新型荧光纳米材料的合成及性质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,由于荧光探针在化学传感、生物检测及光学元件等领域的广泛的需求,荧光纳米材料得到人们前所未有的重视。相比于传统的荧光染料,荧光纳米材料不仅具有较高的荧光强度和优越的光稳定性,而且具有纳米材料特有的量子效应、小尺寸效应等性质,从而可以弥补传统的荧光染料无法克服的缺陷,为化学、物理、医学和生物领域都带来新的发展机遇。目前研究最热、发展最快的当属半导体量子点和碳量子点两类荧光纳米材料。无机半导体量子点由于荧光强、粒径小、光稳定性好,因而倍受人们青睐,所以研究此类量子点的新型制备和表面修饰方法具有重要意义。但是,因为这类量子点含有Cd、Pb、Hg等重金属离子,毒性较大,发展不含毒重金属的新型荧光材料也是当前的发展趋势之一。碳点及有机物聚合物荧光纳米材料由于其较低的生物毒性和稳定的化学性质,已成为人们关注的焦点。本学位论文工作采用新颖的一步光化学合成法制备了高量子产率的水溶性CdTe(S)三元混晶结构的量子点,并通过一步光化学法制备了表面聚合物修饰的CdTe(S)量子点;通过一步溶剂热的方法制备了纯粹的聚合物荧光纳米材料,利用水热法改性炭黑获得了高量子产率的荧光碳纳米材料,并对这些荧光纳米材料的性质进行了系统表征。
     本学位论文共分为五章。
     第一章:简单介绍了纳米材料的概念,着重介绍了半导体量子点、碳量子点点等荧光纳米材料的发展背景、制备方法、表面修饰及在多个领域的应用。
     第二章:通过一步光化学合成法制备了高量子产率的水溶性CdTe(S)量子点,该法只需将氯化镉溶液、新鲜制备的碲氢化钠溶液及巯基乙酸按照一定的比例混合,直接置于500W高压汞灯下照射25分钟,即可制得量子产率高达80%的量子点。所合成的量子点的平均粒径小,约为2.2nm,是一种Cd、S、Te三元混晶结构的量子点。这种一步光化学合成法操作简便快捷,适合大批量合成。
     第三章:利用一步光化学合成法制备了聚合物修饰的CdTe(S)量子点,将量子点的合成与聚合物的包覆合为一步,半小时内即可制得量子产率≥74%的聚合物修饰的量子点。并且通过调节反应条件可以方便的改变量子点的荧光颜色,从而制得绿色、黄色、橙色、红色等不同颜色发射的CdTe(S)量子点。本章共分两节,分别为采用一步光化学合成法制备N-(3-二甲氨基丙基)甲基丙烯酰胺(DPMA)聚合物包覆的两性量子点和聚丙烯酸修饰的量子点。我们通过MTT(噻唑蓝)细胞实验和大肠杆菌实验证明聚合物修饰的量子点的生物毒性明显降低。另外,DPMA聚合物修饰的量子点对溶液pH值的响应非常灵敏,从而可以用来检测溶液的pH值。而通过HTB-95637膀胱癌细胞的细胞成像试验可知,丙烯酸修饰的量子点可以吸附在细胞膜上。
     第四章:主要以三聚氰胺和二醛类化合物为起始单体,基于西弗碱反应,通过简单的一步溶剂热反应制备了具有强荧光的纯聚合物纳米颗粒。本章共分为两节,第一节主要利用三聚氰胺和乙二醛反应制备了一种发射强烈的近白色荧光的聚合物纳米材料,量子产率为22%。通过调节激发波长,可以改变纳米颗粒的发射光谱,从而发出白色,蓝色,绿色,黄色,橙色和红色等不同颜色的荧光。第二节主要利用三聚氰胺与戊二醛的聚合反应制备了另外一种聚合物纳米材料,可以发出很强的绿色荧光。
     第五章:本章主要通过一种经济温和的水热合成法,利用商品化炭黑作为起始原料,乙二醇作为钝化剂,硝酸作为氧化剂,制备了高量子产率(QY=25%)的荧光碳点。此碳点的发射波长随激发波长的红移而不断红移,并发出蓝色、绿色、黄色、橙色、红色等不同颜色的荧光。碳点的纳米颗粒粒径较小,只有2-3nm,可以穿透植物细胞的细胞壁、细胞膜和核膜进入细胞核,从而可以用来特异性标记细胞核。
In recent years, photoluminescent nanomaterials have attracted great attentions due to their wide applications as fluorescent probes in chemical and biological sensors, and in optical elements. Compared with traditional fluorescent dyes, photoluminescent nanomaterials have not only strong fluorescence and good resistance to light bleaching, but also the unique advantages of nanomaterials, such as quantum effects and small size effects, so they can eliminate the shortcomings of traditional fluorescent dyes and bring new development opportunity for the fields including chemistry, physics, biology and medicine. At present, the studies of photoluminescent nanomaterials focus on semiconductor quantum dots and carbon nanodots. Semiconductor quantum dots are extremely popular for their strong fluorescence, small sizes and excellent photostability. Therefore, the research on novel synthetic methods and surface modification protocols of quantum dots has a vital significance. However, the heavy metal ions such as Cd, Pb and Hg in the inorganic quantum dots might be a source of toxicity, development of novel photoluminescent nanomaterials without heavy metals has become a new trend. Therefore, many researchers devote to the exploration of carbon nanodots and organic polymeric photoluminescent nanomaterials owing to their low toxicity and stable chemical property. In this dissertation, novel methods of synthesis, characterization and application of four kinds of photoluminescent nanomaterials were presented. Water soluble alloyed CdTe(S) quantum dots with high quantum yields and surface modified CdTe(S) quantum dots with polymers were successfully prepared via one-step photochemical route. Meanwhile, pure polymeric photoluminescent nanoparticles were synthesized by a single-step sol-thermal method. Carbon nanodots with high quantum yields were prepared by modifying carbon black in a hydrothermal method.
     The dissertation consists of five chapters.
     Chapter1:The concept of nanomaterials was introduced. The background of development, methods of synthesis, protocols of surface modification and application of nanomaterials were summarized briefly.
     Chapter2:A successful synthesis of water soluble CdTe(S) quantum dots with high quantum yields via a mild photochemical route in one step with thioglycolic acid as the stabilizer and sulfur source was described in this chapter. The precursor solution of mixed cadmium chloride, freshly prepared sodium hydrogen telluride and thioglycolic acid was subjected directly to the UV irradiation using a500W high-pressure mercury lamp under the protection of N2. Alloyed CdTeS quantum dots with a smaller particle size (2.2nm) and a high photoluminescence quantum yield (up to80%at room temperature) were formed within25min. The proposed one-step photochemical synthesis is simple and efficient, might be a potential way for the large scale preparation of CdTe(S) quantum dots.
     Chapter3:Facile one-step photochemical synthesis of surface modified CdTe(S) quantum dots with polymer was developed in this chapter. The grafting and polymerization of monomers was incorporated with the forming of nanocrystals. The modified CdTe(S) quantum dots with high photoluminescence quantum yield (>74%) were synthesized in30min. CdTe(S) quantum dots with colorful photoluminescence from green and yellow to orange and red can be prepared by adjusting the reaction condition. This chapter includes two sections. Quantum dots coated with N-[3-(Dimethylamino) propyl] methacrylamide (DPMA) polymer and polyacrylate were prepared through one-step photochemical methods. MTT assay and E coli assay reveal that surface modified quantum dots are less toxic than pristine quantum dots. Quantum dots modified with DPMA polymer show a sensitive response to pH, implying their application in the pH measurement. Quantum dots coated with polyacrylate were proved to attach to cell membranes of HTB-95637through cell imaging.
