镉对肝癌细胞SMMC7721的毒性机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镉(cadmium)是一种有毒的重金属元素,易在体内蓄积,镉在人体内的半衰期长达20-30年,镉对机体毒性效应十分复杂。镉毒性作用的靶器官包括肺脏、肝脏、肾脏、骨骼、心血管系统和免疫系统,镉能够诱导这些器官的细胞死亡并导致相关功能丧失。肝脏是镉损伤的主要靶器官之一,目前对镉致肝细胞损伤研究较多,但其作用机制目前还不完全清楚。本研究以体外培养的人肝癌细胞株SMMC-7721为模型,在对数生长期用不同的镉浓度进行染毒,无血清培养不同时间,采用细胞生物学、分子生物学和比较蛋白质组学方法评价镉对肝细胞的毒性效应及机制。研究内容如下:
     1.镉对肝癌细胞SMMC7721的毒性损伤
     0-80μmo1/L醋酸镉分别作用SMMC7721细胞6、12、24h,采用MTT法测定了细胞相对存活率;1、2.5、5、10、20μmol/L醋酸镉分别作用细胞6、12、24h并测定培养上清中LDH活性、细胞凋亡率;观察了镉染毒24h对细胞形态、超微结构以及DNA损伤的影响。结果表明,随着镉浓度的增大,肝癌细胞的存活率逐渐降低,12h和24h时各剂量染镉组细胞存活率均极显著低于对照组(P<0.01);随着镉剂量的增加和作用时间的延长,细胞变圆,脱落,急剧变形,坏死细胞增多,超微结构观察可见细胞核染色质边集,内容物皱缩空泡化或最终崩解。LDH释放量随剂量升高而增加,部分剂量组与对照组比较差异显著或极显著(P<0.05或P<0.01)。与对照组比较,镉染毒12h,仅20μmol/LCd组凋亡率显著升高,24h各组凋亡率均显著升高(P<0.05或P<0.01),并以10μmol/LCd组最高。Hoechst33258染色可以观察到凋亡细胞发生了核碎裂。表明镉对肝癌细胞的损伤呈剂量—时间—效应,5-20μmol/L镉即可引起肝癌细胞凋亡和坏死,其中10μmol/LCd所致的凋亡率最高。
     2.氧化应激在镉致肝癌细胞SMMC7721损伤中的作用
     5、10、20μmol/L醋酸镉处理SMMC7721细胞,测定了不同时间肝癌细胞内ROS、GSH及MDA含量;同时检测了NAC对镉致肝癌细胞凋亡及LDH释放的影响。结果表明,ROS升高主要发生在染毒后2h,显著或极显著高于对照组(P<0.05或P<0.01);染毒12h时,10和20μmol/L染毒组细胞内GSH含量极显著低于对照组(P<0.01);20μmol/L剂量组MDA含量显著高于对照组(P<0.05)。染毒24h时,GSH随镉浓度增高而降低,显著或极显著低于对照组(P<0.05或P<0.01);MDA含量则随镉染毒浓度升高而升高,并极显著高于对照组(P<0.01)。与染毒组比较,在镉染毒同时添加NAC能显著降低细胞上清中LDH活性,减少凋亡细胞比例。表明氧化应激在镉致肝癌细胞损伤过程中发挥了重要作用。
     3.镉对肝癌细胞SMMC7721线粒体的影响
     1、2.5、5、10、20μmol/L醋酸镉处理SMMC7721细胞,测定了染毒12h和24h后线粒体膜电位的变化,观察了染毒24h线粒体超微结构,同时对线粒体损伤相关基因Bcl-2、Bax、CytC、Caspase-9、Caspse-3的mRNA相对表达水平及蛋白表达水平的变化进行了测定。结果表明,染毒12h线粒体膜电位变化不显著,染毒24h5μmol/L以上组线粒体膜电位显著或极显著低于对照组(P<0.05或P<0.01)。超微结构显示,随着镉染毒浓度的增加线粒体出现嵴断裂,空泡化,严重时发生崩解。Bcl-2mRNA目对表达量随染毒浓度增加而降低,bax表达变化与之相反,Western blot结果呈现同样的变化规律;细胞免疫组织化学检测Cyt-c表达随染毒浓度升高表达量增加,(?)Vestern blot检测无差异;Caspase-9mRNA相对表达量随染毒浓度升高而增加,并显著高于对照组(P<0.01)。10μmol/LCd组Caspse-3mRNA相对表达量显著低于对照组(P<0.05),其余染毒组与对照组比较无显著差异(P>0.05)。表明线粒体凋亡途径参与了镉致肝癌细胞的损伤。
     4.镉致肝癌细胞SMMC7721损伤的蛋白质组学研究
     选择10μmol/LCd染毒24h建立镉致肝癌细胞损伤模型,通过提取细胞总蛋白和双向凝胶电泳对蛋白质进行分离,共有24个蛋白点出现显著的差异表达,包括7个新增点,11个上调点,6个下调点。采用MALDI-TOF-MS质谱法对24个差异表达蛋白点进行质谱分析,结果成功鉴定了23个蛋白点,对应23种蛋白质。它们是肽酰-脯氨酰-顺反式异构酶FKBP4、角蛋白8、热休克蛋白27、蛋白酶激活复合物亚基2、60S酸性核糖体P0蛋白、热休克蛋白70蛋白6、甘氨酰-tRNA合成酶异构体CRA a、半乳糖凝集素-1、线粒体细胞色素b-c1复合体亚单位1、60KD热休克蛋白、围脂滴蛋白-3、角蛋白细胞骨架Ⅰ-18、角蛋白/细胞支架Ⅰ-17、钙腔蛋白亚基5、酪氨酸3-monooxygenasea/tryptophan5单加氧酶激活蛋白ζ、角蛋白10、蛋白S100-A4、Ran特异性GTP酶活化蛋白、真核翻译起始因子5A-1、Ran特异性GTP酶活化蛋白、β-链微管蛋白2C、膜联蛋白A5、GDP解离抑制因子。通过数据库查询和生物信息学分析,证实这些已知的差异蛋白中与细胞骨架相关蛋白占21.7%,应激相关蛋白占21.7%,细胞凋亡相关蛋白占8.7%,信号传导相关蛋白占21.7%,核酸结合相关蛋白占8.7%,其他占21.7%。在此基础上结合现有的文献报道,对这些差异蛋白质的功能与镉损伤相关机制等方面进行分析讨论。结果表明镉破坏了细胞骨架系统,诱导了氧化应激,并且发现硫氧还蛋白、酸性磷酸化P0蛋白等可能参与了镉诱导肝癌细胞凋亡的调节。
Cadmium (Cd) is a toxic metal, targeting the lung, liver, kidney, and testes following acute intoxication, and causing nephrotoxicity, immunotoxicity, osteotoxicity and tumors after prolonged exposures. Liver plays a central role in toxicity of cadmium (Cd). Recently, there are lots of Studies reported on cadmium hepatotoxicity, but the specific mechanisms by which it produces its adverse effects have yet to be fully elucidated. In this study, hepatoma SMMC7721cells in the logarithmic phase were treated with cadmium by serum deprivation with different time to study the mechanism of cytotoxicity induced by Cd. The methods of cytobiology, molecular biology and comparative proteome methods were used to evaluate the mechanism of cytotoxicity in hepatocyte induced by cadmium. A series of tests were carried out:
     1. Cadmium induced cytotoxicity in SMMC7721
     SMMC7721cells were exposed to cadmium acetate (Cd(AC)2) atl,2.5,5,10,20,40and80μmol/L for a range of6,12and24h. Cell survival rates were measured with MTT assay. At the end of incubation, the leakage of lactate dehydrogenase (LDH) in cell-free medium was measured with spectro photometric assay; apoptosis rate were detectd with flow cytometry. The morphology, nucleus damage and ultrastructure of SMMC7721were also evaluated. The results showed that the inhibitory rate of SMMC7721cells increased significantly with the increasing dosage and time of exposure compared with control group (P<0.01). After24h treatment, hepatocytes showed sharp deformation and more dead cells in culture medium. Ultrastructurally, nucleoli damaged with crush and Chromatin margination and lots of vacuoles in cytoplasm, eventually collapse. After treated with Cd for12h or24h, the activity of LDH in cell free culture increased significantly(P<0.05or P<0.01)compared with control group. The apoptosis rate increased significantly compared with conrol group after24h exposed to Cd. Hoechst33258staining displayed nuclear fragmentation into2-3parts. In short, the injury induced by Cd shows does time effect.5-20μmol/L Cd could induce both necrosis and apoptosis. When treated with10μmol/LCd, we can receive relatively high apoptosis rate.
     2. The role of oxidative stress in injury induced by cadmium in SMMC7721
     The content of ROS, MDA and GSH in SMMC7721were detected after treated with Cd atl,2.5,5,10,20μmol/L. SMMC7721cells were treated with10μmol/L Cd in the presence or absence of NAC. The antagonistic effects of NAC on toxicity of Cd were evaluated. The results showed that the concentration of ROS increased significantly only after2h exposure, it decreased to nomal level after6h or longer. When exposed to Cd for12h, the concentration of GSH decreased significantly after treated with10μmol/L and20μmol/LCd compared with control group, while the concentration of MDA increased significantly with group20μmol/LCd. When exposed to Cd for24h, the concentration of GSH decreased significantly in all groups treated with Cd compared with control group, the concentration of MDA was on the contrary. Both apoptosis and necrosis induced by cadmium can be efficiently prevented by NAC. In conclusion, oxidative stress plays an important role in cytotoxicity induced by cadmium on SMMC7721.
     3. Effects of cadmium on mitochondria of SMMC7721
     The mitochondrial membrane potential (ΔΨm) was detected and ultramicrostructure of mitochondrial was observed after treated with Cd at5,10,20μmol/L for12h and (or)24h. At the same time the relative expression levels and/or protein expression level of gene Bcl-2, Bax, Cyt-c, Caspase-9and Caspse-3in SMMC7721were detected. The results showed that, after exposed to Cd for12h there was no significant difference on ΔΨm between control and groups (P>0.05); after expoused to Cd for24h, the ΔΨm of all groups exposed to Cd decreased significantly compared with control group(P<0.05or P<0.01). Ultrastructurally, mitochondria swelling and degeneration, mitochondrial cristae blurred, deformed or final collapse. The relative expression levels of Bcl-2decreased significantly in the groups treated with Cd at5,10μmol/L compared with control group, but increased significantly in (20μmol/LCd) group. The reverse change was detected with gene Bax. Western blot analysis showed the same tendency as above. The relative expression levels of Caspase-9increased significantly in group (Cd2.5,5,10,20μmol/L) compared to control group. Cd at10μmol/L decreased the relative expression levels of Caspase-3obviously compared with control, no significant difference was observed between the other groups and control. We can conclude that cytotoxicity induced by cadmium may through the mitochondrial path way in SMMC7721.
     4. Proteomic study on SMMC7721induced by cadmium
     We chose Cd at10μmol/L for24h to establish the damage model. The total protein of SMMC7721was extracted and separated with2-D gel electrophoresis. The results showed that24protein spots in total expressed differently during exposed to Cd including7new spots,11up-regulated spots and6down-regulated. With MALDI-TOF-MS,24protein spots representing23proteins were successfully identified, including peptidyl-prolyl cis-trans isomerase FKBP4, KRT8protein, heat shock protein27, proteasome activator complex subunit2,60S acidic ribosomal protein P0, heat shock70kDa protein6, glycyl-tRNA synthetase, isoformCRA_, calumenin isoform5, tyrosine3-monooxygenasea/tryptophan5-monooxygenase activation protein zeta, thioredoxin, Galectin-1, rho GDP-dissociation inhibitor1isoform a, ANNEXIN A5, Tubulin beta-2C chain keratin, type I cytoskeletal17, Eukaryotic translation initiation factor5A-1, Ran-specific GTPase-activating protein, KRT18protein, perilipin-3isoform3, heat shock60kDa protein1, Protein S100-A4, cytochrome b-c1complex subunit1mitochondrial, Keratin10. In addition, As confirmed by database query, these differential proteins were mainly associated with cell skeleton protein(21.7%), stress protein(21.7%), proliferation and apoptosis(8.7%), signal transduction(21.7%), nucleric acid binding protein(8.7%) and other proteins(21.7%). Based on the forthcoming research, we analyzed the function of these differential proteins as well as their relationship with mechanism of cytotoxicity induced by treated with Cd. In conclution, cytoskeleton was destroyed and oxidative stress was induced by Cd. Thioredoxin and60S acidic ribosomal protein PO may also participate in regulating apoptosis induced by Cd.
引文
[1]Satarug S., Moore M.R., Adverse health effects of chronic exposure to lowlevel cadmium in foodstuffs and cigarette smoke, Environ. Health Perspect.2004,112:1099-1103.
    [2]Joseph P., Mechanisms of cadmium carcinogenesis, Toxicol. Appl. Pharmacol.2009,238: 272-279.
    [3]World Health Organization, IPCS Environmental Health Criteria 1992,134:Cadmium, World Health Organization, Geneva.
    [4]Nordberg G. F., Herber R.F.M., Alessio L.(Eds.), Cadmium in the Human Environment:Toxicity and Carcinogenicity, International Agency for Research on Cancer, Lyon,1992.
    [5]Goering P.L., Waalkes M.P., Klaassen C.D., Toxicology of cadmium, in:R.A. Goyer, M.G. Cherian (Eds.), Handbook of Experimental Pharmacology, Vol.115, Toxicology of Metals-Biochemical Aspects, Springer-Verlag, Berlin,1995,189-214.
    [6]Bhattacharyya M.H., Wilson A.K., Rajan S.S., et al. Biochemical pathways in cadmium toxicity, in:R.K. Zalups, J. Koropatnick (Eds.), Molecular Biology and Toxicology of Metals, Taylor and Francis, London, UK,2000,34-74.
    [7]Fowler B.A., Monitoring of human populations for early markers of cadmium toxicity:a review, Toxicol. Appl. Pharmacol.2009,238:294-300.
    [8]Beyersmann D, Hechtenberg S. Cadmium, gene regulation, and cellular signaling in mammalian cells, Toxicol. Appl. Pharmacol.1997,144:247-261.
    [9]DiPaulo J.A., Casto B.C., Quantitative studies of in vitro morphological transformation of Syrian hamster cells by inorganic metal salts, Cancer Res.1979,39:1008-1013.
    [10]Achanzar W E, Diwan B A, Liu J. et al. Cadmium-induced malignant transformation of human prostate epithelial cells, Cancer Res.2001,61:455-458.
    [11]Waalkes M.P., Cadmium carcinogenesis, Mutat. Res.2003,533:107-120.
    [12]Waalkes M P, Coogan T P, Barter R A. Toxicological principles of metal carcinogenesis with special emphasis on cadmium, Crit. Rev. Toxicol.1992,22:175-201.
    [13]Waalkes M P, Oberdsrster G, Cadmium carcinogenesis, in:E.C. Foulkes (Ed.), Biological Effects of Heavy Metals, Vol. Ⅱ, Mechanisms of Metal Carcinogenesis, CRC Press, Boca Raton, FL, 1990,129-157.
    [14]International Angency for Research on Cancer, Beryllium, Cadmium, Mercury and Exposures in the Glass Manufacturing Industry, vol.58, IARC, Lyon,1993,119-238.
    [15]Achanzar W E, Webber MM, Waalkes MP, Altered apoptotic gene expression and acquired apoptotic resistance in cadmium-transformed human prostate epithelial cells, Prostate 2002,52: 236-244.
    [16]Buchet J P, Lauwerys R, Roels H, et al. Renal effects of cadmium body burden of the general population, Lancet 1990,336:699-702.
    [17]Lauwerys R, Amery A, Bernard A, et al. Health effects of environmental exposure to cadmium:objectives, design and organization of the Cadmibel study:a cross-sectional morbidity study carried out in Belgium from 1985-1989, Environ. Health Perspect.1990,87:283-289.
    [18]Lauwerys R, Bernard A, Buchet J P, et al. Does environmental exposure to cadmium represent a health risk? Conclusions from the Cadmibel study, Acta Cl in. Belg.1991,46:219-225.
    [19]Hotz P, Buchet J P, Bernard A, et al. Renal effects of low-level environmental cadmium exposure:5-year follow-up of a subcohort from the Cadmibel study, Lancet 1999,354:1508-1513.
    [20]Larison JR, Likens G E, Fitzpatrick J W, et al. Cadmium toxicity among wildlife in the Colorado Rocky Mountains, Nature,2000,406:181-183.
    [21]Jarup L, Akesson A., Current status of cadmium as an environmental health problem, Toxicol. Appl. Pharmacol.2009,238:201-208.
    [22]Rossman T G, Roy N K, Lin W C. Is cadmium genotoxic? IARC Sci. Pub.1992,118:367-375.
    [23]Waisberg M, Joseph P, Hale B, et al. Molecular and cellular mechanisms of cadmium carcinogenesis, Toxicology,2003,192:95-117.
    [24]Liu J, Qu W, Kadiiska M B. Role of oxidative stress in cadmium toxicity and carcinogeneis, Toxicol. Appl. Pharmacol.2009,238:209-214.
    [25]Lieberthal W, Menza S A, Levine J S. Graded ATP depletion can cause necrosis or apoptosis of cultured mouse proximal tubular cells, Am. J. Physiol.1998,274:F315-F327.
    [26]Oh S H, Lim S C. A rapid and transient ROS generation by cadmium triggers apoptosis via caspase-dependent pathway in HepG2 cells and this is inhibited by through N-acetylcysteine-mediatedcatalase upregulation, Toxicol. Appl. Pharmacol.2006,212:212-223.
    [27]Templeton D M, Cherian M G. Toxicological significance of metallothionein, Methods Enzymol.1991,205:11-24.
    [28]Chin T A, Templeton D M. Protective elevations of glutathione and metallothionein in cadmium-exposed mesangial cells, Toxicology,1993,77:145-156.
    [29]Thevenod F. Cadmium and cellular signaling cascades:to be or not to be? Toxicol. Appl. Pharmacol.2009,238:221-239.
    [30]Lopez E., Arce C., Oset-Gasque M.J. et al. Cadmium induces reactive oxygen species generation and lipid peroxidation in cortical neurons in culture, Free Radic. Biol. Med.2006,40: 940-951.
    [31]Figueiredo-Pereira M E, Yakushin S, Cohen G. Disruption of intracellular sulfhydryl homeostasis by cadmium-induced oxidative stress leads to protein thiolation and ubiquitination in neuronal cells, J. Biol. Chem.1998,273:12703-12709.
    [32]Hart B A, Lee C H, Shukla G S, et al. Characterization of cadmium-induced apoptosis in rat lung epithelial cells:evidence for the participation of oxidant stress, Toxicology,1999,33:43-58.
    [33]Qu W, Diwan B A, Reece J M, et al. Cadmium-induced malignant transformation in rat liver cells:role of aberrant oncogene expression and minimal role of oxidative stress, Int. J. Cancer,2005, 114:346-355.
    [34]Somji S., Zhou X.D., Garret S.H., et al. Urothelial cells malignantly transformed by exposure to cadmium (Cd2+) and arsenite (As3+) have increased resistance to Cd2+and As3+-induced cell death, Toxicol. Sci.2006,94:293-301.
    [35]Valko M., Rhodes C J, Moncol J, et al. Free radicals, metals and antioxidants in oxidative stress-induced cancer, Chem Biol Interact.2006,160:1-40.
    [36]Liu J, Qjan S Y, Gouo Q, et al. Cadmium generates reactive oxygen-and carbon-centered radical species in rats:insights from in vivo spin-trapping studies, Free Radic. Biol. Med.2008,45: 475-481.
    [37]Hoeijmakers J H, Genome maintenance mechanisms for preventing cancer, Nature,2001,411: 366-374.
    [38]Hengstler J G, Bolm-Audorff U, Faldum A, et al. Occupational exposure to heavy metals:DNA damage induction and DNA repair inhibition prove co-exposures to cadmium, cobalt and lead as more dangerous than hitherto expected, Carcinogenesis,2003,24:63-73.
    [39]Hartwig A, Asmuss M, Ehleben I, et al. Interference by toxic metal ions with DNA repair processes and cell cycle control:molecular mechanisms, Environ. Health Perspect.2002,110.
    [40]Dally H, Hartwig A. Induction and repair inhibition of oxidative DNA damage by nickel(Ⅱ) and cadmium(Ⅱ) in mammalian cells, Carcinogenesis,1997,18:1021-1026.
    [41]Hartmann M, Hartwig A. Disturbance of DNA damage recognition after UVirradiation by nickel (Ⅱ) and cadmium(Ⅱ) in mammalian, Carcinogenesis,1998,19:617-621.
    [42]Asmuss M, Mullenders L.H.F., Eker A., et al. Differential effects of toxic metal compounds on the activities of Fpg and XPA, two zinc finger proteins involved in DNA repair, Carcinogenesis, 2000,21:2097-2104.
    [43]Meplan C., Mann K., Hainaut P. Cadmium induces conformational modifications of wild-type p53 and suppresses p53 response to DNA damage in cultured cells, J. Biol. Chem.1999,274: 31663-31670.
    [44]Jin Y.H., Clark A.B., Slebos R.J.C., et al. Gordenin, Cadmium is a mutagen that acts by inhibiting mismatch repair, Nat. Genet.2003,34:326-329.
    [45]Bialkowski K, Bialkowska A, Kasprzak K S, Cadmium(Ⅱ), unlike nickel(Ⅱ), inhibits 8-oxo-dGTPase activity and increases 8-oxo-dG level in DNA of the rat testis, a target organ for cadmium(Ⅱ) carcinogenesis, Carcinogenesis,1999,20:1621-1624.
    [46]Huang C S, Zhang Q W, Li J X, et al. Involvement of Erks activation in cadmium-induced AP-1 transactivation in vitro and in vivo, Mol. Cell. Biochem.2001,222:141-147.
    [47]Chang L F, Karin M. Mammalian MAP kinase signalling cascades, Nature,2001,410:37-40.
    [48]Tibbles L A, Woodgett J R. The stress-activated protein kinase pathways, Cell Mol. Life Sci. 1999,55:1230-1254.
    [49]Garrington T P, Johnson G L. Organization and regulation of mitogenactivated protein kinase signaling pathways, Curr. Opin. Cell Biol.1999,11:211-218.
    [50]Chuang S M, Wang I C, Yang J L. Roles of JNK, p38 and ERK mitogen-activated protein kinases in the growth inhibition and apoptosis induced by cadmium, Carcinogenesis,2000,21: 423-1432.
    [51]Wada T, Penninger J M. Mitogen-activated protein kinases in apoptosis regulation, Oncogene, 2004,23:2838-2849.
    [52]Hung J J, Cheng T J, Lai Y K, et al. Differential activation of p38 mitogen-activated protein kinase and extracellular signal-regulated protein kinases confers cadmium-induced HSP70 expression in 9L rat brain tumor cells, J. Biol. Chem.1998,273:31924-31931.
    [53]Galan A, Garcia-Bermejo M L, Troyano A, et al. Stimulation of p38 mitogen-activated protein kinase is an early regulatory event for the cadmium-induced apoptosis in human promonocytic cells, J. Biol. Chem.2000,275:11418-11424.
    [54]Elbirt K K, Whitmarsh A J, Davis R J, et al. Mechanism of sodium arsenite-mediated induction of heme oxygenase-1 in hepatoma cells, J. Biol. Chem.1998,273:8922-8931.
    [55]Chuang S M, Yang J L. Comparison of roles of three mitogen-activated protein kinases induced by chromium(VI) and cadmium in non-small-cell lung carcinoma cells, Mol. Cell. Biochem.2001, 222:85-95.
    [56]Ding W, Templeton D M. Activation of parallel mitogen-activated protein kinase cascades and induction of c-fos by cadmium, Toxicol. Appl. Pharmacol.2000,162:93-99.
    [57]Ding W, Templeton D M. Stress-activated protein kinase-dependent induction of c-fos by Cd2+ is mediated by MKK7, Biochem. Biophys. Res. Commun.2000,273:718-722.
    [58]Liu Y, Templeton D M. Initiation of caspase-independent death in mouse mesangial cells by Cd2+:involvement of p38 kinase and CaMK-Ⅱ, J. Cell Physiol.2008,217:307-318.
    [59]Xiao W, Liu Y, Templeton D M. Pleiotropic effects of cadmium in mesangial cells, Toxicol. Appl. Pharmacol.2009,238:315-326.
    [60]Liu Y, Templeton D M. Cadmium activates CaMK-Ⅱ and initiates CaMK-Ⅱ dependent apoptosis in mesangial cells, FEBS Lett.2007,581:1481-1486.
    [61]Hook S S, Means A R. Ca2+/CaM-dependent kinases:from activation to function, Annu. Rev. Pharmacol. Toxicol.2001,41:471-505.
    [62]Hudmon A, Schulman H. Neuronal Ca2+/calmodulin-dependent protein kinase Ⅱ:the role of structure and autoregulation in cellular function, Annu. Rev. Biochem.2002,71:473-510.
    [63]Misra R P, Bonni A, Miranti C K, et al. L-type voltage sensitive calcium channel activation stimulates gene expression by a serum response factor-dependent pathway, J. Biol. Chem.1994,269: 25483-25493.
    [64]Antoine M, Gaiddon C, Loeffler J P. Ca2+/calmodulin kinase types Ⅱ and IV regulate c-fos transcription in the AtT20 corticotroph cell line, Mol. Cell. Endocrinol.1996,120:1-8.
    [65]Wang Y., Simonson M.S. Voltage-insensitive Ca2+channels and Ca2+/calmodulin-dependent protein kinases propogate signals from endothelin-1 receptors to the c-fos promoter, Mol. Cell Biol. 1996,16:5915-5923.
    [66]Xiao W, Liu Y, Templeton D M. Ca2+/calmodulin-dependent protein kinase Ⅱ inhibition by heparin in mesangial cells, Am. J. Physiol.2005,288:F142-F149.
    [67]Kamata H, Honda S, Maeda S, et al. Reactive oxygen species promote TNF α-induced death and sustained Jnk activitation by inhibiting MAP kinase phosphatases, Cell,2005,120:649-661.
    [68]Levinthal D J, Defranco D B. Reversible oxidation of Erk-directed protein phosphatases drives oxidative toxicity in neuron, J. Biol. Chem.2005,280:5875-5883.
    [69]Jin P, Ringertz N R. Cadmium induces transcription of proto-oncogenes c-jun and c-myc in rat L6 myoblasts, J. Biol. Chem.1990,265:14061-14064.
    [70]Epner D.E., Herschman H.R. Heavy metals induce expression of the TPAinducible sequence (TIS) genes, J. Cell Physiol.1991,148:68-74.
    [71]Tang N, Enger M D. Cd2+-induced c-myc mRNA accumulation in NRK-49F cells is blocked by the protein kinase inhibitor H7 but not by HA 1004, indicating that protein kinase C is a mediator of the response, Toxicology,1993,81:155-164.
    [72]Matsuoka M., Call K M. Cadmium-induced expression of immediate early genes in LLC-PK1 cells, Kidney Int.1995,48:383-389.
    [73]Achanzar W E, Bello-Deocampo D, Webber M M, et al. Cadmium activates oncogene expression in human prostate epithelial cells (Abstract), Toxicol. Sci.1999,48 (Suppl.1):355-356.
    [74]Joseph P., Muchnok T.M., Klishis M.L., et al. Cadmium-induced cell transformation and tumorigenesis are associated with transcriptional activation of c-fos, c-jun, and c-myc protooncogenes:role of cellular calcium and reactive oxygen species, Toxicol. Sci.2001,61: 295-303.
    [75]Abshire M K, Devon D E, Diwan B A. et al. In vitro exposure to cadmium in rat can result in both enhancement and suppression of malignant progression in vivo, Carcinogenesis,1996,17: 1349-1356.
    [76]Achanzar W E, Achanzar K B, Lewis J G, et al. Cadmium induces c-myc, p53, and c-jun expression in normal human prostate epithelial cells as a prelude to apoptosis, Toxicol. Appl. Pharmacol.2000,164:291-300.
    [77]Wang Z, Templeton D M. Induction of c-fos proto-oncogene in mesangial cells by cadmium, J. Biol. Chem.1998,273:73-79.
    [78]Shimada H., Shiao Y H, Shibata M A, et al. Cadmium suppresses apoptosis induced by chromium, J. Toxicol. Environ. Health,1998,54:159-168.
    [79]Yuan C, Kadiiska M, Achanzar W E, et al. Possible role of caspase-3 inhibition in cadmium-induced blockage of apoptosis, Toxicol. Appl. Pharmacol.2000,164:321-329.
    [80]Hart B A, Potts R J, Watkin R D. Cadmium adaptation in the lung-a doubleedged sword? Toxicology,2001,160:65-70.
    [81]Gunawardana C G, Martinez R E, Xiao W. et al. Cadmium inhibits both intrinsic and extrinsic apoptotic pathways in renal mesaqngial cells, Am. J. Physiol.2006,290:F1074-F1082.
    [82]Luo X, Budihardjo I, Zou H, et al. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors, Cell,1998,94: 481-190.
    [83]Pesch B, Haerting J, Ranft U, et al. Occupational risk factors for renal cell carcinoma: agent-specific results from a case-control study in Germany, Int. J. Epidemiol.2000,29:1014-1024.
    [84]Hu J, Mao Y, White K. Canadian Cancer Registries Epidemiology Research Group. Renal cell carcinoma and occupational exposure in Canada, Occup. Med.2002,52:157-164.
    [85]Nordberg G. F. Historical perspectives on cadmium toxicology, Toxicol. Appl. Pharmacol.2009, 238:192-200.
    [86]Squibb K S, Fowler B A. Intracellular metabolism and effects of circulating cadmium-metallothionein in the kidney, Environ. Health Perspect.1984,54:31-35.
    [87]Aughey E, Fell G S, Scott R, et al. Histopathology of early effects of cadmium in the rat kidney, Environ. Health Perspect.1984,54:153-161.
    [88]Templeton D M, Chaitu N. Effects of divalent metals on the isolated rat glomerulus, Toxicology, 1990,61:119-133.
    [89]Dorian C, Gattone II V H, Klaasen C D. Renal cadmium deposition and injury as a result of accumulation of cadmium-metallothionein(CdMT) by the proximal convoluted tubules-a light microscopic autoradiography study with 109CdMT, Toxicol. Appl. Pharmacol.1992,114:173-181.
    [90]Uriu K, Kaizu K, Komine N, et al. Renal hemodynamics in rats with cadmium-induced nephropathy, Toxicol. Appl. Pharmacol.1998,150:76-85.
    [91]Kriz W, Elger M, Lemley K, et al. Structure of the glomerular mesangium:a biomechanical interpretation, Kidney Int.1990,38:S2-S9.
    [92]Schocklmann H O, Lang S, Sterzel R B. Regulation of mesangial cell proliferation, Kidney Int. 1999,56:1199-1207.
    [93]Johnson R J. The glomerular response to injury:progression or resolution? Kidney Int.1994,45: 1769-1782.
    [94]Patel K, Harding P, Haney L B, et al. Regulation of the mesangial cell myofibroblast phenotype by actin polymerization, J. Cell Physiol.2003,195:435-445.
    [95]Hirano T, Yamaguchi Y, Kasai H. Inhibition of 8-hydroxyguanine repair in testes after administration ofcadmiumchloride to GSH-depleted rats, Toxicol. Appl. Pharmacol.1997,147: 9-14.
    [96]Eichler T E, Ransom R F, Smoyer W E. Differential induction of podocyte heat shock proteins by prolonged single and combination toxic metal exposure, Toxicol. Sci.2005,84:120-128.
    [97]L'Azou B, Dubus I, Ohayon-Courtes C, et al. Human glomerular mesangial IP15 cell line as a suitable model for in vitro cadmium cytotoxicity studies, Cell Biol. Toxicol.2007,23:267-278.
    [98]Lauwerys R, Bernard A, Roels H, et al. Characterization of cadmium proteinuria in man and rat, Environ. Health Perspect.1984,54:147-152.
    [99]Kawada T, Koyama H, Suzuki S. Cadmium, NAG activity, and 2-microglobulin in the urine of cadmium pigment workers, Br. J. Ind. Med.1989,46:52-55.
    [100]Roels H, Bernard A M, Cardenas A, et al. Markers of early renal changes induced by industrial pollutants. Application to workers exposed to cadmium, Br. J. Ind. Med.1993,50:37^48.
    [101]Jarup L, Persson B, Edling C., Elinder C G. Renal function impairment in workers previously exposed to cadmium, Nephron,1993,64 (1):75-81.
    [102]Jarup L, Persson B, Elinder C G. Decreased glomerular filtration rate in solderers exposed to cadmium, Occup. Environ. Med.1995,52:818-822.
    [103]Nogue S, Sanz-Gallen P, Torras A, et al. Chronic overexposure to cadmium fumes associated with IgA mesangial glomerulonephritis, Occup. Med.2004,54:265-267.
    [104]Buchet J P, Staessen J A, Roels H, et al. Geographical and temporal differences in the urinary excretion of inorganic arsenic:a Belgian population study, Occup. Environ. Med.1996,53: 320-327.
    [105]Staessen J A, Buchet J P, Ginnuchio G, et al. Public health implications of environmental exposure to cadmium and lead:an overview of epidemiological studies in Belgium, J. Cardiovasc. Risk,1996,3:26-41.
    [106]Trzcinka-Ochocka M, Jakubowski M, Razniewska G. et al. The effects of environmental cadmium exposure on kindey function:the possible influence of age, Environ. Res.2004, 95:143-150.
    [107]Blazka M E, Shaikh Z A. Differences in cadmium and mercury uptakes by hepatocytes:role of calcium channels, Toxicol. Appl. Pharmacol.1991,110:355-363.
    [108]Blazka M E, Yoshida M, Shaikh Z A. Comparison of cadmium, mercury and calcium accumulations by isolated hepatocytes of the small skate (Raja erinacea) and rat, Comp. Biochem. Physiol. C,1992,101C(3):631-639.
    [109]Templeton D M, Cadmium uptake by cells of renal origin, J. Biol. Chem.1990,265: 21764-21770.
    [110]Lou M., Garay R, Alda J.O. Cadmium uptake through the anion exchanger in human red blood cells, J. Physiol.1991,443:123-136.
    [111]Gunshin H., Hediger M.A., The divalent metal-ion transporter (DCT1/DMT1/Nramp2), in: D.M. Templeton (Ed.), Molecular and Cellular Iron Transport, Marcel Dekker, New York,2002, 155-173.
    [112]He L., Wang B., Everett B.H., Nebert D.W. Discovery of ZIP transporters that participate incadmiumdamageto testis and kidney, Toxicol. Appl. Pharmacol.2009,238:250-257.
    [113]Akesson A., Lundh T., Vahter M., et al. Tubular and glomerular kidney effects in Swedishwomenwith low environmentalcadmiumexposure, Environ. Health Perspect.2005,113: 1627-1631.
    [114]Suwazono Y., Sand S., Vahter M., et al. Benchmark dose for cadmium-induced renal effects in humans, Environ. Health Perspect.2006,114:1072-1076.
    [115]Lee W K, Thevenod F. Novel roles for ceramides, calpains and caspases in kidney proximal tubule cell apoptosis:lessons from in vitro cadmium toxicity studies, Biochem. Pharmacol.2008,76: 1323-1332.
    [116]Kerr J F, Wyllie A H, Currie A R. Apoptosis:a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer,1972,26:239-257.
    [117]Kroemer G., Galluzzi L, Vandenabeele P., et al. Classification of cell death:recommendations of the Nomenclature Committee on Cell Death 2009, Cell Death Differ.2009,16:3-11.
    [118]Maiuri M C, Zalckvar E, Kimchi A, et al. Self-eating and self-killing:crosstalk between autophagy and apoptosis, Nat. Rev. Mol. Cell Biol.2007,8:741-752.
    [119]Lee W K, Torchalski B, Thevenod F. Cadmium-induced ceramide formation triggers calpain-dependent apoptosis in cultured kidney proximal tubule cells, Am. J. Physiol.2007,293: C839-C847.
    [120]Jaattela M., Multiple cell death pathways as regulators of tumour initiation and progression, Oncogene,2004,23:2746-2756.
    [121]Leist M, Jaattela M, Four deaths and a funeral:from caspases to alternative mechansms, Nat. Rev. Mol. Cell Biol.2001,2:1-10.
    [122]Jaattela M, Programmed cell death:many ways for cells to die decently, Ann. Med.2002,34: 480-488.
    [123]Li M, Kondo T, Zhao Q L, et al. Apoptosis induced by cadmium in human lymphoma U937 cells through Ca2+-calpain and caspase-mitochondria-dependent pathways, J. Biol. Chem.2000,275: 39702-39709.
    [124]Oh S H, Lee B H, Lim S C, Cadmium induces apoptotic cell death in WI 38 cells via caspase-dependent Bid cleavage and calpain-mediated mitochondrial Bax cleavage by Bcl-2-independent pathway, Biochem. Pharmacol.68 (2004) 1845-1855.
    [125]Scaffidi C, Medema J P, Krammer P H, et al. FLICE is predominantly expressed as two functionally active isoforms, caspase-8a and caspase-8b. J. Biol. Chem.1997,272:26953-26958.
    [126]Scaffidi C, Schmitz I, Zha J, et al. Differential modulation of apoptosis sensitivity in CD95 type I and type II cells. J. Biol. Chem.1999,274:22532-22538.
    [127]Shih C.M., Ko W C, Wu J S, et al. Mediating of caspase-independent apoptosis by cadmium through the mitochondria-ROS pathway in MRC-5 fibroblasts, J. Cell. Biochem.2004,91:384-397.
    [128]Martin P, Pognonec P, Erk and cell death:cadmium toxicity, sustained Erk activation and cell death, FEBS J.2009, doi:10.1111/j.1742-4658.2009.07369.x.
    [129]Tamemoto H, Kadowaki T, Tobe K, et al. Biphasic activation of two mitogen-activated protein kinases during the cell cycle in mammalian cells. J. Biol. Chem.1992,267:20293-20297.
    [130]Martin P., Poggi M., Chambard J.C., et al. Low dose cadmium poisoning results in sustained Erk phosphorylation and caspase activation, Biochem. Biophys. Res. Commun.2006,350:803-807.
    [131]Kim J, Kim S H, Johnson V J, et al. Extracellular signal-regulated kinase-signaling-dependent G2/M arrest and cell death in murine macrophages by cadmium, Environ. Toxicol. Chem.2005,24: 3069-3077.
    [132]Hao C, Hao W, Wei X, et al. The role of MAPK in the biphasic dose-response phenomenoninduced by cadmium and mercury in HEK293 cells, Toxicol In Vitro,2009,23: 660-666.
    [133]Kroemer G, Levine B. Autophagic cell death:the story of a misnomer, Nat. Rev. Mol. Cell Biol.2008,1004-1010.
    [134]Di Gioacchino M, Petrarca C, Perrone A., et al. Autophagy as an ultrastructural marker of heavy metal toxicity in human cord blood hematopoietic stem cells, Sci. Total Environ.2008,392: 50-58.
    [135]Di Gioacchino M., Petrarca C., Perrone A., et al. Autophagy in hematopoietic stem/progenitor cells exposed to heavy metals:biological implications and toxicological relevance, Autophagy,2008, 4:537-539.
    [136]Dong Z, Wang L, Xu J, et al. Promotion of autophagy and inhibition of apoptosis by low concentrations of cadmium in vascular endothelial cells, Toxicol. In Vitro,2009,23:105-110.
    [137]Wang S H, Shih Y L, Ko W C, et al. Cadmium-induced autophagy and apoptosis are mediated by a calcium signaling pathway, Cell Mol. Life Sci.2008,65:3640-3652.
    [138]Wang S H, Shih Y L, Kuo T.C., et al. Cadmium toxicity toward autophagy through ROS-activated GSK-3beta in mesangial cells, Toxicol. Sci.2009,108:124-131.
    [1]Blackstock W P, Weri W P. Proteomics:quantitative and physical mapping of cellular proteins[J]. Trends Biotechnol,1999,17(3):121-127.
    [2]Anderson N I, Anderson N G. Proteome and proteomics:new technologies, new concepts, and new words[J]. Electrophoresis,1998,19(11):1853-1861.
    [3]Petricoin E F, Zoon KC, Kohn E C, et al. Clinical proteomics benehside promise into bedside realtiy[J].Nat Rev Drug Discov,2002,1:683-695.
    [4]Hanash S. Disease proteomics [J].Nature,2003,422:226-232.
    [5]Wilkins M R, Pasquali C, Appel R D, et al. From Proteins to proteomes:large scale protein identifieation by two-dimensional electrophoresis and amino acid analysis [J]. Biotechnology,1996, 14:61-65.
    [6]Tyers M, Mann M. From genomics to proteomics [J]. Nature 2003,422:193-197.
    [7]O'Farrell P H. High resolution two-dimensional electrophoresis of proteins[J]. Biol Chem,1975, 250:4007-4021.
    [8]Lilley K S, Friedman D B. All about DIGF:quantification technonogy for differential dispay 2D-gel proteomics[J]. Expert Rev Proteomics,2004,1(4):401-409.
    [9]Aebersold R, Mann M. Mass spectrometry-based proteomics[J]. Nature.2003,422:198-207.
    [10]Ghosh, Jyotirmoy, Das Joydeep, et al. Arjunolic acid, a triterpenoid saponin, prevents acetaminophen(APAP)-induced liver and hepatocyte injury via the inhibition of APAP bioactivation and JNK-mediated mitochondrial protection[J]. Free Radic Biol,2010,48:535-553.
    [11]Apte, Udayan, Singh S, et al. Beta-catenin activation promotes liver regeneration after acetaminophen-induced injury[J].Am J Pathol,2009,175:1056-1065.
    [12]杨红莲,吴纯启,王青秀,等.氯丙嗪肝脏毒性的蛋白质组学初步研究[J].中国新药杂志,2007,16(11):844-848.
    [13]Heijne W H, Stierum R H, Sliper M, et al. Toxicogenomics of bromobenzene hepatotoxieity:a combined transeriptomics and proteomics approach[J]. Biochem Pharmacol,2003,65:857-875.
    [14]Grassman JA, Masten SA, Walker N J, et al. Animal models of human response to dioxins[J]. Environ Health Perspect,1998,106 Suppl 2:761-775.
    [15]Sarioglu H, Brandner S, Jacobsen C, et al. Quantitative analysis of 2,3,7,8-83 tetraehlorodibenzo-p-dioxin-induced proteome alterations in 5L rat hepatoma cells using isotope-coded protein labels[J]. Proteomies,2006,6:2407-2421.
    [16]Sehnlidt A, Kellermann J, Lottspeich F. A novel strategy for quantitative proteomics using isotope-coded protein labels [J]. Proteomics,2005,5:4-15.
    [17]Simpson D M, Beynon R J, Robertson D H, et al. Copper-associated liver disease:a proteomics study of copper chalenge in a sheep model[J]. Proteomics,2004,4:524-536.
    [18]Petrak J, Mysliveova D, Man P, et al. Proteomic analysis of iron overload in human hepatoma cells [J]. Am J Physiol Gastrointest Liver Physiol,2006,290:G 1059-1066.
    [19]Petrak J, Mysliveova D, Man P, et al. Proteomic analysis of hepatic iron overload in mice suggests dysregulation of urea cycle, impairment of fatty acid oxidation; an changes in the methylation cycle[J]. Am J Physiol Gastrointest Liver Physiol 2007,292:G1490-1498.
    [20]Vascotto C, CesarattoL, D Ambrosio C, et al. Proteomic analysis of liver tissues subjected to early isehemia/reperfusion injury during human orthotopic liver transplantation [J]. Proteomics, 2006,6:3455-3465.
    [21]Emadali A, Museatelli-Groux B, Delom F, et al. Proteomic analysis of isehemia-reperfusion injury upon human liver transplantation reveals the protective role of IQGAP1[J]. Mol Cell Proteomics,2006,5:1300-1313.
    [22]Zhong Z, Connor H D, Mason R P, et al. Dest ruction of kupffer cells increase survival and reduces graft injury after transplantation of fatty livers from ethanol treated rats[J]. Liver Trans pl Surg,1996,2(5):383-387.
    [23]Hirseh J, Hansen K C, Choi S, et al. Warm ischemia-induced alterations in oxidative and inflammatory proteins in hepatic Kufffer cells in rats[J]. Mol Cell Proteomics,2006,5:979-986
    [24]黄耀煊.肝病分子生物学[M].福州:福建科学技术出版社,2003:274-300.
    [25]He Q Y, Lau G K, Zhou Y, et al. Serum biomarkers of hepatitis B virus infected liver inflammation:a proteomic study [J]. Proteomics,2003,3:666-674
    [26]Fang C Y, Yi Z G, Liu F, et al. Proteome analysis of human liver carcinoma Huh7 cells harboring hepatitis C virus subgenomic replicon[J]. Proteomics 2006,6:519-527
    [27]Yu Q, He Q Y, George K K, et al.Serum biomarkers of hepatitis B virus infected liver inflammation:A proteomic study[J].Proteomics,2003,3:666-674.
    [28]He Q, Cheng R, Chen Z, et al. Cell transformation and proteome alteration in QSG7701 cells transfected with hepatitis C virus non-structural protein 3[J]. Acta Biochim Biophys Sin,2007, 39(10):751-762.
    [29]Zhao C, Fang C Y, Tian X C, et al. Proteomic analysis of hepatitis B surface antigen positive transgenic mouse liver and decrease of cyclophilin A [J]. J Med Virol,2007,79(10):1478-1484.
    [30]Yang F, Yan S, He Y, et al. Expression of hepatitis B virus proteins in transgenic mice alters lipid metabolism and induces oxidative stress in the liver[J].J Hepatol,2008,48(1):12-19.
    [31]Diamond D L, Jaeobs J M, Paeper B, et al. Proteomic profiling of human liver biopsies:hepatitis C virus-induced fibrosis and mitochondrial dysfunction[J]. HePatology,2007,46:649-657.
    [32]Gangadharan B, Antrobus R, Dwek R A, et al. Novel serum biomarker candidates for Liver fibrosis in hepatitis C patients[J]. Clin Chem,2007,53:1792-1799.
    [33]Lee I N, Chen C H, Sheu J C, et al. Identification of complement C3a as a candidate biomarker in human chronic hepatitis C and HCV-related hepatocellular carcinoma using a proteomics approach [J]. Proteomies2006,6:2865-2873.
    [34]Poon T C, Hui AY, Chan H L, et al. Prediction of liver fibrosis and cirrhosis in chronic Hepatitis B infection by serum proteomic fingerprinting:a pilot study[J]. Clin Chem,2005,51:328-335
    [35]Bataller R, Brenner D A. Liver fibrosis[J]. J Clini Investi,2005,115:209-218.
    [36]Zhu X D, Zhang W H, Li C L, et al. New serum biomarkers for detection of HBV-induced liver cirrhosis using SELDI protein chip technology [J]. World J Gastroenterol,2004,10:2327-2329.
    [37]Thorgeirsson S S, Lee J S, Grisham J W. Funetional genomics of hepatocellular carcinoma hepatology[J],2006,43:S145-S150.
    [38]Cougot D, Neuveut C, Buendia M A. HBV induced carcinogenesis [J]. J Clin Virol 2005,34 Suppl 1:S75-S78.
    [39]Chignard N, Beretta L. Proteomics for hepatocellular carcinoma marker discovery[J]. Gastroenterology,2004,127:S120-S125
    [40]Nguyen M H, Keeffe E B. Screening for hepatocellular carcinoma[J]. J Clin Gastroenterol,2002, 35:S86-S89
    [41]Poon T C, Yip T T, Chan AT, et al. Comprehensive proteomic profiling identifies serum proteomic signatures for detection of hepatocellular carcinoma and its subtypes [J]. Clin Chem,2003, 49:752-760
    [42]Steel L F, Shumpert D, Trotter M, et al. A strategy for the comparative analysis of serum proteomes for the discovery of biomarkers for hepaotcellular-carcinoma [J]. Proteomics,2003,3: 601-609.
    [43]Paradis V, Degos F, Dargere D, et al. Identifieation of a new marker of hepatocellular careinoma by serum protein profiling of patients with chronic liver diseases[J]. Hepatology,2005,41:40-47.
    [44]Kim J, Kim S H, Lee S U, et al. Proteome analysis of human liver tumor tissue by two-dimensional gel electrophoresis and identification of disease related proteins [J]. Electrophoresis,2002,23(24):4142-4156.
    [45]Yokoyama Y, Kuramitsu Y, Takashima M, et al. Proteomic profiling of protein decreased in hepatocellular carcinoma from patients infected with hepatitis C virus [J]. Proteomics,2004,4(7): 2111-2116.
    [46]Song H Y, Liu Y K, Feng J T, et al. Proteomic analysis on metastas is associated p roteins of human hepatocellular carcinom a tissues [J]. J Cancer Res Clin On col,2006,132 (2):92-98.
    [47]Sanehez J C, APPel R D, Golazo, et al. Inside SWISS-2D PAGE database [J]. Eleetroph-oresis, 1995,16:1131-1151.
    [48]Yu L R, Zeng R, Shao X X, et al. Identifieation of differentially expressed proteins between human hepatoma and normal liver cell lines by two-dimensional electrophoresis and liquid chromatography-ion trap mass spectrometry [J]. Electrophoresis,2000,21:3058-3068.
    [49]Seow TK, Ong SE, Liang R C, et al. Two-dimensional eleetrophoresis map of the human hepatocellular carcinoma cell line, HCC-M, and identifieation Of the separated proteins by mass spectrometry [J]. Electrophoresis,2000,21:1787-1813.
    [50]Kim W, Oe L S, Kim JS, et al. Comparison of proteome between hepatitis B virus and hepatitis C virus-associated hepatocellular carcinoma[J]. Clin Cancer Res,2003,9:5493-5500.
    [51]Yu L R, Zeng R, Shao X X, et al. Identification of differentilly expressed proteins between human hepatoma and normal liver lines by two-d imensional electrophoresis and liquid chromatography ion trapmass spectrometry [J]. E lectrophoresis,2000,21 (16):3058-3068.
    [52]Cui J F, Liu Y K, Pan B S, et al. Differential proteomic analysis of human hepatocellular carcinoma cell line metasatasis-associated proteins[J]. J Pathol,2004,130(10):615-622.
    [53]Zhou H, Liu Y, Chui J, et al. Investigation on glycosylation patterns of proteins from human liver cancer cell lines based on the multiplexed proteomics technology [J]. Arch B iochem Biophys, 2007,459(1):70-78.
    [54]Ding S J, Li Y, Shao X X, et al. Protome analysis of hepatocellular carcinoma cell strains MHCC97-H and MHCC97-L, with different metastasis potentials [J]. Proteomics,2004,4:982-994
    [55]Park K S, Kim H, Kim NC, et al. Proteom is analysis and molecular characterization of tissue ferritin light chain in hepatocarcinoma [J]. Hepatology,2002,35:1459-1466
    [56]Cui J F, Liu Y K, Pan B S, et al. Differential proteomic analysis of human hepatocellular carcinoma cell line metastasis-associated proteins[J]. J cancer Res Clin Oncol,2004,130:615-622
    [57]Zeindl-Ebethart E, Haraida S, Liebmann S, et al. Detection and identification of tumor-associated protein variants in human heatocellular carcinomas[J]. Hepatology,2004,39: 540-549.
    [58]Li C, Tan Y X, Zhou H, et al. Proteomic analysis of hepatitis B virus-associated hepatocellular carcinoma:Identifieation of potential tumor markers[J]. Proteomics,2005,5:1125-1139.
    [59]Yokoyama Y, Kuralnitsu Y, Takashima M, et al. Proteomic profiling of proteins decreased in hepatocellular carcinoma from patients infected with pepatitis C virus [J]. Proteomies,2004,4: 2111-2116.
    [60]Blane J F, Lalanne C, Plomion C, et al. Proteomic analysis of differentially expressed proteins in hepatocellular carcinoma developed in patients with chronic viral hepatitis C [J]. Proteomies,2005, 5:3778-3789.
    [61]Takashima M, Kuramitsu Y, Yokoyama Y, et al, over expression of alpha enolase in hepatitis C virus-related hepatocelluar carcinoma:association with tumor progression as determined by proteomic analysis[J]. Proteomics,2005,5:1686-1692.
    [62]Luk J M, Lam C T, Siu A F, et al. Proteomic profiling of hepatocellular carcinoma in Chinese-cohort reveals heat-shock proteins (Hsp27, Hsp70, GRP78) up-regulation and their associated prognostic values [J]. Proteomics,2006,6:1049-1057.
    [63]Fountoulakis M, Suter L. Proteomic analysis of the rat liver[J]. J Chromatogr B Analyt Technol Biomed Life Sci,2002,782(1-2):197-218 [64]He F. Human liver proteome project:plan, progress, and perspectives [J]. Mol Cell Proteomic, 2005,4:1841-1848.
    [1]Borges L, Brand O R, Godoi B, et al. Oral administration of diphenyl diselenide protects against cadmium-induced liver damage in rats [J]. Chemico-Biological Interactions,2008,171(1):15-25.
    [2]Jin T, Nordberg G, Sehlin J, et al. The susceptibility to nephrotoxicity of strepto zotocin-induced diabetic rats subchronically exposed to cadmium chloride in drinking water. Toxicology,1999, 142(1):69-75.
    [3]Hart BA, Potts R J, Watkin R D. Cadmium adaptation in the lung a double-edged sword? Toxicology,2001,160(1-3):65-70.
    [4]Bertin G, Averbeck D. Cadmium:cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences.Biochimie.2006,88(11):1549-59.
    [5]Staessen J A, Roels H A, Emelianov D, et al. Environmental exposure to cadmium, forearm bone density, and risk of fractures:prospective population study. Public Health and Environmental Exposure to Cadmium (PheeCad) Study Group. Lancet,1999,353(9519):1140-4.
    [6]Haouem S, et al., Accumulation of cadmium and its effects on liver and kidney functions in rats given diet containing cadmium-polluted radish bulb. Exp Toxicol Pathol,2007.59(1):77-80.
    [7]Urani C, Doldi M, Crippa S, et al. Human-derived cell lines to study xenobiotic metabolism. Chemosphere,1998,37:2785-2795.
    [8]Urani C, Melchioretto P, Morazzoni F, et al. Copper and zinc uptake and hsp70 expression in HepG2 cells. Toxicology in Vitro,2001,15:497-502.
    [9]Urani, C., Calini, V., Melchioretto, P., Morazzoni, F., et al. Different induction of metallothioneins and Hsp70 and presence of the membrane transporter ZnT-1 in HepG2 cells exposed to copper and zinc. Toxicology in Vitro 2003,17:553-559.
    [10]黄立.电子显微镜生物标本制备技术[M].江苏科学技术出版社.南京.1982.10
    [11]Koh JY, Choi D W. Quantitative determination of glutamate mediated cortical neuronal injury in cell culture by lactate dehydrogenase efflux assay[J]. J Neurosci Methods,1987,20:83-90
    [12]Vermes I, Haanen C, Steffens-Nakken H, et al. A novel assay for apoptosis, flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein-labeled Annexin V[J]. J Immunol Meth,1995,184:39-51.
    [13]Liu Y, Zhang S P, Cai Y Q.Cytoprotective effects of selenium on cadmium-induced LLC-PK1 cells apoptosis by activating JNK pathway [J]. Toxicol in Vitro,2007,21:677-684
    [14]Waisberg M, Joseph P, Hale B, et al. Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology,2003,192:95-117.
    [15]Lawal A O, Ellis E M. Changes In Antioxidant Status in HepG2,1321N1 and HEK 293 Cells In Response To Cadmium Induced-oxidative Stress[J]. Toxicology 2008,253:1-7
    [16]Urani C. et al, Cytotoxicity and induction of protective mechanisms in HepG2 cells exposed to cadmium. Toxicol In Vitro,2005.19(7):887-892
    [17]吴刚,闫歌,巫国谊,等.N-乙酰半胱甘酸抑制人肝细胞凋亡的实验研究[J].重庆医学,2005,34(1):80-82
    [18]夏世钧,吴中亮.分子毒理学基础[M].武汉:湖北科学技术出版社,2001:87-90
    [19]EI Azzouri B, Tsangaris G T, Pellegrini O, et al. Cadmium induces apoptosis in a human T cell lines [J]. Toxicology,1994,88(1-3):127-389.
    [20]Matsuoka M, Call K M. Cadmium induced expression of immediate early genes in LLC-DK1 cells[J]. Kidney Int,1995,48(2):383-389.
    [21]Hamado T, Tanimot O A, Iwal S, et al. Cytopathological changes induced by cadmium expossure in canine proxima; tubular cells:a cytochemical and ulttrastructureal study[J]. Nephron, 1994,68(1):104-111.
    [22]Xu G G, Zhou G O, Jin T Y, et al. Apoptosis and P53 gene expression in male reproduct ive tissues of cadmium exposed rats [J]. Biometals,1998,12:131-139.
    [23]赵敏,杨杏芬,魏青,等.氯化镉诱发肾上腺皮质细胞凋亡与应激活化蛋白激酶活性的研究[J].中华预防医学杂志.2000,34(6):342-344.
    [24]Achanzer W E, Achanzar K B, Lewis J G, et al. Cadmium induces c-myc and c-jun expression in Human Prostate Epithelial Cells as a prelude as a prelude to apoptosis[J].Toxicol Appl Pharmacol, 2000,164(3):291-300.
    [25]Savitskiy V P, Shman T V, Potapnev M P. et al. Comparative measurement of spontaneous apoptosis in pediatric acute leukemia by different techniques [J]. Cytometry B Clin Cytom,2003,56: 16
    [1]Shaikh Z A, Vu T T, Zaman K. Oxidative stress as a mechanism of chronic cadmium-induced hepatotoxicity and renal toxicity and protection by antioxidants. Toxicol Appl Pharmacol,1999. 154(3):256-63.
    [2]Thompson J. Bannigan J. Cadmium:toxic effects on the reproductive system and the embryo. Reprod Toxicol,2008.25(3):304-15.
    [3]Sevgiler Y, Karaytug S, Karayakar F., Antioxidative Effects of N-acetylcysteine, Lipoic Acid, Taurine, and Curcumin in the Muscle of Cyprinus carpio L. Exposed to Cadmium. Arh Hig Rada Toksikol.2011,62(1):1-9.
    [4]A1-Johany A M, Haffor A S. Effects of cadmium exposure on the ultrastructural pathology of different pulmonary cells, leukocyte count, and activity of glutathione peroxidase and lactate dehydrogenase in relation to free radical production in Uromastyx aegyptius. Ultrastruct Pathol, 2009.33(2):39-47
    [5]Shen H M, Shi C Y, Shen Y, et al. Detection of elevated reactive oxygen species level in cultured rat hepatocytes treated with aflatoxin B1[J]. Free Radic Biol Med,1996,21(2):139-146.
    [6]胡允兆,董吁钢,翟玉锋,等.辛伐他汀对同型半胧氨酸诱导的HVEC的毒性和炎症反应的影响及分子机制[J].中国病理生理学杂志,2005,21(8):1594-1598
    [7]Djordjevic V B. Free radicals in cell biology [J].Int Rev Cytol,2004,237(1):57-89
    [8]Closa D, Folch-puy E. Oxygen free radicals and the systemic inflammatory response[J]. IUBMB Life,2004,56(4):185-191
    [9]Keyhani E, Abdi-Oskouei F, Attar F, et al. DNA strand breaks by metal-induced oxygen radicals in purified Salmonella typhimuri μM DNA. Ann N Y Acad Sci.2006,1091:52-64.
    [10]Gulec M, Gurel A, Armutcu F. Vitamin E protects against oxidative damage caused by formaldehyde in the liver and plasma of rats.Mol Cell Biochem.2006,290(1-2):61-7.
    [11]Ahmed F N, Naqvi F N, Shafiq F. Lipid peroxidation and serμM antioxidant enzymes in patients with type 2 diabetes mellitus. Ann N Y Acad Sci.2006,1084:481-9.
    [12]Wang X F, Xing M L, Shen Y, et al. Oral administration of Cr(VI)induced oxidative stress, DNA damage and apoptotic cell death in mice. Toxicology.2006,228(1):16-23.
    [13]Pulido M, Parrish A. Metal-induced apoptosis:mechanisms [J]. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis,2003,533(1-2):227-241.
    [14]Ikediobi C O, et al. Response of antioxidant enzymes and redox metabolites to cadmium-induced oxidative stress in CRL-1439 normal rat liver cells. Int J Mol Med,2004.14(1): 87-92.
    [15]Wang Y, et al. Cadmium inhibits the electron transfer chain and induces reactive oxygen species. Free Radic Biol Med,2004.36(11):1434-43.
    [16]Pathak N, Khandelwal S, Oxidative stress and apoptotic changes in murine splenocytes exposed to cadmium. Toxicology,2006.220(1):26-36
    [17]Oh S H, Lim S C. A rapid and transient ROS generation by cadmium triggers apoptosis via caspase-dependent pathway in HepG2 cells and this is inhibited through N-acetylcysteine-mediated catalase upregulation. Toxicol Appl Pharmacol,2006.212(3):212-23.
    [18]Yang C F, Shen H M, Shen Y, et al. Cadmium-induced oxidative cellular damage in human fetal lung fibroblasts(MRC-5 cells)[J]. Environ Health Perspect,1997,105:712-716.
    [19]Briehl M M, Baker A F. Modulation of the antioxidant defense as a factor in apoptosis[J].Cell Death Different,1996,3:63-70.
    [20]Fotakis G, Timbrell J. Role of trace elements in cadmium chloride uptake in hepatoma cell lines [J]. Toxicology letters,2006,164(2):97-103.
    [21]Hatcher E., Chen Y., Kang Y. Cadmium resistance in A549 cells correlates with elevated glutathione content but not antioxidant enzymatic activities [J]. Free Radical Biology and Medicine, 1995,19(6):805-812.
    [22]Funakoshi T., Ueda K., Shimada H., et al. Effects of dithiocarbamates on toxicity of cadmium in rat primary hepatocyte cultures [J].Toxicology,1997,116(1-3):99-107
    [22]Nemmiche S, Chabane-Sari D, Guiraud P. Role of a-tocopherol in cadmium-induced oxidative stress in Wistar rat's blood, liver and brain [J]. Chemico-Biological Interactions,2007,170(3): 221-230.
    [23]王捍东,邢华,卞建春.镉对原代培养大鼠肝细胞的损伤作用[J].中国兽医学报,2000,20(6):580-583.
    [24]Nzengue Y, Steiman R, Garrel C, et al. Oxidative stress and DNA damage induced by cadmium in the human keratinocyte HaCaT cell line:Role of glutathione in the resistance to cadmium [J]. Toxicology,2008,243(1-2):193-206.
    [25]De Vires N, De Flora S. N-Acetylcysteine [J]. J Cell Biochem,1993,51(17):270
    [26]Staal F J, Roederer M, Herzenberg L A. Intracelluar thiols regulate activation of nuclear factorκB and transcription of human immunodeficiency virus [J]. Proc Natl Acad Sci USA,1990, 87(24):9943
    [27]Gillissen A, Sch Irling B, Jaworska M., et al. Oxidant scavenger function of ambroxol in vitro:a comparison with N-acetylcysteine [J]. Res Exp Med (Berl),1997,196(6):389-393.
    [28]Weltin D, Aupeix k, Iltis C, et al. N-acetylcysteine protects lymphocytes from nitrogen mustard-induced apoptosis [J].Biochem Pharmacol,1996,51(9):1123
    [1]WHO. Cadmium:airquality guidelines [Z].2000
    [2]Yoshida H. Apaf-1 is required for mitochondrial pathways of apoptosis and brain development [J]. Cell,1998,94(6):739-750.
    [3]Green DR, Reed JC. Mitochondria and apoptosis[J]. Science,1999,281:1309-1313.
    [4]Satarug S, baker J R, Urbenjapol S, et al. A global perspective on cadmium pollution and toxicity in non-occupationally exposed population,2003,137(1-2):65-83.
    [5]Jarup L, Berglund M, Elinder C G, et al. Health effects of cadmium exposure-a review of the the literature and a risk estimate [J]. Scand J Work Environ Health,1998,24(1) 1:1-51
    [6]Yoneda T, Imaizumi K, Oono K, et al. Activation of caspase-12, an endoPlastic retieulum(ER) resident caspase, through tumor necrosis factor receptor-associated factor2-dependent mechanism in response to the ER stress[J]. J Biol Chem,2001,276(17):13935-13940
    [7]Heid C A, Stevens J, Livak J K, et al. Real time quantitative PCR[J].Genome Res,1996,6: 986-994
    [8]Livak K J, Schittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T))Method[J]. Methods,2001,25:402-408
    [9]Hiquchi R, Fockler C, Dollinqer G, et al. Kinetic PCR analysis:real-time monitoring of DNA amplification reactions[J]. Biotechnology(NY),1993,11:1026-1030
    [10]Ke L D, Chen Z, Yung W K.A reliability test of standard-based quantitative PCR:exogenous standards[J].Mol Cell Probes,2000,14(2):127
    [11]Becker KD Pan, Whitely C B. Real-time quantitative polymerase chain reaction to assess gene transfer [J]. Hum Gene Ther,1999,10:2559
    [12]Higgins J A, Ezzell J, Hinnebusch B J, et al.5'nuclease PCR assay to detect Yersinia pestis[J]. J Clin Microbiol,1998,36:2284-2288
    [13]Bustin S. Absolute quantification of mRNA using Real-time reverse transcription polymerase chain reaction assays[J]. J Mol Endocrinol,2000,25:169
    [14]Pfaffl M W. A new mathematical model for relative quantification in real-time RT-PCR[J].Nucleic Acids Res,2001,29:2002-2007
    [15]Kenneth J L, Thomas D S. Analysis of relative gene expression data using real-time quantitative PCR and the 2-AACT method [J]. Methods,2001,25:402-408
    [16]Fieller E. Some problems in interval estimation[J]. J Roy Statist Soc Ser B,1954,16:175-185
    [17]周永列,吕亚萍,邱莲女,等.硝普钠诱导K562细胞凋亡机制的研究.中国实验血液学杂志,2005,13(6):983-988
    [18]Pucci B, Adams C S, Fertala J, et al. Development of the terminally differentiated state sensitizes epiphyseal chondrocytes to apoptosis through caspase-3 activation. J Cell Physiol.2007,210(3): 609-15
    [19]Zamzami N, Koemer G.. The mitochondrion in apoptosis:how Pandora's box opens.Nat Rev Mol Cell Biol,2001,2(1):67-71.
    [20]Todhiski K, Todhiki Y, Hiroaki S, et al. Potential mechanism mium-induced cytotoxicity in rat hepatocytes inhibittory action of cadmium on mitochondrial respiratory activity. Toxcicology,1994, 92:115-125.
    [21]何宝霞,傅业全,张久丽,等.镉对鸡垂体线粒体结构和ATP酶的影响[J].中国兽医杂志2008,44(11):28-29
    [22]Belyaeva E., Dymkowska D., Wieckowski M., et al. Mitochondria as an important target in heavy metal toxicity in rat hepatoma AS-30D cells [J]. Toxicology and applied pharmacology,2008, 231(1):34-42.
    [23]Muller L. Consequences of cadmium toxicity in rat hepatocytes:mitochondrial dysfunction and lipid peroxidation [J]. Toxicology,1986,40(3):285-295.
    [24]张英.镉对体外培养大鼠大脑皮质神经细胞的毒性损伤及NAC保护效应的研究[D].扬州:扬州大学,2009.
    [25]Halestrap AP, Doran E, Gillespie JP, et al. Mit ochondria and cell death. Biochem Soci Trans, 2000,28:170-177.
    [26]Jia P, Chen G, Huang X, et al. Arsenic trioxide induced multiple myeloma cell apoptosis via disruption of mitochondrial transmembrane potential and activation of caspase-3. Chin Med J(Engl), 2001,114:119-24
    [1]Kim Y K, Yoo W I, Lee S H, Lee M Y. Proteomic Analysis of Cadmium-Induced Protein Profile Alterations from Marine Alga Nannochloropsis oculata.Ecotoxicology and Environmental Safety 2005;14:589.
    [2]Blackstock W P, Weir M P. Proteomics:quantitative and physical mapping of cellular proteins.Trends in Biotechnology.1999,17:121.
    [3]Fountoulakis M. Proteomics:Current technologies and applications in neurological disorders and toxicology.Amino Acids 2001;21:363.
    [4]Righetti P G, Castagna A, Antonucci F, et al. Proteome analysis in the clinical chemistry laboratory:Myth or reality? Clinica Chimica Acta 2005:doi:10.1016/j.cccn.2005.03.018
    [5]MM B. A rapid and sensitive method for the quantitation of microgram quantifies of protein utilizing the principle of protein-dye binding. Anal Biochem 1976,72:248-54.
    [6]Candiano G, Bruschi M, Musante L, Santucci L, Ghiggeri G, Carnemolla B, et al. Blue silver:a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis 2004; 25(9):1327-33.
    [7]Thanthrige-Don N, Abdul-Careem M F, Shack L A, et al. Analyses of the spleen proteome of chickens infected with Marek's disease virus. Virology 2009,390(2):356-67.
    [8]Turner K E, Kumar H R, Hoelz D J. et al. Proteomic analysis of neuroblastoma microenvironment: effect of the host-tumor interaction on disease progression. J Surg Res 2009,156(1):116-22.
    [9]Kharbanda K K, Vigneswara V, Mcvicker B L, et al. Proteomics reveal a concerted upregulation of methionine metabolic pathway enzymes, and downregulation of carbonic anhydrase-Ⅲ, in betaine supplemented ethanol-fed rats[J]. Biochem Biophys Res Commun,2009,381(4):523-527.
    [10]Kling P, Forlin L. Proteomic studies in zebrafish liver cells exposed to the bromineated flame retardants HBCD and TBBPA [J]. Ecotoxicol Environ Saf,2009,72(7):1985-1993
    [11]Harris LR, Churchward MA, Butt RH, et al. Assessing detection methods for gel-based proteomic analyses [J], Jour Proteome Res.2007,6(4):1418-1425
    [12]Gorg A, Obermaier C, Boguth G, et al. The current state of two-dimensional electrophoresis with immobilized pH gradients [J]. Electrophoresis,2000,21 (6):1037-1053.
    [13]童华生,张亚历,姜泊.大肠侧向发育型肿瘤细胞株双向电泳技术成功建立[J].第四军医大学学报,2005,26(7):610-612.
    [14]Taylor RC, Coorssen JR, Proteome resolution by two-dimensional gel electrophoresis varies with the commercial source of IPG strips[J], Jour Proteome Res.2006,5(11):2919-27
    [15]Bradford M M. A rapid and sensitive method for the quantitation of microgram quantifies of protein utilizing the principle of protein-dye binding [J]. Anal Biochem 1976; 72 (7):248-254
    [16]Candiano G, Bruschi M, Musante L, et al. Blue silver:a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis,2004,25:1327-1333
    [17]Naghavi M, Goff S. Retroviral proteins that interact with the host cell cytoskeleton. Current opinion in immunology 2007,19(4):402-7.
    [18]沈忠英,沈健,蔡维佳,等.氧化砷诱导食管癌细胞凋亡细胞骨架的改变[J].中华病理学杂志2001,(30)5:369-340
    [19]Van-Engeland M, Kuijpers H J H, Ramaekers F C S, et al. Plasma membrane alterations and cytoskeletal changes in apoptosis. Exp Cell Res 1997,235:421-430.
    [20]Toivola D M, Ku N O, Resurreccion E Z, et al. Keratin 8 and 18 hyperphosphory lation is a marker of progression of human liver disease[J]. Hepatology,2004,40:459-466.
    [21]Coulombe P A, Omary M B.'Hard'and'soft'principles defining the structure, function and regulation of keratin in term ediate filaments [J]. CurrOp in Cell Bio J,2002,14:110-122.
    [22]Ku N O, Liao J, Omary M B. Phosphory lation of human keratin 18 serine 33 regulates binding to 14-3-3 proteins [J]. EMBO J,1998,17:1892-1906.
    [23]Ku N O, Michie S, Resurreccion E Z, et al. Keratin binding to 14-3-3 proteins modulates keratin filaments and hepatocyte mitotic progression [J]. Proc Na tl A cad Sci USA,2002,99:4373-4378.
    [24]柳雅立,石英,马丽娜.角蛋白18在HepG2细胞凋亡中的磷酸化(Ser33,Ser52)及其意义[J].2009,30(6):780-783
    [25]聂忠清,吴永刚,蒙建洲.分子伴侣的功能和应用.Chinese Bulletin of Life Sciences 2006,18(1).
    [26]Wynn R, Davie J, Cox R, Chuang D. Molecular chaperones:heat-shock proteins, foldases, and matchmakers. The Journal of laboratory and clinical medicine 1994,124(1):31-6.
    [27]Schlesinger M. Heat shock proteins. The Journal of biological chemistry,1990; 265(21): 12111-4.
    [28]Lim S O, Park S G, Yoo J H, et al. Expression of heat shock proteins (HSP27, HSP60, HSP70, HSP90, GRP78, GRP94) in hepatitis B virus-related hepatocellular carcinomas and dysplastic nodules. World J Gastroenterol 2005,11(14):2072-9.
    [29]Rocchi P, So A, Kojima S, et al. Heat shock protein 27 increases after androgen ablation and plays a cytoprotective role in hormone-refractory prostate cancer. Cancer Res 2004,64(18): 6595-602.
    [30]Ciocca D R, Oesterreich S, Chamness G C, et al. Biological and clinical implications of heat shock protein 27,000 (Hsp27):a review. J Natl Cancer Inst 1993,85(19):1558-70.
    [31]Mosser D D, Morimoto RI. Molecular chaperones and the stress of oncogenesis. Oncogene 2004, 23(16):2907-18.
    [32]McGinnes L W, Wilde A, Morrison T G. Nucleotide sequence of the gene encoding the Newcastle disease virus hemagglutinin-neuraminidase protein and comparisons of paramyxovirus hemagglutinin-neuraminidase protein sequences. Virus Res 1987 May; 7(3):187-202.
    [33]Kiang J G, Tsokos G C. Heat shock protein 70 kDa:molecular biology, biochemistry, and physiology. Pharmacology & therapeutics 1998; 80(2):183-201.
    [34]Gupta S, Know lton A A. HSP60, Bax, apoptosis and the heart. J Cell Mol Med,2005,9:51-58.
    [35]Cappello F, Czarnecka A M, La Rocca G, et al. Hsp60 and Hsp10 as antitumor molecular agents. Cancer Bio 1 Ther,2007,6(4):487-489.
    [36]Chan J Y, Cheng H L, Chou J L, et al. Heat shock prote in 60 or 70 activates nitric-ox ide synthase(NOS)-Ⅰ and inhibits NOS-Ⅱ associated signaling, and depresses the mitochondrial apoptotic cascade during brain stem death. J Biol Chem,2007,282:4585-4600.
    [37]Chang AY, Chan J Y, Chou J L, et al. Heat shock protein 60 in rostral ventro lateralm edulla reduces cardiovascular fatality during endotoxaemia in the rat [J]. J Physio,2006,574 (2):547-564.
    [38]Shan Y X, et al, Hsp10 and Hsp60 modulate Bcl-2 family and mitochondria apoptosis signaling induced by doxorubicin in cardiac muscle cells [J]. J Mol Cell Cardiol,2003.35(9):1135-1143.
    [39]Veereshwarayya V, Kumar P, Rosen K M, et al. Differential effects of mitochondrial heat shock protein60 and related molecular chaperones to prevent intracellular β-amyloid-induced inhibition of complex IV and limit apoptosis[J]. J Biol Chem,2006,281:29468-29478.
    [40]Gupta S, Knowlton A A. HSP60, Bax, apoptosis and the heart. J Cell Mol Med,2005,9:51-58.
    [41]Kirchhoff S R., Gupta S, Knowlton A A. Cytosolic heat shock protein 60, apoptosis, and myocardial injury. Circulation,2002.105(24):2899-904.
    [42]Gupta S, Knowlton A A. Cytosolic heat shock protein 60, hypoxia, and apoptosis. Circulation, 2002.106(21):2727-33.
    [43]Samali, A. et al. Presence of a pre-apoptotic complex of pro-caspase-3, Hsp60 and Hsp10 in the mitochondrial fraction of jurkat cells. EMBO J,1999.18(8):2040-2048.
    [44]Alard JE, Dueymes M, Youinou P, et al. Modulation of endothelial cell damages by anti-Hsp60 autoantibodies in systemic autoimmune diseases. Auto immun Rev,2007,6t:438
    [45]Hasan, U.A., G. Trinchieri, and J. Vlach, Toll-like receptor signaling simulates cell cycle entry and progression in fibroblasts. J Biol Chem,2005.280(21):20620-7.
    [46]Zhou J, Damdimopoulos A E, Spyrou G, et al. Thioredoxin1 and thioredoxin2 have opposed regulatory functions on hypoxia-inducible factor-1 alpha [J]. J Biol Chem,2007,282 (10): 7482-7490.
    [47]Burke-Gaffney A, Callister M E, Nakamura H, et al.Thioredox in:f riend or foe in human disease[J]. Trends Pharmacol Sci,2005,26(8):398-404.
    [48]Sumbayev V V. S-nitrosylation of thioredoxin mediates activation of apoptosis signal-regulating kinase I [J]. Arch Biochem Biophys,2003,415:133-136.
    [49]Masutani H, Ueda S, Yodoi J. The thioredoxin system in retroviral infection and apoptosis[J]. Cell Death Differ,2005,12:991-998.
    [50]Nonn L, Williams R R, Erickson R P, et al. The absence of mitochondrial thioredoxin 2 causes massive apoptosis, exencephaly, and early embryonic lethality in homozygous mice[J]. Mol Cell Biol,2003,23(3):916-922.
    [51]Kawahara N, Tanaka T, Yokomizo A, et al. Enhanced coexpression of thioredoxin and high mobility group protein genes in human hepatocellular carcinoma and the possible association with decreased sensit ivity to cisplatin[J]. Cancer Res,1996,56(23):5330-5333.
    [52]Yamada M, Tomida A, Yoshikawa H, et al. Increased expression of thioredoxin/adult T cell leukem ia derived fact or in cisplat in resistant human cancer cell lines [J]. Cancer Res Clin,1996, 2(2):427-432.
    [53]Holmgren A, Bjornstedt M. Thioredoxin and thioredoxin reductase. Methods Enzymol,1995, 252:199-208.
    [54]Nishimoto, M., Sakaue M., Hara S. Short-interfering RNA-mediated silencing of thioredoxin reductase 1 alters the sensitivity of HeLa cells toward cadmium. Biol Pharm Bull,2006.29(3): 543-546.
    [55]Gerke V, Moss S E. Annexins and membrane dynamics [J].Biochim Biophys Acta,1997,1357 (2):129-154.
    [56]Hawkins T E, Das D,Young B, et al.DT40 cells lacking the Ca2+binding protein annexin 5 are resistant to Ca2+dependentapoptosis[J].PNAS,2002,99(12):8054-8059.
    [57]Wang W, Xu J, Kirsch T.Annexin-mediated Ca2+influx regulates growth plate chondrocyte maturation and apoptosis [J].J Biol Chem,2003,278(6):3762-3769.
    [58]Monceaua V, Belikovaa Y, Kratassiouka G, et al. Externalization of endogenous annexin A5 participates in apoptosis of rat cardiomyocytes [J]. Cardiovascular Research,2004,64(3):496-506.
    [59]Brockstedt, Rekers E, Kostka A, et al. Identifieation of Apoptosis associated Proteins in a Human Burkitt Lymphoma Cell line J Biol Chem,1998,273(43):28057.
    [60]Sun K H, tang S J, Lin M L, et al. Monoelonal antibodies against human ribosomal P proteins penetrate into living cells and cause apoptosis of Jurkat T cells in culture[J]. Rheumatology,2001, 40:750.
    [61]Yuan X, Kuramitsu Y. Furumoto H. et al. Nuclear protein profiling of Jurkat cells during heat stress-induced apoptosis by 2-DE and MS/MS. Electrophoresis,2007.28(12):2018-26.