temperatures, and the difference increase with the temperature decrease, that led to its lower cell performance compared to H_2 fueled cell. The mechanism of ammonia fuel cell needs the further research.
     Some work about the application of BaCeO_3-based proton conducting oxide on SOFCs had been done in our laboratory. However, there was still much work need to be further done. In this research, BaCeO_3-based proton conducting oxide was synthesized and sintered at lower temperature combing the Zn sintering additive function and combustion synthesis method. The XRD results showed pervoskite phase had began to form at 700℃, and pure BaCe_(0.5)Zr_(0.2)Y_(0.16)Zn_(0.04)O_(3-δ) (BCZYZ) were obtained at 1000℃. The EDX results showed that sintering body could not form pure phase due to the impurity existence of BaCO_3 in powder samples. BCZYZ powders exhibited lower sintering temperature, and 1250℃is enough to obtain dense sintering body. With La_(0.6)Sr_(0.4)CoO_(3-δ) as composite cathode and Ni-BCZYZ as anode, a single cell based on this thin BCZYZ electrolyte was tested from 600℃to 700℃. The maximum power densities of the cell with 14μm BCZYZ were 413 mW/cm~2, 242 mW/cm~2 and 118 mW/cm~2 at 700, 650, 600℃, the OCVs were 0.935, 0.993 and 1.008 V, correspondingly. When with thinner (10μm) BCZYZ as the electrolyte, the cell maximum power density reached 591 mW cm~(-2). The result represented the best performance ever reported for IT-SOFCs with proton conducting electrolyte. Based on the research results, ammonia fuel cell performance was test, and the maximum power densities were 123, 82 mW/ cm~2 at 650和600℃. The cell long-term stability and ammonia fuel cell performance with BCZYZ electrolyte need to be studied in the further work.
     In summary, by using the optimized material and cell microstructure, the SOFCs with ammonia as fuel were improved, can meet the requirement of the market. The use of cathode with high catalytic activity made the cell with proton conducting electrolyte produce excellent performance. Some work need to be further done, such as the application of ammonia on SOFCs with proton conducting electrolyte, and the long-term stability measurement.
引文
[1] A.B. Stambouli, E. Traversa, Renewable and Sustainable Energy Reviews, 6(2002) 433.
    [2] 胡瑶村,刘跃龙.基础物理化学科学出版社2001年8月第一版.
    [3] 李瑛,王林山.燃料电池.冶金工业出版社2000年11月第一版.
    [4] H.Schichlein, A.C. Muller, J. Appl. EIectrochem. 32 (2002) 875.
    [5] C. Zuo, S. Zha, M. Liu, M. Hatano, M. Uchiyama.18 (2006) 3318.
    [6] R. Tolchard and T. Grande, Solid State Ionics In press.
    [7] G. W. Castellan, Physical Chemistry. The Benjamin/Cummings Publishing Company, Inc. London, Third Edition.
    [8] T. Kudo, H. Obayashi, J. Electrochem. Soc. 123 (1976) 415.
    [9] W. Nernst, Z. Electrochem. 6 (1899) 41.
    [10] E. Baur, H. Preis, Z. Electrochem.43 (1937) 727.
    [11] H. Huang, M. Nakamura, P. Su, R. Fasching, Y. Saito, F. B. Prinz, J. Electrochem. Soc. 154 (2007) B20.
    [12] T. Ishihara, H. Matsuda, Y. Takita, J. Am. Chem. Soc. 116 (1994) 3801.
    [13] M. Feng and J.B. Goodenough, Eur. J. Solid State Inorg. Chem. 31 (1994) 663.
    [14] P.N. Huang, P. Petric, J. Electrochem. Soc. 143 (1996) 1644.
    [15] K. Huang, J.B. Goodenough, J. Alloys and Compounds 303-304 (2000) 454.
    [16] T. Ishihara, H. Matsuda, and Y. Takita, Solid State Ionics, 79 (1995) 147.
    [17] T. Ishihara, M. Honda, T. Shibayama, et al, J. Electrochem. Soc., 145 (1998) 3177.
    [18] P. N. Huang, A. Horky, A. Petric, J. Am. Ceram. Soc. 82(9) (1999) 2402.
    [19] X.G. Zhang, S. Ohara, R. Maric, H. Okawa, T. Fukui ,H. Yoshida, T. Inagaki, K. Miura, Solid State Ionics, 133 (2000) 153.
    [20] K. Yamaji, T. Horita, M. Ishikawa, N. Sakai, H. Yokokawa, Solid State Ionics 121(1999) 217.
    [21] K. Yamaji, T. Horita, M. Ishikawa, N. Sakai, H. Yokokawa, Solid State Ionics 108 (1998) 415.
    [22] K. Yamaji, H. Negishi, T. Horita, N. Sakai, H. Yokokawa, Solid State Ionics 135 (2000) 389.
    [23] S. W. Tao, F. W. Poulsen, G. Y. Meng, O. T. Sorensen, J. Mater. Chem. 10 (2000) 1829.
    [24] Z. Bi, Y. Dong, M. Cheng, B. Yi. J. Power Sources 161 (2006) 34.
    [25] S. Yang, T. He, Q. He, J. Alloys Compd. In Press.
    [26] H. Iwahara, T. Esaka, H. Uchida, N. Maeda, Solid State Ionics 3-4 (1981) 359.
    [27] H. Iwahara, H. Uchida, K. Ono, K. Ogaki, J. Electrochem. Soc. 135 (1988) 529.
    [28] H. Iwahara, T. Yajima, T. Hibino, H. Ushida, J. Electrochem. Soc. 140 (1993) 1687.
    [29] T. Fukui, S. Ohara, S. Kawatsu, J. Power Sources 71 (1998) 164.
    [30] L. Li, J. R. Wu, S. M. Halle, Electrochem. Soc., Proc. 12 (2001) 214.
    [31] L. Li, J. R. Wu, M. Knight, S. M. Haile, Electrochem. Soc., Proc. 28 (2001) 58.
    [32] T. Tsuji, T. Suzuki, H. Iwahara, Solid State Ionics 70-71 (1994) 291.
    [33] T. Tsuji, N. Miyajima, M. Ochida, Solid State Ionics 79 (1995) 183.
    [34] K. Kunstler, H. J. Lang, R. Fabian, G. Tomandl, Schr. Forsch. zent, Jul. Energ.tech./Energy Technol. 15. (2000) 687.
    [35] R. R. Arons, J. Eur. Ceram. Soc. 19 (1999) 811.
    [36] A. F. Sammells, R. L. Cook, J. H. White, J. J. Osborne, R. C. MacDuff, Solid State Ionics 52 (1992) 111..
    [37] K. Katahira, Y. Kohchi, T. Shimura, H. Iwahara, Solid State Ionics 138 (2000) 91.
    [38] Kwang Hyun Ryu, Sossina M. Haile, Solid State Ionics 125 (1999) 355.
    [39] S. Tao, J. T. S. Irvine, Adv. Mater. 18 (2006) 1581.
    [40] H. H. Mobius, J. Solid State Electrochem. 1 (1997) 2.
    [41] R. J. Gorte, S. D Park, J. M. Vohs, C. H. Wang, Adv. Mater. 12 (2000) 1465.
    [42] S. D. Park, J. M. Vohs, R. J. Gorte, Nature 404 (2000) 265.
    [43] J. Sfeir. J. Power Sources 118 (2003) 276.
    [44] S. Wang, Y. Jiang, Y. Zhang, W. Li, J. Yan, Z. Lu, Solid State Ionics 120 (1999) 75.
    [45] B. Ma, U. Balachandran, Mater. Res. Bull. 33 (1998) 223.
    [46] S. W. Tao, J. T. S. Irvine, Nature Mater. 2 (2003) 320.
    [47] S. Wang, T. Kato, S. Nagata, J. Electrochem. Soc. 149 (2002) A927.
    [48] M. Marinsek, K. Zupan, J. Maeek, J. Power Sources 106 (2002) 178.
    [49] T. Fukui, S. Ohara, M. Naito, K. Nogi, J. Power Sources 110 (2002) 91.
    [50] R. Yan, D. Ding, B. Lin, M. Liu, G. Meng, X. Liu, J. Power Sources 164 (2007) 567.
    [51] K.Huang, J. H. Wan, J. B. Goodenough, J. Electrochem. Soc., 148 (2001)A788.
    [52] K.Huang, J. B. Goodenough, J. Alloys Compd. 303-304 (2000) 454.
    [53] T. Tsai, S. A. Barnett, J. Electrochem. Soc. 145 (1998) 1696.
    [54] E. Perry Murray, T. Tsai, S. A. Barnett, Nature 400 (1999) 649.
    [55] R. Yan, D. Ding, B. Lin, M. Liu, G. Meng, X. Liu, J. Power Sources 164 (2007) 567.
    [56] H. Zhu, A. M. Colclasure, R. J. Kee, Y. Lin, S. A. Barnett, J. Power Sources 161 (2006) 413.
    [57] Zhongliang Zhan, Yuanbo Lin, Manoj Pillai, Ilwon Kim and Scott A. Barnett, J. Power Sources 161 (2006) 460.
    [58] B. C. H. Steel, Solid State Ionics 134 (2000) 3.
    [59] R. A. De Souza. J. A. Kilner, J. F. Walker, Mater. Lett. 43 (2000) 43.
    [60] L.-W. Tai, M. M. Nasrallah, H. U. Anderson, D. M. Sparlin, S. R. Sehlin, Solid State Ionics76 (1995) 273.
    [61] Z. Shao, S. M. Haile. Nature 431 (2004) 170.
    [62] N. Q. Minh, T. Takahashi, Sci. and Tech. of Ceramic Fuel Cells, ELSEVIER (1995) pp.129.
    [63] N. Q. Minh, T. Takahashi, Sci. and Tech. of Ceramic Fuel Cells, ELSEVIER (1995) pp.75.
    [64] R. Doshi, Von L. Richards, J. D. Carter, et al, J. Electrochem. Soc. 146 (1999) 1276
    [65] Y. Takeda, R. Kanno, M. Noda, et al, J. Electrochem. Soc. 134 (1987) 2656.
    [66] F. Zhao, R. Peng, C. Xia, Mater. Res. Bull. In press
    [67] M. Godickemerer, K. Sasaki, L. J. Gaukler, I. Riess, Solid State Ionics 86-88 (1996) 691.
    [68] H. Y. Tu, Y. Takeda, N. Imanishi, O. Yamamoto, Solid State Ionics 100 (1997) 283.
    [69] T. Ishihara, M. Honda, H. Nishiguchi, and Y. Takita, in: Solid Oxide Fuel Cells V., U. Stimming, S. C. Singhal, H. Tagawa, W. Lahnert (Eds), PV 97-40, p. 301, The Electrochemical Society Proceedings Series, Pennington, NJ (1997).
    [70] H. Y. Tu, Y. Takeda, N. Imanishi, O. Yamamoto, Solid State Ionics 117 (1999) 277.
    [71] T. Ishihara, S. Fukui, H. Nishiguchi, Y. Takita, J. Electrochem. Soc. 149 (2002) A823.
    [72] L. -W. Tai, M. M. Nasrallah, H. U. Anderson, D. M. Sparlin, S. R. Sehlin, Solid State Ionics76 (1995) 259.
    [73] Z. Shao, H. Dong, G. Xiong, J. Membr. Sci. 183 (2001) 181.
    [74] S. B. Adler, J. A. Lane, and B. C. H. Steele, J. Electrochem. Soc. 143 (1996) 3554.
    [75] V. Dusastre, J. A. Kilner, Solid State Ionics 126 (1999) 163.
    [76] B. C. H. Steele, Solid State Ionics 129(2000) 95.
    [77] C. Xia, W. Rauch, F. Chen, M. Liu, Solid State Ionics 149 (2002) 11.
    [78] Y. Zhang, S. Zha, M. Liu, Adv. Mater. 17(2005)487.
    [1] Nemst, Z. Electrochem. 6 (1899) 41.
    [2] E. Baur, H. Preis, Z. Electrochem.43 (1937) 727.
    [3] L.S. Wang, S.A Barnett. Solid State Ionics 61 (1993) 273.
    [4] L.S. Wang, E.S. Thiele, S.A Barnett. Solid State Ionics 52 (1992) 261.
    [5] U.B. Pal, S.C. Singhal, J. Electrochem. Soc. 137 (1990) 2937
    [6] T.P. Hyatt. Am. Ceram. Soc. Bull. 65 (1986) 637.
    [7] S. de Souza, S. J. Visco, L.C. De Jonghe, Solid State Ionics 98 (1997) 57.
    [8] H. Yoshida, H. Deguchi, K. Miura, M. Horiuchi, T. Inagaki. Solid State Ionics 140 (2001) 191.
    [9] 刘杏芹,赖伟,孟广耀,高建峰,闫瑞强,“一种制备多元金属氧化物功能陶瓷微粉的方法,授权证书号:159513.
    [10] J. V. herle, T. Horita, T. Kawada, N. Sakai, H. Yokokawa, M. Dokiya, Solid State Ionics 86-88 (1996) 1255.
    [11] 方小红,中国科学技术大学博士学位论文,2004.
    [12] Y. Wang, T. Mori, J.-G. Li, Y. Yajim, Science and Technology of Advanced Materials 4 (2003) 229.
    [13] A.I.Y. Tok, L.H. Luo, F.Y.C. Boey Materials Science and Engineering A 383(2004) 229.
    [14] H. Li, C. Xia, M. Zhu, Z. Zhou, G. Meng, Acta Materialia 54 (2006) 721.
    [15] J .-G. Li, Y. Wang, T. Ikegami, T. Mori, T. Ishigaki, Materials Science and Engineering B 121 (2005) 54.
    [16] W. Huang, P. Shuk, M. Greenblatt, Solid State Ionics 100(1997) 23.
    [17] W. Huang, P. Shuk, M. Greenblatt, Chem. Mater. 9 (1997) 2240.
    [18] P. Shuk, M. Greenblatt. Solid State Ionics 116 (1999) 217.
    [19] S. Dikmen, P. Shuk, M. Greenblatt. Solid State Ionics 126 (1999) 89.
    [20] P. Shuka, M. Greenblatt, M. Croft. J. Alloys Compd 303-304 (2000) 465.
    [21] A.I.Y. Tok, S.W. Du, F.Y.C. Boey, W.K. Chong, Materials Science and Engineering A. In press
    [22] J. -G. Cheng, S. -W. Zha, J. Huang, X.-Q. Liu, G.-Y. Meng. Mater. Chem. Phys. 78 (2003) 791.
    [23] A. G. Merzhanov, Adv. Mater. 4(1992) 294.
    [24] R. Peng, C. Xia, Q. Fu, G. Meng, D. Peng, Mater. Lett. 56 (2002) 1043.
    [25] D. Y. Chung, E. H. Lee. Journal of Alloys and Compounds 374 (2004) 69.
    [26] W. Chen, F. Li, J. Yu, Mater. Lett. 60 (2006) 57.
    [27] C.-C. Hwang, T.-Y. Wu, J. Wan, J.-S. Tsai, Materials Science and Engineering B 111 (2004) 49.
    [28] Y.-P. Fu, C.-H. Lin, C.-W. Liu, K.-W. Tay, S.-B. Wen, J. Power Sources 159 (2006) 38.
    [29] A. S. Prakash, A. M. A. Khadar, K. C. Patil, M. S. Hegde, Journal of Materials Synthesis and Processing, 10 (2002) 135.
    [30] K. Nagaveni, M. S. Hegde, N. Ravishankar, G. N. Subbanna, G. Madras, Langmuir 20(2004) 2900.
    [31] H. Yahiro, Y. Eguchi, K. Eguchi, H. Arai. J. Appl. Electrochem. 18 (1988) 527.
    [32] J. M. Ralph, J. Przydatek, J. A. Kilner, T. Seuelong, Ber. Bunsenges. Phys. Chem. 101 (1997) 1403.
    [33] H. Inaba, H. Tagawa, Solid State Ionics 83 (1996)1.
    [34] G. A. Tompsett and N. M. Sammes, J. Am. Ceram. Soc. 80 (1997) 3181.
    [35] S. Sameshima, T. Ichikawa, M. Kawaminami, Y. Hirata, Mater. Chem. Phy. 61 (1999) 31.
    [36] B. C. H. Steele, Solid State Ionics 129 (2000) 95.
    [37] S. P. S. Badwal, F. T. Ciacchi, J. Drennan, Soild State Ionics 121 (1999) 253.
    [38] M. Dokiya, Solid State Ionics 152-153 (2002) 383.
    [39] T. Kato, K. Nozaki, S. Wang, S. Negishi, S. Nagata, in: M. Dokiya, S. C. Singhal (Eds), Proc. Intl. Symp. SOFC, Honolulu, The Electrochem. Soc. pp.607-616
    [40] N. M. Sammes, Z. Cai, Solid State Ionics 100 (1997) 39.
    [41] K. Eguchi, T. Setoguchi, T. Inoue, H. Arai, Solid State Ionics 52 (1992) 165.
    [42] W. Huang, P. Shuk, M. Greenblatt, Solid State Ionics 100 (1997) 23.
    [43] Y. Wang, T. Mori, J.-G. Li, Y. Yajima, Science and Technology of Advanced Materials 4(2003)229
    [44] 孟广耀《化学气相沉积与无机新材料》,科学出版社,1984
    [45] G. Y. Meng, H. Z. Song, Q. Dong, D. K. Peng, Solid State Ionics, 175 (2004) 29.
    [46] K. Choy, W. Bai, S. Charojrochkul, B. C. H. Steele, J. Power Sources 71 (1998) 361.
    [47] H. Song, C. Xia, G. Meng, D. Peng, Thin Solid Films 434 (2003) 244.
    [48] Y. Jiang, H. Song, Q. Ma, G. Meng, Thin Solid Films 510 (2006) 88.
    [49] R. A. Gorge, J. Power Sources 86 (2000) 134.
    [50] L. G. Coccia, G. C. Tyrrell, J. A. Kilner, D. Waller, R. J. Chater, I. W. Boyd. Applied Surface Science 96-98 (1996) 795.
    [51] D. Yang, X. Zhang, S. Nikumb, C. Deces-Petit, R. Hui, R. Maric, D. Ghosh. J. Power Sources 164 (2007) 182-188.
    [52] Y. H. Yin, W Zhu,C. X. Xia, G. Y. Meng, J. Power Sources, 132 (2004) 36.
    [53] C. Xia, M. Liu, Solid State Ionics 144 (2001) 249.
    [54] Z. Shao, C. Kwak, S. M. Haile, Solid State Ionics 175 (2004) 39.
    [55] Q. L. Liu, K. A. Khor, S. H. Chan. J. Power Sources 161 (2006) 123.
    [56] R. Doshi, V. L. Richards, J. D. Carter, J. Electrochem. Soc. 146 (1999) 1273.
    [57] G. Y. Meng, P. Wang, Y. Gu, D. K. Peng, Solid State Ionics, 136-137 (2000)209.
    [58] C. R. Xia, F. L. Chen and M. L. Liu, Electrochemical & Solid State letters 4 (2001) A52.
    [59] R. R. Peng, C. R. Xia, X. Q. Liu, D. K. Peng, G. Y. Meng, Solid State Ionics 152-153 (2002) 561.
    [60] Y. Zhang, X. Huang, Z. Lu, Z. Liu, X. Ge, J. Xu, X. Xin, X. Sha, W. Su. J. Power Sources 160 (2006) 1217.
    [61] N. Ai, Z. Lu, K. Chen, X. Huang, Y. Liu, R. Wang, W. Su, J. Membr. Sci. 286 (2006) 255.
    [62] N. Ai, Z. Lu, K. Chen, X. Huang, B. Wei, Y. Zhang, S. Li, X. Xin, X. Sha, W. Su, J. Power Sources 159 (2006) 637.
    [63] L. -W. Tai, M. M. Nasrallah, H. U. Anderson, D. M. Sparlin and S. R. Sehlin, Solid State Ionics 76 (1995) 259.
    [64] L. -W. Tai, M. M. Nasrallah, H. U. Anderson, D. M. Sparlin and S. R. Sehlin. Solid State Ionics 76 (1995) 273.
    [65] Y. Ji, J. Liu, T. He, L. Cong, J. Wang, W. Su, J. Alloys Compd 353 (2003) 257.
    [66] Y. J. Leng, S. H. Chan, S. P. Jiang, K. A. Khor. Solid State Ionics 170 (2004) 9.
    [67] Z. Shao, S. M. Haile, Nature 431 (2004) 170.
    [68] S. Li, Z. Lu, N. Ai, K. Chen, W. Su. J. Power Sources 165 (2007) 97.
    [69] P. Murray, T. Tsai, S. A. Barnett, Nature, 400 (1999) 649.
    [70] S. Park, J. M. Vohs, R.J.Gorte, Nature, 404 (2000) 265.
    [71] E. P. Murray, S. J. Harris and H. W. Jen, J. Electrochem. Soc. 149 (2002)A1127.
    [72] Y. Jiang, A. V. Virkar, J. Electrochem. Soc. 148 (2001)A706.
    [73] Z. Xie, C. Xia, M. Zhang, W. Zhu, H. Wang, J. Power Sources 161 (2006) 1056.
    [74] G. K. Gupta, E. S. Hecht, H. Zhu, A. M. Dean, R. J. Kee, J. Power Sources156 (2006) 434.
    [75] W. Zhu, C. Xia, J. Fan, R. Peng, G. Meng, J. Power Sources160 (2006) 897.
    [76] S. Park, R. J. Gorte, J. M. Vohs, Appl. Catal. A-Gen. 200 (2000) 55.
    [77] R. J. Gorte, S. Park, J. M. Vohs, C. Wang, Adv. Mater. 19 (2000) 1465.
    [78] H. Kim, C. Lu, W. L. Worrell, J. M. Vohs, R.J . Gorte, J. Electrochem. Soc. 149 (2002) A247.
    [79] Z. Zhan, S. A. Barnett, J. Power Sources 155 (2006) 353.
    [80] A. Wojcik, H. Middleton, I. Damopoulos, J. V. herle, J. Power Sources 118 (2006) 342.
    [81] G. G. M. Fournier, I. W. Cumming, K. Hellgardt, J. Power Sources 162 (2006) 198.
    [82] Q. Ma, R. R. Peng, L. Tian, G. Meng, Electrochem. Commun. 8 (2006) 1791.
    [83] Q. Ma, R. Peng, Y. Lin, J. Gao, G. Meng, J. Power Sources 161(2006) 95.
    [84] Q. Ma, J. Ma, S. Zhou, R. Yan, J. Gao, G. Meng, J. Power Sources 164 (2006) 86.
    [1] W. Chen, F. Li, J. Yu, Mater. Lett. 60 (2006) 57.
    [2] C.-C. Hwang, T.-Y. Wu, J. Wan, J.-S. Tsai, Materials Science and Engineering B 111 (2004) 49.
    [3] Y.-P. Fu, C.-H. Lin, C.-W. Liu; K.-W. Tay, S.-B. Wen, J. Power Sources 159 (2006) 38.
    [4] A. S. Prakash, A. M. A. Khadar, K. C. Patil, M. S. Hegde, Journal of Materials Synthesis and Processing, 10 (2002) 135.
    [5] K. Nagaveni, M. S. Hegde, N. Ravishankar, G. N. Subbanna, G. Madras, Langmuir 20 (2004) 2900.
    [6] 严端瑄.水溶性高分子.化学工业出版社.1998.
    [7] C. R. Xia, M. L. Liu, J. Am. Ceram. Soc. 84 (2001) 1903.
    [8] Y. Y oo. J. Power Sources 160 (2006) 202.
    [9] C. Xia, M. Liu. Solid State Ionics 144 (2001) 249.
    [10] J. W. Kim, A. V. Virkar, K. Z. Fung, K. Mehta, S. C. Singhal, J. Electrochem. Soc., 146 (1999) 69.
    [11] T. Kenjo and M. Nishiya, Solid State Ionics, 57 (1992) 295.
    [12] T. Tsai, S. A. Barnett, Solid State Ionics, 93(1997) 207.
    [13] Y. Teraoka, T. Nobunaga, K. Okamoto, N. Miura, N. Yamazoe, Solid State Ionics, 48 (1991) 207.
    [14] H. Y. Tu, Y. Takeda, N. Imanishi, O. Yamamoto, Solid State Ionics, 100 (1997) 283.
    [15] Z. Shao, S. M. Haile. Nature 431 (2004) 170.
    [16] J. OM. Bockris, A. K. N. Reddy, Modern Electrochemistry. Kluwer Academic-Plenum Press, New York, 1998.
    [17] A. J. Appleby, F. R. Foulkes, A Fuel Cell Handbook, 2nd Ed. Kreiger Pulishing Co,P22.
    [18] J. Fleig, Annu. Rev. Mater. Res. 33 (2003) 361.
    [19] N. Ai, Z. Lu, K. Chen, X. Huang, B. Wei, Y. Zhang, S. Li, X. Xin, X. Sha, W. Su, Journal of Power Sources 159 (2006) 637.
    [20] C. Xia, W. Rauch, F. Chen, M. Liu, Solid State Ionics 149 (2002) 11.
    [1] Z. Zhan, Y. Lin, M. Pillai, I. Kimb, S. A. Barnett, Journal of Power Sources 161 (2006) 460.
    [2] C. M. Finnerty, N. J. Coe, R. H. Cunningham, R. M. Ormerod, Catal.Today 46 (1998) 137.
    [3] K. Kordesch, M. Cifrain, V. Hacker, G. Faleschini, T. Hejze, Argonne Natl. Lab.http://www.apolloenergysystems.com
    [4] R. D. Farr and C. G. Vayenas, J. Electrochem. Soc. 127 (1980) 1478.
    [5] K. Kordesch, J. Gsellmann, M. Cifrain, S. Voss, V. Hacker, R. R. Aronson, C. Fabjan, T. Hejze, J. Daniel-Ivad, J. Power Sources 80 (1999) 190.
    [6] A. Wojcik, H. Middleton, I. Damopoulos, J. Van Herle, J. Power Sources 118 (2003) 342.
    [7] Q. Ma, R. Peng, L. Tian, G. Meng, Electrochem. Commun. 8 (2006) 1791.
    [8] G. W. Castellan, Physical Chemistry. The Benjamin/Cummings Publishing Company, Inc. London, Third Edition.
    [9] Q. L. Liu, K. A. Khor, S. H. Chan. Journal of Power Sources 161 (2006) 123.
    [10] Z. Shao, S. M. Haile. Nature 431 (2004) 170.
    [11] S. Zha, A. Moore, H. Abernathy, M. Liu. J. Electrochem. Soc. 151 (2004) A1128.
    [12] Y. Zhang, X. Huang, Z. Lu, Z. Liu, X. Ge, J. Xu, X. Xin, X. Sha, W. Su. J. Power Sources 160 (2006) 1217.
    [13] T. Kudo, H. Obayashi, J. Electrochem. Soc. 123 (1976) 415.
    [14] H. L. Tuller, A. S. Nowick, J. Electrochem. Soc. 122 (1975) 255.
    [15] 尹艳红,中国科学技术大学博士学位论文,2004.
    [16] T. Matsuia, M. Inabab, A. Mineshigec, Z. Ogumi, Solid State Ionics 176 (2005) 647.
    [17] C. Xia, W. Rauch, F. Chen, M. Liu, Solid State Ionics 149 (2002) 11.
    [18] M. Liu, H. Hu, J. Electrochem. Soc. 143 (1996) L109.
    [19] W. Huang, P. Shuk, M. Greenblat, M. Croft, F. Chen, M. Liu, J. Electrochem. Soc. 147 (2000) 4196.
    [20] C. Xia, W. Rauch, F. Chen, M. Liu, Solid State Ionics 149 (2002) 11.
    [1] N. Q. Minh, T. Takahashi. Science and Technology of Ceramic Fuel Cells, Amsterdam, Elsevier Science, (1995) 117.
    [2] J. A. M. van Roosmalen, E. H. P. Cordfunke, Solid State Ionics 52 (1998) 303.
    [3] H. Yokokawa, T. Sakai, T. Kawada, M. Dokiya, J. Electrochem. Soc. 138 (1991) 2719.
    [4] K. Wiik, C. R. Schmidt, S. Faaland, S. Shamsili, M. A. Einarsrud, T. Grande, J. Am. Ceram. Soc. 82 (1999) 721.
    [5] A. Mitterdorfer, L. J. Gauckler, Solid State Ionics 111(1998) 185.
    [6] H. Y. Lee, S. M. Oh, Solid State Ionics 90 (1996) 133.
    [7] M. J. L. (?)stergard, C. Clausen, C. Bagger, M: Mogensen, Electrochim. Acta 40(1995) 1971.
    [8] M. Juhl, S. Primdahl, C. Manon, M. Mogensen, J. Power Sources 61(1996) 172.
    [9] C. W. Tanner, K. Z. Fung, A. V. Virkar, J. Electrochem. Sooc. 144 (1997) 21.
    [10] K. Hayashi, O. Yamamoto, Y. Nishgaki, H. Minoura, Solid State Ionics 98 (1997) 49.
    [11] T. Tsai, S. A. Barnett, Solid State Ionics 93 (1997) 207.
    [12] T. Kenjo, M. Nishiya, Solid State Ionics 57 (1992) 295.
    [13] A. Wojcik, H. Middleton, I. Damopoulos, J. V. herle, J. Power Sources 11 (2003) 342.
    [14] Q. Ma, J. Ma, S. Zhou, R. Yan, J. Gao, G. Meng, J. Power Sources 164 (2007) 86.
    [1] N. Bonanos, K. S. Knight, B. Ellis, Solid State Ionics 79 (1995) 161.
    [2] H. Iwahara, Solid State Ionics 86-88 (1996) 9.
    [3] K. D. Kreuer, Chem. Mater. 8 (1996) 610.
    [4] K. D. Kreuer, Solid State Ionics 97 (1997) 1.
    [5] T. Norby, Solid State Ionics 125 (1999) 1.
    [6] K. D. Kreuer, Annu. Rev. Mater. Res. 33 (2003) 333.
    [7] T. Schober, J. Friedrich, D. Triefenbach, F. Tietz, Solid State Ionics 100 (1997) 173.
    [8] N. Q. Minh, J. Am. Ceram. Soc. 76 (1993) 563.
    [9] W. Zhu, C. Xia, J. Fan, R. Peng, G. Meng, J. Power Sources 160 (2006) 897.
    [10] N. Taniguchi, K. Hatoh, J. Niikura, T. Gamo, H. Twahara, Solid State Ionics 53-56 (1992) 998.
    [11] N. Bonanos, B. Ellis, K. S. Knight, M. N. Mahnood, Solid State Ionics 35 (1989) 179.
    [12] H. Iwahara, Solid State Ionics, 52 (1989) 111.
    [13] H. Iwahara, T. Esaka, H. Uchida, N. Maeda, Solid State Ionics 3-4 (1981) 359.
    [14] H. Iwahara, H.Uchida, K. Ono, K. Ogaki, J. Electrochem. Soc. 135 (1988) 529.
    [15] H. Iwahara, Solid State Ionics 77 (1995) 289.
    [16] H. Iwahara, T. Yajima, H. Ushida, Solid State Ionics70-71 (1994) 443.
    [17] T. Schober, Solid State Ionics 145 (2001) 319.
    [18] H. Iwahara, T. Yajima, T. Hibino, H. Ushida, J. Electrochem. Soc. 140 (1993) 1687.
    [19] N. Bonanos, Solid State Ionics 53-56 (1992) 967.
    [20] D. A. Stevenson, N. Jiang, R. M. Buchanan, F. E. G. Henn, Solid State Ionics 62 (1993) 279.
    [21] H. Iwahara, T. Yajima H. Ushida, Solid State Ionics 70-71 (1994) 267.
    [22] J. Guan, S. E. Dorris, U. Balachandran, M. Liu, Solid State Ionics 100 (1995) 45.
    [23] H. Iwahara, T. Mori, T. Hibino, Solid State Ionics 79(1995) 177.
    [24] N. Bonanos, K. S. Knight B. Ellis, Solid State Ionics 79(1995) 161.
    [25] K. S. Knight, N. Bonanos, Mater. Res. Bull. 30 (1995) 347.
    [26] G. Ma, T. Shimura, H. Iwahara, Solid State Ionics 120 (1999) 51.
    [27] K. Asano, T. Hibino, H. Iwahara, J. Electrochem. Soc. 142 (1995) 3241.
    [28] A. Tomita, K. Tsunekawa, T. Hibino, S. Teranishi, Y. Tachi, M. Sano, Solid State Ionics 177 (2006) 2951.
    [29] F. L. Chen, O. T. S(?)rensen, G. Y. Meng, D. K. Peng, J. Mater. Chem. 7 (1997) 481.
    [30] S. V. Bhide, A. V. Virkar, J. Electrochem. Soc. 146 (1999) 2038.
    [31] T. Matzke, M. Cappadonia, Solid State Ionics 86-88 (1996) 659.
    [32] G. Ma,T. Shimura, H. Iwahara, Solid State Ionics 110 (1998) 103.
    [33] K. Katahira, Y. Kohchi, T. Shimura, H. Iwahara, Solid State Ionics 138 (2000) 91.
    [34] A. -M. Azad, S. Subramaniam, T. W. Dung, J. Alloys Compd. 334 (2002) 118.
    [35]] H. G. Bohn, T. Schober, J. Am. Ceram. Soc. 83 (2000) 768.
    [36] K. D. Kreuer, S. Adams, W. Munch, A. Fuchs, U. Klock, J. Maier, Solid State Ionics 145 (2001) 295.
    [37] M. Laidoudi, I. Abu Talib, R. Omar, J. Phys. D: Appl. Phys. 35 (2002) 397.
    [38] K. D. Kreuer, Solid State Ionics 125 (1999) 285.
    [39] C. D. Savaniu, J. Canales-Vazquez, J. T. S. Irvine, J. Mater. Chem. 15 (2005) 598.
    [40] K. H. Ryu, S. M. Haile, Solid State Ionics 125 (1999) 355.
    [41] K. Katahira, Y. Kohchi, T. Shimura, H. Iwahara, Solid State Ionics 138 (2000) 91.
    [42] S. Tao, J. T. S. Irvine, Adv. Mater. 18 (2006) 1581.
    [43] H. Iwahara, Solid State Ionics 28-30 (1988) 573.
    [44] H. Iwahara, H. Uchida, K. Morimot, J. Electrochem. Soc. 137 (1990) 462.
    [45] N. Bonanos, B. Ellis, M. N. Mahmood, Solid State Ionics 44 (1991) 305.
    [46] N. Tanigushi, K. Hatoh, J. Niikura, T. Gamo, Solid State Ionics 53-56 (1992) 998.
    [47] N. Maffei, L. Pelletier, J. P. Charland, A. McFarlan, J. Power Sources 140 (2005) 264.
    [48] R. R. Peng, Y. Wu, L. Z. Yang, Z. Q. Mao, Solid State Ionics 177 (2006) 389.
    [49] Q. Ma, R. Peng, Y. Lin, J. Gao, G. Meng, J. Power Sources 161 (2006) 95.