     Chapter4:Pure polymeric nanoparticles with high photoluminescence were synthesized by reaction of melamine and dialdehyde based on Schiff base chemistry. This chapter includes two sections. In the first section, near white-light-emitting polymeric nanoparticles with photoluminescence quantum yield of22%were prepared via reaction of melamine and glyoxal. The polymeric nanoparticles show excitation-tunable emission color, that is, the fluorescence varied from white, green, yellow, to red when excitation wavelength shifted from300nm to530nm. The second section describes another polymeric nanomaterial with green photoluminescence through reaction of melamine and glutaraldehyde.
     Chapter5:Carbon nanodots with photoluminescence quantum yield of25%were prepared via an economical and mild hydrothermal method using commercial carbon black as the carbon source, nitric acid as the oxidant and glycol as the surface passivation agent. Blue, green, yellow, orange and red fluorescence were observed with the increase of the excitation wavelengths. Carbon dots synthesized in this way could be endocytosed into cell nucleus through cell walls, cell membranes and nuclear membranes readily due to their smaller sizes (2~3nm) and could be used to stain cell nucleus.
引文
[1]Lemon, B.I., Crooks, R.M. Preparation and Characterization of Dendrimer-Encapsulated CdS Semiconductor Quantum Dots[J]. Journal of the American Chemical Society.2000,122,12886-12887.
    [2]Baker, D.R., Kamat, P.V. Tuning the Emission of CdSe Quantum Dots by Controlled Trap Enhancement[J]. Langmuir.2010,26,11272-11276.
    [3]Feng, X., Shang, Q., Liu, H., Wang, H., Wang, W., Wang, Z. Effect of Adenine on the Photoluminescence Properties and Stability of Water-Soluble CdTe Quantum Dots[J]. The Journal of Physical Chemistry C.2009,113,6929-6935.
    [4]Rosenthal, S.J., Phillips, L. News and Views[J]. Nature Biotechnology.2001,19,621-622.
    [5]Smith, A.M., Nie, S. Semiconductor Nanocrystals:Structure, Properties, and Band Gap Engineering[J]. Accounts of Chemical Research.2009,43,190-200.
    [6]Brus, L. A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites[J]. The Journal of chemical physics.1983,79,5566.
    [7]Kayanuma, Y. Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape[J]. Physical Review B.1988,38,9797.
    [8]Chan, W.C., Maxwell, D.J., Gao, X., Bailey, R.E., Han, M., Nie, S. Luminescent quantum dots for multiplexed biological detection and imaging[J]. Current opinion in biotechnology.2002, 13,40-46.
    [9]Jaiswal, J.K., Simon, S.M. Potentials and pitfalls of fluorescent quantum dots for biological imaging[J]. Trends in cell biology.2004,14,497.
    [10]Klostranec, J.M., Chan, W.C. Quantum dots in biological and biomedical research:recent progress and present challenges[J]. Advanced Materials.2006,18,1953-1964.
    [11]Deng, Z., Schulz, O., Lin, S., Ding, B., Liu, X., Wei, X, Ros, R., Yan, H., Liu, Y. Aqueous synthesis of zinc blende CdTe/CdS magic-core/thick-shell tetrahedral-shaped nanocrystals with emission tunable to near-infrared[J]. Journal of the American Chemical Society.2010,132, 5592-5593.
    [12]He, Y, Lu, H.T., Sai, L.M., Su, Y.Y., Hu, M., Fan, C.H., Huang, W., Wang, L.H. Microwave Synthesis of Water-Dispersed CdTe/CdS/ZnS Core-Shell-Shell Quantum Dots with Excellent Photostability and Biocompatibility[J]. Advanced Materials.2008,20,3416-3421.
    [13]Klostranec, J.M., Chan, W.C. Quantum dots in biological and biomedical research:recent progress and present challenges[J]. Advanced Materials.2006,18,1953-1964.
    [14]顾宁,付德刚,张海黔等.纳米技术与应用[M].第一版,人民邮电出版社.2002.
    [15]Pileni, M. Nanosized particles made in colloidal assemblies[J]. Langmuir.1997,13, 3266-3276.
    [16]Firmansyah, D.A., Kim, S.-G., Lee, K.-S., Zahaf, R., Kim, Y.H., Lee. D. Microstructure-Controlled Aerosol-Gel Synthesis of ZnO Quantum Dots Dispersed in SiO2 Nanospheres[J]. Langmuir.2012,28,2890-2896.
    [17]Li, Y.-D., Liao, H.-W., Ding, Y., Qian, Y.-T., Yang, L., Zhou, G.-E. Nonaqueous synthesis of CdS nanorod semiconductor[J]. Chemistry of materials.1998,10,2301-2303.
    [18]Chen, C, He, X.W., Gao, L. Cation Exchange-Based Facile Aqueous Synthesis of Small, Stable,and Nontoxic Near-Infrared Ag2Te/ZnS Core/Shell Quantum Dots Emitting in the Second Biological Window[J]. ACS Applied Material Interfaces.2013,5:1149-1155.
    [19]Ma, R., Zhou, P.J., Zhan, H.J., Chen, C, He, Y.N. Optimization of microwave-assisted synthesis of high-quality ZnSe/ZnS core/shell quantum dots using response surface methodology[J]. Optics Communication.2013,291,476-481.
    [20]He, Y., Lu, H.T., Sai, L.M., Su, Y.Y., Hu, M., Fan, C.H., Huang, W., Wang, L.H. Microwave Synthesis of Water-Dispersed CdTe/CdS/ZnS Core-Shell-Shell Quantum Dots with Excellent Photostability and Biocompatibility[J]. Advanced Materials.2008,20,3416-3421.
    [21]Balaz, M., Balaz, P., Tjuliev, G., Zubrik, A., Sayagues, M.J., Zorkovska, A., Kostova, N. Cystine-capped CdSe@ ZnS nanocomposites:mechanochemical synthesis, properties, and the role of capping agent[J]. Journal of Materials Science.2013,48,2424-2432.
    [22]Xiang, W.D., Zhao, H.J., Zhong,J.S., Luo, H.Y., Zhao, X.L., Chen, Z.P. Synthesis and third-order optical nonlinearities of In2S3 quantum dots glass[J]. Journal of Alloys and Compounds.2013,553:135-141.
    [23]Zhang, J., Du, R.G., Lin, Z.Q., Zhu, Y.F., Guo, Y., Qi, H.Q., Xu, L., Lin, C.J. Highly efficient CdSe/CdS co-sensitized TiO2 nanotube films for photocathodic protection of stainless steel[J]. Electrochimica Acta.2012,83,59-64.
    [24]Aldeek, F., Balan, L., Medjahdi, G., Roques-Carmes, T., Malval, J.P., Mustin, C., Ghanbaja, J., Schneider, R. Enhanced Optical Properties of Core/Shell/Shell CdTe/CdS/ZnO Quantum Dots Prepared in Aqueous Solution[J]. Journal of Physical Chemistry.2009,113,19458-19467.
    [25]Kar, A., Kundu, S., Patra, A. Photocatalytic properties of semiconductor SnO2/CdS heterostructure nanocrystals[J]. RSC Advances.2012,2,10222-10230.
    [26]Zhao, Q., Rong, X.L., Ma, H.B., Tao, G.H. Aqueous synthesis of CdSe and CdSe/CdS quantum dots with controllable introduction of Se and S sources[J]. Journal of Materials Science. 2013,48,2135-2141.
    [27]Smith, A.M., Nie, S.M. Semiconductor Nanocrystals:Structure, Properties, and Band Gap Engineering[J]. Accounts of Chemical Research.2010,43,190-200.
    [28]Alivisatos, A.P., Semiconductor clusters, nanocrystals, and quantum dots[J]. Science.1996, 271,933-937.
    [29]Huang, L., Luo, Z.H., Han, H.Y. Organosilane micellization for direct encapsulation of hydrophobic quantum dots into silica beads with highly preserved fluorescence[J]. Chemical Communications.2012,48,6145-6147.
    [30]Nandwana, V., Mout, R., Yeh. Y.C., Dickert, S., Tuominen, M.T., Rotello, V.M. Patterning of Protein/Quantum Dot Hybrid Bionanostructures[J]. Journal of Inorganic and Organometallic Polymers and Materials.2013,23,227-232.
    [31]Paramanik, B., Bhattacharyya, S., Patra, A. Steady state and time resolved spectroscopic study of QD-DNA interaction J]. Journal of Luminescence.2013,134,401-407.
    [32]Vicente. G., Colon, L.A. Separation of bioconjugated quantum dots using capillary dectrophoresis[J]. Analytical Chemistry.2008,80,1988-1994.
    [33]Liu, Z.Q., Liu, S.P., Yin, P.F., He, Y.Q. Fluorescence enhancement of CdTe/CdS quantum dots by coupling of glyphosate and its application for sensitive detection of copper ion[J]. Analytica Chimica Acta.2012,745,78-84.
    [34]Smith, A.M., Nie, S. Minimizing the hydrodynamic size of quantum dots with multifunctional multidentate polymer ligands[J]. Journal of the American Chemical Society.2008, 130,11278-+.
    [35]Zhao, Y.L., Liu, S., Li, Y.P., Jiang, W., Chang, Y.L., Pan, S., Fang, X.X., Wang, Y.A., Wang, J.Y. Synthesis and grafting of folate-PEG-PAMAM conjugates onto quantum dots for selective targeting of folate-receptor-positive tumor cells[J]. Journal of Colloid and Interface Science.2010, 350,44-50.
    [36]Vannoy, C.H., Chong, L., Le, C., Krull, U.J. A competitive displacement assay with quantum dots as fluorescence resonance energy transfer donors[J]. Analytica Chimica Acta.2013,759, 92-99.
    [37]Zhang, X., Xia, Y.J., He, T. Tuning photoluminescence properties of ZnO nanorods via surface modification[J]. Materials Chemistry and Physics.2012,137,622-627.
    [38]Liu, X.S., Zhu, H.G., Jin, Q., Zhou, W.B., Colvin, V.L., Ji, J. Small and Stable Phosphorylcholine Zwitterionic Quantum Dots for Weak Nonspecific Phagocytosis and Effective Tat Peptide Functionalization[J]. Advanced Healthcare Materials.2013,2,352-360.
    [39]Colvin, V.L., Schlamp, M.C., Alivisatos, A.P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer[J]. Nature.1994,370,354-357.
    [40]Bowers, M.J., McBride, J.R., Rosenthal, S.J. White-light emission from magic-sized cadmium selenide nanocrystals[J]. Journal of the American Chemical Society.2005,127, 15378-15379.
    [41]Makableh, Y.F., Vasan. R., Lee, S., Manasreh, O.M. Enhancement of the performance of InAs quantum dots solar cell by surface modification using Poly-L-Lysine homopolymers[J]. Applied Physics Letters.2013,102.
    [42]Song, K.W., Costi, R., Bulovic, V. Electrophoretic Deposition of CdSe/ZnS Quantum Dots for Light-Emitting Devices[J]. Advanced materials (Deerfield Beach, Fla.) 2013,25,1420-1423.
    [43]Ma, N., Tikhomirov, G., Kelley, S.O. Nucleic Acid-Passivated Semiconductor Nanocrystals: Biomolecular Templating of Form and Function[J]. Accounts of Chemical Research.2010,43, 173-180.
    [44]Tekdas, D.A., Durmus, M., Yanik, H., Ahsen, V. Photodynamic therapy potential of thiol-stabilized CdTe quantum dot-group 3A phthalocyanine conjugates (QD-Pc)[J]. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy.2012,93,313-320.
    [45]Petryayeva, E., Algar, W.R., Krull, U.J. Adapting Fluorescence Resonance Energy Transfer with Quantum Dot Donors for Solid-Phase Hybridization Assays in Microtiter Plate Format[J]. Langmuir.2013,29,977-987.
    [46]Li, Z.H., Peng, J., Chen, H.L. Bioconjugated Quantum Dots as Fluorescent Probes for Biomedical Imaging[J]. Journal of Nanoscience and Nanotechnology.2011,11,7521-7536.
    [47]Li, H., Shih, W.Y., Shih. W.-H. Synthesis and characterization of aqueous carboxyl-capped CdS quantum dots for bioapplications. Industrial & Engineering Chemistry Research 2007,46, 2013-2019.
    [48]Tang, L., Zhang, C.L., Song, G.M., Jin, X., Xu, Z.W. In vivo skin penetration and metabolic path of quantum dots[J]. Science China. Life Sciences.2013,56,181-188.
    [49]Wan, Q., Dattoli, E., Lu, W. Doping-dependent electrical characteristics of SnO2 nanowires[J]. Small 2008,4:451-454.
    [50]Xu, X., Ray, R., Gu, Y., Ploehn, H.J., Gearheart, L., Raker, K., Scrivens, W.A.Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments[J]. Journal of the American Chemical Society.2004,126:12736-12737.
    [51]Sheila N. Baker and Gary A. Baker.Luminescent Carbon Nanodots:Emergent Nanolights. Angewandte Chemie International.2010,49:2-21.
    [52]Hu,S. L., Niu K., Sun Y., Yang,J.J., Zhao, N.Q., Du X.W. One-step synthesis of fluorescent carbon nanoparticles by laser irradiation[J]. Journal of Materials Chemistry.2009,19:484-488.
    [53]Ray, S.C., Jana A.N.R., Sarkar R. J. Fluorescent Carbon Nanoparticles:Synthesis, Characterization, and Bioimaging Application[J].The Journal of Chemical Physics.2009, 113:18546-18551.
    [54]Hu,S. L., Niu K., Sun Y., Yang,J.J., Zhao, N.Q., Du X.W. One-step synthesis of fluorescent carbon nanoparticles by laser irradiation[J]. Journal of Materials Chemistry.2009,19:484-488.
    [55]Yang, Z.H., Yang, L.L., Bai, S., Zhang, Z.F., Cao, W.X. Stable luminescent films and hollow spheres comprising CdTe nanoparticles[J]. Nanotechnology.2006,17:1895-1900.
    [56]Bao L., Zhang Z.L., Tian Z.Q. Electrochemical Tuning of Luminescent Carbon Nanodots: From Preparation to Luminescence Mechanism[J]. Advanced Materials.2011,23:5801-5806.
    [57]Afroza Khanam, S.K., Tripathi. A facile and novel synthetic method for the preparation of hydroxyl capped fluorescent carbon nanoparticles[J]. Colloids and Surfaces B:Biointerfaces. 2013,102:63-69.
    [58]Jia, X.F., Li,J. One-pot green synthesis of optically pH-sensitive carbon dots with upconversion luminescence[J]. Nanoscale.2012,4:55.
    [59]Zheng, L., Chi, Y., Dong, Y., Lin, J., Wang, B., Electrochemiluminescence of Water-Soluble Carbon Nanocrystals Released Electrochemically from Graphite[J]. Journal of the American Chemical Society 2009,131,4564-4565.
    [60]Zhu, H., Wang, X. L., Li, Y. L., Yang, Z. J. Wang, F., Yang, X. R. Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties [J]. Chemical. Communications.2009,5118-5120.
    [61]Sun, Y. P., Zhou, B., Lin, Y., Wang, W., Fernando, K.A.S., Pathak, P., Meziani. M.J., Harruff, B.A., Wang, X., Wang, H., Luo, P.G., Yang, H., Kose, M.E., Chen, B.,Veca. L.M., Xie, S.Y. Quantum-Sized Carbon Dots for Bright and Colorful Photoluminescence[J]. Journal of the American Chemical Society.2006,128:7756-7757.
    [62]Zhou, J., Booker, C., Li, R., Zhou, X., Sham, T.K., Sun, X., Ding. Z., An Electrochemical avenue to Blue Luminescent Nanocrystals from Multiwalled Carbon Nanotubes (MWCNTs) [J]. Journal of the American Chemical Society 2007,129:744-745.
    [63]Yang. Z.H., Yang, L.L., Bai, S., Zhang, Z.F., Cao, W.X. Stable luminescent films and hollow spheres comprising CdTe nanoparticles[J]. Nanotechnology.2006,17:1895-1900.
    [64]Ming, H., Ma, Z., Liu, Y.,Pan, K.M., Yu, H., Wang, F., Kang. Z.H. Large scale electrochemical synthesis of high quality carbon nanodots and their photocatalytic property. Dalton Trans.2012,41,9526-9531
    [65]Liu, H.P., Ye, T., Mao, C.D. Fluorescent Carbon Nanoparticles Derived from Candle Soot [J]Angewandte Chemie International.2007,119:6593-6595.
    [66]Wang, Q., Liu, X., Zhang, L.C., Lv, Y., Microwave-assisted synthesis of carbon nanodots through an eggshell membrane and their fluorescent application[J]. Analyst 2012,137, 5392-5397.
    [67]Guo, Y.M., Wang, Z., Shao, H.W., Jiang, X.Y. Hydrothermal synthesis of highly fluorescent carbon nanoparticles from sodium citrate and their use for the detection of mercury ions[J]. Carbon 2013,52,583-589.
    [68]Zhang, X., Wang, S., Zhu, C., Liu, M., Ji, Y, Feng, L., Tao, L., Wei, Y. Carbon-dots derived from nanodiamond:Photoluminescence tunable nanoparticlesfor cell imaging[J]. Journal of colloid and interface science 2013,397:39-44.
    [69]Environ,R. Hardman. A Toxicologic Review of Quantum Dots:Toxicity Depends on Physicochemical and Environmental Factors[J]. Health Perspect.2006,114:165-172.
    [70]Jaiswal, J. K., Simon,S. M., Potentials and pitfalls of fluorescent quantum dots for biological imaging[J]. Trends Cell Biology.2004,14:497-504.
    [71]Yang, S.T., Cao, L., Luo, P.G., Lu F.S., Wang X., Wang, H.F., Meziani M.J., Liu, Y.F., Qi G., Sun.Y.P. Carbon Dots for Optical Imaging in vivo[J]. Journal of the American Chemical Society.2009,131:11308-11309.
    [72]Liu, R.L., Wu D.Q., Liu, S.H., Koynov, K., Knoll, W., Li, Q. An Aqueous Route to Multicolor Photoluminescent Carbon Dots Using Silica Spheres as Carriers[J]. Angewandte Chemie-International Edition 2009,48:4598-4601.
    [73]Xu, Y., Wu, M., Liu, Y., Feng, X.Z., Yin, X.B. He, X.W., Zhang, Y.K., Nitrogen -Doped Carbon Dots:A Facile and General Preparation Method, Photoluminescence Investigation and Imaging Applications[J]. Chemistry-a European Journal 2013:19,2276-2283.
    [74]Tian, L.D., Chen, Ghosh, W. S., Chen, Pradhan, X. Chang, S. Journal Of Materials Chemistry[J]. Direct and low energy electrolytic co-reduction of mixed oxides to zirconium-based multi-phase hydrogen storage alloys in molten salts[J].2009,21:2803-2809.
    [75]Sahu, S., Behera, B., Maiti, T.K., Mohapatra, S., Simple one-step synthesis of highly luminescent carbon dots from orange juice:application as excellent bio-imaging agents[J]. Chemical. Communications.2012,48:8835-8837.
    [76]Wang, X., Cao, L., Lu, F., Meziani, M.J., Li, H., Qi, G., Zhou, B., Harruff, B.A., Kermarrec, F., Sun, Y.P., Photoinduced electron transfers with carbon dots[J]. Chemical. Communi-cations.2009,0; 3774-3776.
    [77]Zhao, H.X., Liu, L.Q., Liu, Z.D., Wang, Y., Zhao, X.J., Huang, C.Z., Highly selective detection of phosphate in very complicated matrixes with an off-on fluorescent probe of europium-adjusted carbon dots. Chemical[J]. Communications.2011,47:2604-2606
    [78]Zhou, L., Lin, Y.H., Huang, Z.Z., Ren, J.S., Qu, X.G., Carbon nanodots as fluore scence Hprobes for rapid, sensitive, and label-free detection of Hg2+ and biothiols in complex matrices[J]. Chemical. Communications.2012,48:1147-1149.
    [79]Yu, C.M., Li, X.Z., Zeng, F., Zheng, F.Y., Wu, S.Z., Carbon-dot-based ratiometric fluorescent sensor for detecting hydrogen sulfide in aqueous media and inside live cells[J]. Chemical. Communications.2013,49:403-405.
    [80]Liu, C.J., Zhang, P.,Zhai, X.Y., Tian, F., Li, W.C., Yang, J.H., Liu, Y., Wang, H.B., Wang, W., Liu, W.G. Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence[J].Biomaterials 2012,33:3604-3613.
    [81]Wang, F., Liu, Y., Ma, Z. Enhanced photoelectrochemical response in SrTiO3 films decorated with carbon quantum dots[J]. New Jouranl of chemistry 2013,37:290.
    [1]Barkhouse, D.A.R., Pattantyus-Abraham, A.G., Levina, L.; Sargent, E.H. Thiols Passivate Recombination Centers in Colloidal Quantum Dots Leading to Enhanced Photovoltaic Device Efficiency[J]. ACS Nano.2008,2,2356-2362.
    [2]Gao, M.Y.L., C., Kirstein, S., Mohwald, H., Rogach, A. L., Weller, H. Electroluminescence of Different Colors from Polycation/CdTe Nanocrystal Self-Assembled Films[J]. Journal of Applied Physics.2000,87,2297-2302.
    [3]Greenham, N.C., Peng, X., Alivisatos, A.P. Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity[J]. Physical Review B.1996,54,17628.
    [4]Gill, R., Zayats, M., Willner, I. Semiconductor Quantum Dots for Bioanalysis[J]. Angewandte Chemie-international Edition.2008,47,7602-7625.
    [5]Klostranec, J.M., Chan, W.C.W. Quantum Dots in Biological and Biomedical Research: Recent Progress and Present Challenges[J]. Advanced Materials.2006,18,1953-1964.
    [6]Mattoussi, H., Mauro, J.M., Goldman, E.R., Anderson, G.P., Sundar, V.C., Mikulec, F.V., Bawendi. M.G. Self-Assembly of CdSe-ZnS Quantum Dot Bioconjugates Using an Engineered Recombinant Protein[J]. Journal of the American Chemical Society.2000,122,12142-12150.
    [7]Murray. C.B., Morris, D.J., Bawendi, M.G. Synthesis and characterization of nearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites[J]. Journal of the American Chemical Society.1993,115,8706-8715.
    [8]Peng, X., Schlamp, M.C., Kadavanich, A.V., Alivisatos, A.P. Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility[J]. Journal of the American Chemical Society.1997,119,7019-7029.
    [9]Qu, L., Peng, X. Control of Photoluminescence Properties of CdSe Nanocrystals in Growth[J]. Journal of the American Chemical Society.2002,124,2049-2055.
    [10]Talapin, D.V., Haubold, S., Rogach, A.L., Kornowski, A., Haase, M., Weller, H. A Novel Organometallic Synthesis of Highly Luminescent CdTe Nanocrystals[J]. The Journal of Physical Chemistry B.2001,105,2260-2263.
    [11]Wargnier, R., Baranov, A.V., Maslov, V.G., Stsiapura, V., Artemyev, M., Pluot, M., Sukhanova, A., Nabiev, I. Energy Transfer in Aqueous Solutions of Oppositely Charged CdSe/ZnS Core/Shell Quantum Dots and in Quantum Dot-Nanogold Assemblies[J]. Nano Letters.2004,4, 451-457.
    [12]Rogach, A.L., Katsikas, L., Kornowski, A., Su, D., Eychmuller, A., Weller, H. Synthesis and characterization of thiol-stabilized CdTe nanocrystals[J]. Berichte der Bunsengesellschaft fur physikalische Chemie.1996,100,1772-1778.
    [13]Gao, M., Kirstein, S., Mohwald, H., Rogach, A.L.. Kornowski. A., Eychmuller, A., Weller, H. Strongly Photoluminescent CdTe Nanocrystals by Proper Surface Modification[J]. The Journal of Physical Chemistry B.1998,102,8360-8363.
    [14]Li, M., Ge, Y., Chen, Q., Xu, S., Wang, N., Zhang, X. Hydrothermal synthesis of highly luminescent CdTe quantum dots by adjusting precursors' concentration and their conjunction with BSA as biological fluorescent probes[J]. Talanta.2007,72,89-94.
    [15]Rogach, A.L., Komowski, A., Gao, M., Eychmuller, A., Weller, H. Synthesis and Characterization of a Size Series of Extremely Small Thiol-Stabilized CdSe Nanocrystals[J]. The Journal of Physical Chemistry B.1999,103,3065-3069.
    [16]Carrillo-Carrion, C., Cardenas, S., Simonet, B.M., Valcarcel, M. Quantum dots luminescence enhancement due to illumination with UV/Vis light[J]. Chemical Communications. 2009,5214-5226.
    [17]Michalet, X., Pinaud, F.F., Bentolila, L.A., Tsay, J.M., Doose, S., Li, J.J., Sundaresan, G., Wu, A.M., Gambhir, S.S., Weiss, S. Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics[J]. Science.2005,307,538-544.
    [18]Rawalekar, S., Kaniyankandy, S., Verma, S., Ghosh, H.N. Ultrafast Charge Carrier Relaxation and Charge Transfer Dynamics of CdTe/CdS Core-Shell Quantum Dots as Studied by Femtosecond Transient Absorption Spectroscopy[J]. The Journal of Physical Chemistry C.2009, 114,1460-1466.
    [19]Zhao, D.. He, Z., Chan, W.H., Choi, M.M.F..Synthesis and Characterization of High-Quality Water-Soluble Near-Infrared-Emitting CdTe/CdS Quantum Dots Capped by N-Acetyl-1-cysteine Via Hydrothermal Method[J]. The Journal of Physical Chemistry C.2008,113,1293-1300.
    [20]Aldeek, F., Balan, L., Medjahdi, G., Roques-Cannes, T., Malval, J.-P., Mustin, C, Ghanbaja, J., Schneider, R.I. Enhanced Optical Properties of Core/Shell/Shell CdTe/CdS/ZnO Quantum Dots Prepared in Aqueous Solution[J]. The Journal of Physical Chemistry C.2009,113,19458-19467.
    [21]Choi, C.L., Koski, K.J., Sivasankar, S.:Alivisatos, A.P. Strain-Dependent Photoluminescence Behavior of CdSe/CdS Nanocrystals with Spherical, Linear, and Branched Topologies[J]. Nano Letters.2009,9,3544-3549.
    [22]Moon. J., Choi, K.-S., Kim, B., Yoon, K.-H., Seong. T.-Y., Woo, K. Aggregation-Free Process for Functional CdSe/CdS Core/Shell Quantum Dots[J]. The Journal of Physical Chemistry C.2009,113,7114-7119.
    [23]Palaniappan, K., Xue, C., Arumugam, G., Hackney, S.A., Liu, J. Water-Soluble, Cyclodextrin-Modified CdSe-CdS Core-Shell Structured Quantum Dots[J]. Chemistry of Materials.2006,18,1275-1280.
    [24]Mauro, J.M., Mattoussi, H., Medintz, I.L., Goldman, E.R., Tran, P.T., Anderson, G.P. Receptor Protein-Based Bioconjugates of Highly Luminescent CdSe-ZnS Quantum Dots:Use in Biosensing Applications, in Defense Applications of Nanomaterials.2005, American Chemical Society, p.16-30.
    [25]Kirchner. C., Liedl, T., Kudera, S., Pellegrino. T.. Munoz Javier, A., Gaub. H.E., Stolzle. S., Fertig, N., Parak. W.J. Cytotoxicity of Colloidal CdSe and CdSe/ZnS Nanoparticles[J]. Nano Letters.2004,5,331-338.
    [26]Yildiz,1., McCaughan, B., Cruickshank, S.F., Callan, J.F., Raymo, F.i.M. Biocompatible CdSe-ZnS Core-Shell Quantum Dots Coated with Hydrophilic Polythiols[J]. Langmuir.2009,25, 7090-7096.
    [27]Zhang, Y., Li, Y., Yan, X.-P. Photoactivated CdTe/CdSe Quantum Dots as a Near Infrared Fluorescent Probe for Detecting Biothiols in Biological Fluids[J]. Analytical Chemistry.2009,81, 5001-5007.
    [28]Chon, B., Bang, J., Park, J., Jeong, C., Choi, J.H., Lee, J.-B., Joo, T., Kim, S. Unique Temperature Dependence and Blinking Behavior of CdTe/CdSe (Core/Shell) Type-Ⅱ Quantum Dots[J]. The Journal of Physical Chemistry C.2010,115,436-442.
    [29]Zhang, W., Chen, G., Wang, J., Ye, B.-C., Zhong, X. Design and Synthesis of Highly Luminescent Near-Infrared-Emitting Water-Soluble CdTe/CdSe/ZnS Core/Shell/Shell Quantum Dots[J]. Inorganic Chemistry.2009,48,9723-9731.
    [30]Smith, A.M., Nie, S. Semiconductor Nanocrystals:Structure, Properties, and Band Gap Engineering[J]. Accounts of Chemical Research.2009,43,190-200.
    [31]Gaponik, N., Talapin, D.V., Rogach, A.L., Hoppe, K., Shevchenko, E.V., Kornowski, A., Eychmuller, A., Weller, H. Thiol-Capping of CdTe Nanocrystals: An Alternative to Organometallic Synthetic Routes[J]. The Journal of Physical Chemistry B.2002,106,7177-7185.
    [32]Lin, Y.-W., Hsieh, M.-M., Liu, C.-P., Chang, H.-T. Photoassisted Synthesis of CdSe and Core-Shell CdSe/CdS Quantum Dots[J]. Langmuir.2004,21,728-734.
    [33]Bao, H., Gong, Y., Li, Z., Gao, M. Enhancement Effect of Illumination on the Photoluminescence of Water-Soluble CdTe Nanocrystals: Toward Highly Fluorescent CdTe/CdS Core-Shell Structure[J]. Chemistry of Materials.2004,16,3853-3859.
    [34]Boyer, J.-C., Veggel, F.C.J.M.v. Absolute quantum yield measurements of colloidal NaYF4:Er3+,Yb3+ upconverting nanoparticles[J]. Nanoscale.2010,2,1417-1419.
    [35]Lakowicz, J.R. In Principles of Fluorescence Spectroscopy. Springer Science+Business Media, LLC, New York,2006, pp.54-55.
    [36]Gurusinghe, N.P., Hewa-Kasakarage, N.N., Zamkov, M. Composition-Tunable Properties of CdSxTel-x Alloy Nanocrystals[J]. The Journal of Physical Chemistry C.2008,112, 12795-12800.
    [37]Rajh, T., Micic, O.I., Nozik, A.J. Synthesis and characterization of surface-modified colloidal cadmium telluride quantum dots[J]. The Journal of Physical Chemistry.1993,97, 11999-12003.
    [1]Gao, M. Electroluminescence of different colors from polycation/CdTe nanocrystal self-assembled films[J]. Journal of Applied Physics.2000,87,2297.
    [2]Wang, X., Yan, X., Li, W., Sun, K. Doped Quantum Dots for White-Light-Emitting Diodes Without Reabsorption of Multiphase Phosphors[J]. Advanced Materials.2012,24,2742-2747.
    [3]Kongkanand, A., Tvrdy, K., Takechi, K., Kuno, M., Kamat, P.V. Quantum Dot Solar Cells. Tuning Photoresponse through Size and Shape Control of CdSe-TiO2 Architecture[J]. Journal of the American Chemical Society.2008,130,4007-4015.
    [4]Michalet, X., Pinaud, F.F., Bentolila, L.A., Tsay, J.M., Doose, S., Li, J.J., Sundaresan, G., Wu, A.M., Gambhir, S.S., Weiss, S. Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics[J]. Science.2005,307,538-544.
    [5]Mattoussi, H., Mauro, J.M., Goldman, E.R., Anderson, G.P., Sundar, V.C., Mikulec, F.V., Bawendi, M.G. Self-Assembly of CdSe-ZnS Quantum Dot Bioconjugates Using an Engineered Recombinant Protein[J]. Journal of the American Chemical Society.2000,122,12142-12150.
    [6]Gill, R., Zayats, M., Willner, I. Semiconductor Quantum Dots for Bioanalysis[J]. Angewandte Chemie International Edition.2008,47,7602-7625.
    [7]Gao, M., Kirstein. S., Mohwald, H., Rogach, A.L., Kornowski, A., Eychmuller, A., Weller, H. Strongly Photoluminescent CdTe Nanocrystals by Proper Surface Modification[J]. The Journal of Physical Chemistry B.1998,102,8360-8363.
    [8]Rogach, A.L., Kornowski, A., Gao, M., Eychmuller, A., Weller, H. Synthesis and Characterization of a Size Series of Extremely Small Thiol-Stabilized CdSe Nanocrystals[J]. The Journal of Physical Chemistry B.1999,103,3065-3069.
    [9]Gaponik, N., Talapin, D.V., Rogach, A.L., Hoppe, K., Shevchenko, E.V., Kornowski, A.. Eychmuller, A., Weller, H. Thiol-Capping of CdTe Nanocrystals: An Alternative to Organometallic Synthetic Routes[J]. The Journal of Physical Chemistry B.2002,106,7177-7185.
    [10]He, Y., Su, Y., Yang, X., Kang, Z., Xu, T., Zhang, R., Fan, C., Lee, S.-T. Photo and pH stable, highly-luminescent silicon nanospheres and their bioconjugates for immunofluorescent cell imaging[J]. Journal of the American Chemical Society.2009,131,4434-4438.
    [11]Lemon, B.I., Crooks, R.M. Preparation and Characterization of Dendrimer-Encapsulated CdS Semiconductor Quantum Dots[J]. Journal of the American Chemical Society.2000,122, 12886-12887.
    [12]Bronstein, L.M., Shifrina, Z.B. Dendrimers as Encapsulating, Stabilizing, or Directing Agents for Inorganic Nanoparticles[J]. Chemical Reviews.2011,111,5301-5344.
    [13]Radhakrishnan, B., Ranjan, R., Brittain, W.J. Surface initiated polymerizations from silica nanoparticles[J]. Soft Matter.2006,2,386-396.
    [14]Bradley, M., Bruno, N., Vincent, B. Distribution of CdSe quantum dots within swollen polystyrene microgel particles using confocal microscopy[J]. Langmuir.2005,21,2750-2753.
    [15]Zhou, L., Gao, C., Xu, W., Wang, X., Xu, Y. Enhanced Biocompatibility and Biostability of CdTe Quantum Dots by Facile Surface-Initiated Dendritic Polymerization[J]. Biomacromolecules. 2009,10,1865-1874.
    [16]Wang, M., Zhang, M., Qian, J., Zhao, F., Shen, L., Scholes, G.D., Winnik, M.A. Enhancing the Photoluminescence of Polymer-Stabilized CdSe/CdS/ZnS Core/Shell/Shell and CdSe/ZnS Core/Shell Quantum Dots in Water through a Chemical-Activation Approach[J]. Langmuir.2009, 25,11732-11740.
    [17]Smith, A.M., Nie, S. Minimizing the Hydrodynamic Size of Quantum Dots with Multifunctional Multidentate Polymer Ligands[J]. Journal of the American Chemical Society. 2008,130,11278-11279.
    [18]Weaver, J., Zakeri, R., Aouadi, S., Kohli, P. Synthesis and characterization of quantum dot-polymer composites[J]. Journal of Materials Chemistry 2009,19,3198-3206.
    [19]Sheng, W., Kim. S., Lee, J., Kim, S.-W., Jensen, K., Bawendi, M.G. In-Situ Encapsulation of Quantum Dots into Polymer Microspheres[J]. Langmuir.2006,22,3782-3790.
    [20]Cao, X., Li, C.M., Bao, H., Bao, Q., Dong, H. Fabrication of strongly fluorescent quantum dot-polymer composite in aqueous solution[J]. Chemistry of materials.2007,19,3773-3779.
    [21]Xu, J., Wang, J., Mitchell, M., Mukherjee, P., Jeffries-El, M., Petrich, J.W., Lin, Z. Organic-Inorganic Nanocomposites via Directly Grafting Conjugated Polymers onto Quantum Dots[J]. Journal of the American Chemical Society.2007,129,12828-12833.
    [22]Liu, X., Ni, X., Wang, J., Yu, X. A novel route to photoluminescent, water-soluble Mn-doped ZnS quantum dots via photopolymerization initiated by the quantum dots[J]. Nanotechnology.2008,19:485602.
    [23]Strandwitz, N.C., Khan, A., Boettcher, S.W., Mikhailovsky, A.A., Hawker, C.J., Nguyen, T.-Q., Stucky, G.D. One- and Two-Photon Induced Polymerization of Methylmethacrylate Using Colloidal CdS Semiconductor Quantum Dots[J]. Journal of the American Chemical Society.2008, 130,8280-8288.
    [24]Ninjbadgar, T., Garnweitner, G., Borger, A., Goldenberg, L.M., Sakhno, O.V., Stumpe, J. Synthesis of Luminescent ZrO2:Eu3+ Nanoparticles and Their Holographic Sub-Micrometer Patterning in Polymer Composites[J]. Advanced Functional Materials.2009,19,1819-1825.
    [1]Medintz, I.L., Uyeda, H.T., Goldman, E.R., Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing[J]. Nature Materials.2005,4,435-446.
    [2]Michalet, X., Pinaud, F.F., Bentolila, L.A., Tsay, J.M.; Doose, S., Li, J.J.; Sundaresan, G., Wu, A.M., Gambhir, S.S., Weiss, S. Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics[J]. Science.2005,307,538-544.
    [3]Kongkanand, A., Tvrdy, K., Takechi, K., Kuno, M., Kamat, P.V. Quantum Dot Solar Cells. Tuning Photoresponse through Size and Shape Control of CdSe-TiO2 Architecture[J]. Journal of the American Chemical Society.2008,130,4007-4015.
    [4]Noone, K.M., Strein, E., Anderson, N.C., Wu, P.-T., Jenekhe, S.A., Ginger, D.S. Broadband Absorbing Bulk Heterojunction Photovoltaics Using Low-Bandgap Solution-Processed Quantum Dots[J]. Nano Letters.2010,10,2635-2639.
    [5]Wang, X., Yan, X., Li, W., Sun, K. Doped Quantum Dots for White-Light-Emitting Diodes Without Reabsorption of Multiphase Phosphors[J]. Advanced Materials.2012,24,2742-2747.
    [6]Pal, B.N., Ghosh, Y., Brovelli, S., Laocharoensuk, R., Klimov, V.I., Hollingsworth, J.A., Htoon, H.'Giant' CdSe/CdS Core/Shell Nanocrystal Quantum Dots As Efficient Electroluminescent Materials:Strong Influence of Shell Thickness on Light-Emitting Diode Performance[J]. Nano Letters.2011,12,331-336.
    [7]Bowers, M.J., McBride, J.R., Rosenthal, S.J. White-Light Emission from Magic-Sized Cadmium Selenide Nanocrystals[J]. Journal of the American Chemical Society.2005,127, 15378-15379.
    [8]Bowers Ii, M.J., McBride, J.R., Garrett, M.D., Sammons, J.A., Dukes Iii, A.D., Schreuder. M.A., Watt, T.L., Lupini, A.R., Pennycook, S.J., Rosenthal, S.J. Structure and Ultrafast Dynamics of White-Light-Emitting CdSe Nanocrystals[J]. Journal of the American Chemical Society.2009. 131,5730-5731.
    [9]Pennycook, T.J., McBride, J.R., Rosenthal. S.J., Pennycook, S.J., Pantelides, S.T. Dynamic Fluctuations in Ultrasmall Nanocrystals Induce White Light Emission[J]. Nano Letters.2012,12, 3038-3042.
    [10]Park, S., Kwon, J.E., Kim, S.H., Seo, J., Chung, K., Park. S.-Y., Jang, D.-J., Medina, B.a.M.n., Gierschner, J., Park, S.Y. A White-Light-Emitting Molecule:Frustrated Energy Transfer between Constituent Emitting Centers[J]. Journal of the American Chemical Society.2009,131, 14043-14049.
    [11]Gong, X., Wang, S., Moses, D., Bazan, G.C., Heeger, A.J. Multilayer Polymer Light-Emitting Diodes:White-Light Emission with High Efficiency[J]. Advanced Materials.2005, 17,2053-2058.
    [12]Rosson, T.E., Claiborne, S.M., McBride, J.R.. Stratton, B.S., Rosenthal, S.J. Bright White Light Emission from Ultrasmall Cadmium Selenide Nanocrystals[J]. Journal of the American Chemical Society.2012,134,8006-8009.
    [13]Holzapfel, V., Musyanovych, A., Landfester. K., Lorenz, M.R., Mailander, V. Preparation of Fluorescent Carboxyl and Amino Functionalized Polystyrene Particles by Miniemulsion Polymerization as Markers for Cells[J]. Macromolecular Chemistry and Physics.2005,206, 2440-2449.
    [14]Kasai, H., Oikawa, H., Okada, S., Nakanishi, H. Crystal Growth of Perylene Microcrystals in the Reprecipitation Method[J]. Bulletin of the Chemical Society of Japan.1998,71,2597-2601.
    [15]An, B.-K., Kwon, S.-K., Jung, S.-D., Park, S.Y. Enhanced Emission and Its Switching in Fluorescent Organic Nanoparticles[J]. Journal of the American Chemical Society.2002,124, 14410-14415.
    [16]Behanna, H.A., Rajangam, K., Stupp, S.I. Modulation of Fluorescence through Coassembly of Molecules in Organic Nanostructures[J]. Journal of the American Chemical Society.2006,129, 321-327.
    [17]Asahi, T., Sugiyama, T, Masuhara, H. Laser Fabrication and Spectroscopy of Organic Nanoparticles[J]. Accounts of Chemical Research.2008,41,1790-1798.
    [18]Grimsdale, A.C., Mullen, K. The Chemistry of Organic Nanomaterials[J]. Angewandte Chemie International Edition.2005,44,5592-5629.
    [19]Chan, Y.-H., Wu, C., Ye, F., Jin, Y, Smith, P.B., Chiu, D.T. Development of Ultrabright Semiconducting Polymer Dots for Ratiometric pH Sensing[J]. Analytical Chemistry.2011,83, 1448-1455.
    [20]Wu, C., Schneider, T., Zeigler, M., Yu, J., Schiro, P.G., Burnham, D.R., McNeill, J.D., Chiu, D.T. Bioconjugation of Ultrabright Semiconducting Polymer Dots for Specific Cellular Targeting[J]. Journal of the American Chemical Society.2010,132,15410-15417.
    [21]Baier, M.C., Huber, J., Mecking, S. Fluorescent Conjugated Polymer Nanoparticles by Polymerization in Miniemulsion[J]. Journal of the American Chemical Society.2009,131, 14267-14273.
    [22]Hong, Y., Lam, J.W.Y., Tang, B.Z. Aggregation-induced emission[J]. Chemical Society Reviews.2011,40,5361-5388.
    [23]Leung, C.W.T., Hong, Y, Chen, S., Zhao, E., Lam, J.W.Y., Tang, B.Z. A Photostable A IE Luminogen for Specific Mitochondrial Imaging and Tracking[J]. Journal of the American Chemical Society.2012,135,62-65.
    [24]Shi, H., Kwok, R.T.K., Liu, J., Xing, B., Tang, B.Z., Liu. B. Real-Time Monitoring of Cell Apoptosis and Drug Screening Using Fluorescent Light-Up Probe with Aggregation-Induced Emission Characteristics[J]. Journal of the American Chemical Society.2012,134,17972-17981.
    [25]Shi, H., Liu, J., Geng, J., Tang, B.Z., Liu, B. Specific Detection of Integrin αvβ3 by Light-Up Bioprobe with Aggregation-Induced Emission Characteristics[J]. Journal of the American Chemical Society.2012,134,9569-9572.
    [26]Wang, M., Zhang, D., Zhang, G., Tang, Y., Wang, S., Zhu, D. Fluorescence Turn-On Detection of DNA and Label-Free Fluorescence Nuclease Assay Based on the Aggregation-Induced Emission of Silole[J]. Analytical Chemistry.2008,80,6443-6448.
    [27]Hong, Y., Meng, L., Chen, S., Leung, C.W.T., Da, L.-T., Faisal, M., Silva, D.-A., Liu, J., Lam, J.W.Y., Huang, X., Tang, B.Z. Monitoring and Inhibition of Insulin Fibrillation by a Small Organic Fluorogen with Aggregation-Induced Emission Characteristics[J]. Journal of the American Chemical Society.2011,134,1680-1689.
    [28]Albertazzi, L., Storti, B., Marchetti, L., Beltram, F. Delivery and Subcellular Targeting of Dendrimer-Based Fluorescent pH Sensors in Living Cells[J]. Journal of the American Chemical Society.2010,132,18158-18167.
    [29]Lee, W.I., Bae, Y.,Bard, A.J. Strong Blue Photoluminescence and ECL from OH-Terminated PAMAM Dendrimers in the Absence of Gold Nanoparticles[J]. Journal of the American Chemical Society.2004,126,8358-8359.
    [30]Messmore, B.W., Hulvat, J.F., Sone, E.D., Stupp, S.I. Synthesis, Self-Assembly, and Characterization of Supramolecular Polymers from Electroactive Dendron Rodcoil Molecules[J]. Journal of the American Chemical Society.2004,126,14452-14458.
    [31]Yin, M., Shen, J., Pflugfelder, G.O., Mullen, K. A Fluorescent Core-Shell Dendritic Macromolecule Specifically Stains The Extracellular Matrix[J]. Journal of the American Chemical Society.2008,130,7806-7807.
    [32]Qin, T., Wiedemair, W., Nau, S., Trattnig, R., Sax, S., Winkler, S., Vollmer, A., Koch, N., Baumgarten, M., List, E.J.W., Mullen, K.. Core, Shell, and Surface-Optimized Dendrimers for Blue Light-Emitting Diodes[J]. Journal of the American Chemical Society.2011,133,1301-1303.
    [33]Wang, S., Gaylord, B.S., Bazan, G.C. Collective Optical Behavior of Cationic Water-Soluble Dendrimers[J]. Advanced Materials.2004,16,2127-2132.
    [1]Xu, X.Y., Ray, R., Gu, Y.L., Ploehn, H.J., Gearheart, L.K., Raker, W.A. Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments[J]. Journal of the American Chemical Society.2004,126:12736-12737.
    [2]Bourlinos, A.B., Stassinopoulos, A.D., Anglos, R., Zboril, V., Georgakilas, E.P. Photoluminescent Carbogenic Dots[J].Chemistry of Materials.2008,20:4539-4541.
    [3]Empedocles, S., Bawendi, M. Spectroscopy of Single CdSe Nanocrystallites[J].Account of Chemical Research.1999,32:389-396.
    [4]Trindade, T.P., Pickett, N.L. Nanocrystalline Semiconductors: Synthesis, Properties, and Perspectives[J]. Chemistry of Materials.2001,13:3843-3858.
    [5]Yoffe, A.D. Advances of and by phase-field modelling in condensed-matter physics[J]. Advances in Physics.2001,50:1-208.
    [6]Baker, S.N., Baker, G.A. Luminescent Carbon Nanodots:Emergent Nanolights[J]. Angewandte Chemie-International Edition 2010,49:6726-6744.
    [7]Tian, L., Song, Y., Chang, X.J., Chen, S.W. Hydrothermally enhanced photoluminescence of carbon nanoparticles[J]. Scripta Materialia 2010,62:883-886.
    [8]Coto-Garcia, A.M., Sotelo-Gonzalez, E., Fernandez-Arguelles, M., Pereiro, R., Costa-Fernandez, J.M., Sanz-Medel, A. Nanoparticles as fluorescent labels for optical imaging and sensing in genomics and proteomics[J]. Analytical and bioanalytical chemstry2011,399:29-42.
    [9]Song, Y., Kang, X.W., Zuckerman, N.B, Phebus, B., Konopelski, J.P., Chen, S.W. Ferrocene-functionalized carbon nanoparticles[J]. Nanoscale 2011,3:1984-1989.
    [10]Khanam, A., Tripathi, S.K., Roy, D., Nasim, M. A facile and novel synthetic method for the preparation of hydroxyl capped fluorescent carbon nanoparticles[J]. Colloid and Surfances B-Bioinerfaces 2013,102:63-69.
    [11]Schuppler, S., Friedman. S.L., Marcus, M.A., Adler, D.L., Xie, Y.H., Ross, F.M., Chabal, Y.J., Harris, T. D., Brus. L.E. Brown, W. L.,Chaban, E.E., Szajowski, P. F..Christman. S. B., Citrin, P.H. Preparation and Applications of Magnetic Nano-Adsorbent [J]. Physical Review B.1995,52:4910-4925.
    [12]Schuppler, S., Friedman, S.L., Marcus, M.A., Adler, D.L.,Xie, Y.H., Ross, F.M., Harris. T.D., Brown, W.L., Chabal, Y.J. Brus, L.E.,Citrin, P.H. Size, shape, and composition of luminescent species in oxidized Si nanocrystals and H-passivated porous Si[J]. Physical Review Letters.1994,72:2648-2651.
    [13]Hull, M.S., Kennedy, A.J., Steevens, J.A., Bednar, A.J, Weiss, C.A., Vikesland, P.J. Release of Metal Impurities from Carbon Nanomaterials Influences Aquatic Toxicity[J]. Environ. Sci. Technol.2009,43:4169-4174.
    [14]Wilson, W.L., