碳纳米管负载金属纳米颗粒的制备及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1991年,饭岛澄男(S.Iijima)发现了碳纳米管,碳纳米管就因其具备的优良性能引起了广泛关注。最近几年,人们致力于向碳纳米管上负载多种金属纳米颗粒,并且研究这种碳纳米管/金属纳米颗粒复合材料在电学、磁学、光学方面的独特性能。本论文围绕在碳纳米管上负载金属纳米颗粒展开研究,并为碳纳米管/金属纳米颗粒复合材料寻找应用。其中,重点开展两个方面工作:
     利用双醛淀粉包裹碳纳米管,双醛淀粉作为交联剂和还原剂来还原银纳米颗粒,在碳纳米管外负载银纳米颗粒。这种方法简单、经济、环保,并且只需要在室温下进行。利用TEM、FT-IR、XRD和AAS对碳纳米管/银纳米颗粒复合材料进行分析。碳纳米管/银纳米颗粒复合材料被应用在抑菌方面,我们考察了碳纳米管/银纳米颗粒复合材料对大肠杆菌、巨大芽孢杆菌、枯草芽孢杆菌、四联球菌的抑菌效果。
     我们利用甲苯导向直流电沉积的方法向碳纳米管管内负载镍铁合金纳米颗粒。这种方法省时、经济、环保,并且低温下即可进行。我们讨论了这种方法的可能机理。利用TEM、FT-IR、XRD、VSM和AAS方法对碳纳米管管内负载镍铁合金纳米颗粒的复合材料进行分析。我们把碳纳米管/镍铁合金纳米颗粒复合材料应用在联氨燃料电池的电催化方面,并且比较了不同组分的碳纳米管/镍铁合金纳米颗粒(镍铁摩尔比从100:0到60:40)对联氨的电催化活性。
Since the discovery by Iijima in1991, carbon nanotubes (CNTs) have evoked wide interest due to their remarkable properties. In recent years, considerable efforts have been devoted to decorate CNTs with a variety of metal nanoparticles and measure the unique electrical, magnetic and optical properties of the metal nanoparticles-CNTs composite materials. In this thesis, our main aim is to decorate CNTs with metal nanoparticles and find some application for the metal nanoparticles-CNTs composite materials. Our main research is focused in two aspects:
     We introduced a novel work on the synthesis of Ag-multiwalled carbon nanotubes (MWCNTs) by wrapping MWCNTs with dialdehyde starch (DAS) and reducing Ag+using DAS as complexant and reductant. The process was simple, economical, environment friendly and proceeded at room temperature. The Ag-MWCNTs were analyzed by TEM, FT-IR, XRD and AAS, respectively. The as prepared Ag-MWCNTs were used as antibacterial materials against E. coli, B. subtilis, B. megaterium, M. tetragenus, and exhibited superior antibacterial activities.
     We explored a simple and novel method to fill multiwalled carbon nanotubes with Ni-Fe alloys by methylbenzene-oriented constant current electrodeposition. This method was time-saving, economical, environment friendly and proceeded at low temperature. A possible mechanism of electrodepositing Ni-Fe alloys inside MWCNTs was discussed in this study. The Ni-Fe alloys filled MWCNTs were analyzed by TEM, FT-IR, XRD, VSM and AAS. The Ni-Fe alloys filled MWCNTs with stoichiometries from (100:0) to (60:40) as catalysts were used in direct hydrazine (N2H4)-air fuel cells to determine the optimum composition for hydrazine electrocatalysis.
引文
[1]lijima S. Helical microtubules of graphitic carbon[J]. Nature,1991,354(6348):56-58.
    [2]Wilder J W G, Venema L C, Rinzler A G, et al. Electronic structure of atomically resolved carbon nanotubes[J]. Nature,1998,391(6662):59-62.
    [3]麦亚潘(美)主编,刘忠范等译。碳纳米管-科学与应用[M]。北京:科学出版社,2007。
    [4]Hamada N, Sawada S, Oshiyama A. New one-dimensional conductors:Graphitic microtubules[J]. Physical Review Letters,1992,68(10):1579-1581.
    [5]Mintmire J W, Dunlap B I, White C T. Are fullerene tubules metallic?[J]. Physical Review Letters,1992,68(5):631-634.
    [6]Matyushov A. Growth of carbon nanotubes via chemical vapor deposition. Citeseer.2008:81.
    [7]lijima S, Brabec C, Maiti A, et al. Structural flexibility of carbon nanotubes[J]. The Journal of chemical physics,1996,104:2089.
    [8]Becher M, Haluska M, Hirscher M, et al. Hydrogen storage in carbon nanotubes[J]. Comptes Rendus Physique,2003,4(9):1055-1062.
    [9]Zhang H, Fu X, Yin J, et al. The effect of MWNTs with different diameters on the electrochemical hydrogen storage capability[J]. Physics Letters A,2005,339(3):370-377.
    [10]ZHANG X W, CHU W, ZHUANG H X, et al. Modification of Multi-walled Carbon Nanotubes and Its Performance for Hydrogen Storage [J][J]. Chemical Research In Chinese Universities,2005,3:022.
    [11]Normile D. Nanotubes generate full-color displays[J]. Science,1999,286(5447):2056-2057.
    [12]Choi W B, Chung D S, Kang J H, et al. Fully sealed, high-brightness carbon-nanotube field-emission display[J]. Applied physics letters,1999,75:3129.
    [13]Wiley B, Sun Y, Mayers B, et al. Shape-Controlled Synthesis of Metal Nanostructures:The Case of Silver[J]. Chemistry-A European Journal,2005,11(2):454-463.
    [14]Wiley B, Sun Y, Xia Y. Synthesis of silver nanostructures with controlled shapes and properties[J]. Accounts of Chemical Research,2007,40(10):1067-1076.
    [15]Xia Y, Xiong Y, Lim B, et al. Shape-Controlled Synthesis of Metal Nanocrystals:Simple Chemistry Meets Complex Physics?[J]. Angewandte Chemie International Edition,2009,48(1): 60-103.
    [16]Tao A R, Habas S, Yang P. Shape control of colloidal metal nanocrystals[J]. Small,2008, 4(3):310-325.
    [17]Palgrave R G, Parkin I P. Surfactant directed chemical vapour deposition of gold nanoparticles with narrow size distributions[J]. Gold Bulletin,2008,41(1):66-69.
    [18]Zhao W B, Zhu J J, Chen H Y. Photochemical synthesis of Au and Ag nanowires on a porous aluminum oxide template[J]. Journal of crystal growth,2003,258(1):176-180.
    [19]Wang C, Chen M, Zhu G, et al. A novel soft-template technique to synthesize metal Ag nanowire[J]. Journal of colloid and interface science,2001,243(2):362-364.
    [20]Fitz-Gerald J, Pennycook S, Gao H, et al. Synthesis and properties of nanofunctionalized particulate materials[J]. Nanostructured materials,1999,12(5):1167-1171.
    [21]Pillai S, Catchpole K R, Trupke T, et al. Surface plasmon enhanced silicon solar cells[J]. Journal of applied physics,2007,101:093105.
    [22]Beck F J, Polman A, Catchpole K R. Tunable light trapping for solar cells using localized surface plasmons[J]. Journal of Applied Physics,2009,105(11):114310-114310-7.
    [23]Dietz T G, Duncan M A, Powers D E, et al. Laser production of supersonic metal cluster beams[J]. The Journal of Chemical Physics,1981,74(11):6511-6512.
    [24]Veith G M, Lupini A R, Pennycook S J, et al. Magnetron sputtering of gold nanoparticles onto WO< sub> 3 and activated carbon[J]. Catalysis today,2007,122(3):248-253.
    [25]Shankar S S, Rai A, Ankamwar B, et al. Biological synthesis of triangular gold nanoprisms[J]. Nature materials,2004,3(7):482-488.
    [26]Xie J, Lee J Y, Wang D I C, et al. Silver nanoplates:from biological to biomimetic synthesis[J]. ACS nano,2007,1(5):429-439.
    [27]Tarasov S, Kolubaev A, Belyaev S, et al. Study of friction reduction by nanocopper additives to motor oil[J]. Wear,2002,252(1):63-69.
    [28]Biswas P, Wu C Y. Nanoparticles and the environment[J]. Journal of the Air & Waste Management Association,2005,55(6):708-746.
    [29]Shi Z, Neoh K G, Kang E T. Surface-grafted viologen for precipitation of silver nanoparticles and their combined bactericidal activities[J]. Langmuir,2004,20(16):6847-6852. [30] Mei Y, Lu Y, Polzer F, et al. Catalytic activity of palladium nanoparticles encapsulated in spherical polyelectrolyte brushes and core-shell microgels[J]. Chemistry of materials,2007,19(5): 1062-1069.
    [31]Mei Y, Sharma G, Lu Y, et al. High catalytic activity of platinum nanoparticles immobilized on spherical polyelectrolyte brushes[J]. Langmuir,2005,21(26):12229-12234.
    [1]金宗哲。化学工业出版社,2004。
    [2]内田真志。银沸石[J]。J. Antibact Antifung Agents,1996,21(11):735-742。
    [3]石和彬,刘羽,钟宏。磷灰石在抗茵材料中的应用[J]。化学与生物工程,2003,6:48-49。
    [4]王小健,乔学亮,陈建国,等。无机抗菌剂的研究现状及发展趋势[J]。陶瓷学报,2003,24(4)。
    [5]季君晖,史维明。抗菌材料。北京:化学工业出版社,2003。
    [6]GB/T 4789.2-2003《食品卫生微生物学检验菌落总数测定》。
    [7]Fitz-Gerald J, Pennycook S, Gao H, et al. Synthesis and properties of nanofunctionalized particulate materials[J]. Nanostructured materials,1999,12(5):1167-1171.
    [8]曹茂盛。超微颗粒制备科学与技术。哈尔滨:哈尔滨工业大学出版社,1996。
    [9]Xu J, Yin J S, Ma E. Nanocrystalline Ag formed by low-temperature high-energy mechanical attrition[J]. Nanostructured materials,1997,8(1):91-100.
    [10]Bae C H, Nam S H, Park S M. Formation of silver nanoparticles by laser ablation of a silver target in NaCl solution[J]. Applied Surface Science,2002,197:628-634.
    [11]Chen W, Zhang J. Ag nanoparticles hosted in monolithic mesoporous silica by thermal decomposition method[J]. Scripta materialia,2003,49(4):321-325.
    [12]黄磊,凌国平,郦剑。纳米Ag-Al2O3复合粉末的制备。浙江大学学报(工学版),2003,37(1):65-69。
    [13]Zhou H S, Wada T, Sasabe H, et al. Synthesis of nanometer-size silver coated polymerized diacetylene composite particles[J]. Applied physics letters,1996,68(9):1288-1290.
    [14]曾戎,岳中仁,曾汉民。活性炭纤维对贵金属的吸附。材料研究学报,1998,12(2):203-206。
    [15]廖学红,李鑫。电化学制备纳米银。黄冈师范学院学报,2001,21(5):58-59。
    [16]廖学红,朱俊杰,赵小宁等。纳米银的电化学合成。高等学校化学学报,2000,12(21):1837-1839。
    [17]陈祖报,朱英杰,陈敏等。γ-射线辐照制备金属和金属氧化物纳米级超细粉。化学通报,1996,(1):44-45。
    [18]Zhou Y, Yu S H, Wang C Y, et al. A Novel Ultraviolet Irradiation Photoreduction Technique for the Preparation of Single-Crystal Ag Nanorods and Ag Dendrites[J]. Advanced Materials, 1999,11(10):850-852.
    [19]Rong M, Zhang M, Liu H, et al. Synthesis of silver nanoparticles and their self-organization behavior in epoxy resin[J]. Polymer,1999,40(22):6169-6178.
    [20]Kameo A, Yoshimura T, Esumi K. Preparation of noble metal nanoparticles in supercritical carbon dioxide[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2003, 215(1):181-189.
    [21]张昊然。银在细菌SH09上的吸附还原特性与表征。厦门:厦门大学,2005。
    [22]庄田正博。无机抗菌剂。新素材(H),1996,(11):19-23。
    [23]加藤秀树。银系无机抗菌剂。新素材(H),1996,(10):22-26。
    [24]司民真,武荣国,李世荣。纳米银的制备及有关光学性质简介。楚雄师专学报, 1999,14(3):4-8。
    [25]Yin Q F, Ju B Z, Zhang S F, et al. Preparation and characteristics of novel dialdehyde aminothiazole starch and its adsorption properties for Cu (Ⅱ) ions from aqueous solution[J]. Carbohydrate Polymers,2008,72(2):326-333.
    [26]张友松。变性淀粉的生产与应用手册[M]。北京冲国轻工业出版社,1999。
    [27]张燕萍。变性淀粉制造与应用[M]。北学工业出版社,2001。
    [28]Nedelcheva M, Vulcheva E, Bencheva S. Adsorption of dialdehyde starch on pulp[J]. Zeust. Paper,1981,30(6):251-254.
    [29]Filachione E M, Harris E H, Fein M L, et al. Tanning studies with dialdehyde starch[J]. Journal of the Ameri2 can Leather Chemists Association,1958,53:77-85.
    [30]Weakley F B, Roth W B, Mehltretter C L, et al. Protein-Dialdehyde Starch Glue for Birch Type Ⅱ Plywood[J]. Starch-Starke,1971,23(2):58-62.
    [31]Mehltretter C L. Recent progress in dialdehyde starch technology[J]. Starch-Starke,1966, 18(7):208-213.
    [32]Hofreiter B T, Alexander B H, Wolff I A. Rapid estimation of dialdehyde content of periodate oxystarch through quantitative alkali consumption[J]. Analytical Chemistry,1955, 27(12):1930-1931.
    [33]Zhao Y, Yang X, Zhan L, et al. High electrocatalytic activity of PtRu nanoparticles supported on starch-functionalized multi-walled carbon nanotubes for ethanol oxidation[J]. Journal of Materials Chemistry,2011,21(12):4257-4263.
    [1]衣宝廉。高效环境友好的发电方式-燃料电池[J]。2000。
    [2]徐洪峰,衣宝廉,韩明。固体聚合物电解质燃料电池[J]。化学通报,1996,59(7):10。
    [3]马紫峰,黄碧纯。质子交换膜燃料电池电催化剂研究及膜电极制备技术[J]。电源技术,1999,23(2):149-153。
    [4]衣宝廉。燃料电池的原理,技术状态与展望[J]。电池工业,2003,8(1):16-22。
    [5]王艳华,王欧,韩彬。前景广阔的新型化学电源[J]。辽宁化工,1998。
    [6]秦伟程。水合肼合成技术与市场分析[J]。化工科技市场,2007,30(3):1-5。
    [7]陈延禧,黄成德。聚合物燃料电池的研究与开发[J]。1999。
    [8]冯世宏,金丽。水合联氨的合成及应用[J]。 Journal Of Liaoning Institute Of Technology, 2000,2(5) 。
    [9]Demirci U B. Direct liquid-feed fuel cells:Thermodynamic and environmental concerns[J]. Journal of power sources,2007,169(2):239-246.
    [10]许世森,程健,燃料电池发电系统,中国电力出版社,(2006)。
    [11]耿佃国,董美丽。直接甲醇燃料电池用质子交换膜研究进展[J]。精细石油化工进展,2007,8(10):38-43。
    [12]索春光,刘晓为。微型直接甲醇燃料电池的研究进展[J]。电池工业,2008,13(5):339-343。
    [13]王瑾,王诚,董国君等。碱性直接甲醇燃料电池的研究进展[J]。电池,2007,37(4):315-317。
    [14]Asazawa K, Sakamoto T, Yamaguchi S, et al. Study of anode catalysts and fuel concentration on direct hydrazine alkaline anion-exchange membrane fuel cells[J]. Journal of The Electrochemical Society,2009,156(4):B509-B512.
    [15]Yamada K, Yasuda K, Tanaka H, et al. Effect of anode electrocatalyst for direct hydrazine fuel cell using proton exchange membrane[J]. Journal of power sources,2003,122(2):132-137.
    [16]Yang H, Zhong X, Dong Z, et al. A highly active hydrazine fuel cell catalyst consisting of a Ni-Fe nanoparticle alloy plated on carbon materials by pulse reversal[J]. RSC Advances,2012, 2(12):5038-5040.
    [17]Zhang B, Liu C, Cheng H M, et al. Progress in carbon nanotubes filled with foreign substances[J].2003.
    [18]Popov V N. Carbon nanotubes:properties and application[J]. Materials Science and Engineering:R:Reports,2004,43(3):61-102.
    [19]Gao Y, Bando Y. Nanotechnology:Carbon nanothermometer containing gallium[J]. Nature, 2002,415(6872):599-599.
    [20]Monch I, Meye A, Leonhardt A, et al. Ferromagnetic filled carbon nanotubes and nanoparticles:synthesis and lipid-mediated delivery into human tumor cells[J]. Journal of magnetism and magnetic materials,2005,290:276-278.
    [21]Che R, Peng L M, Duan X F, et al. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes[J]. Advanced Materials, 2004,16(5):401-405.
    [22]Wang Z Y, Zhao Z B, Qiu J S. Development of filling carbon nanotubes. Progress in Chemistry,2006,18(5):563-572.
    [23]Bai A, Hu C C. Composition controlling of Co-Ni and Fe-Co alloys using pulse-reverse electroplating through means of experimental strategies[J]. Electrochimica acta,2005,50(6): 1335-1345.
    [24]Fei J Y, Wilcox G D. Electrodeposition of Zn-Co alloys with pulse containing reverse current[J]. Electrochimica Acta,2005,50(13):2693-2698.
    [25]Tang P T. Pulse reversal plating of nickel and nickel alloys for microgalvanics[J]. Electrochimica acta,2001,47(1):61-66.
    [26]Buchheit T E, Goods S H, Kotula P G, et al. Electrodeposited 80Ni-20Fe (Permalloy) as a structural material for high aspect ratio microfabrication[J]. Materials Science and Engineering:A, 2006,432(1):149-157.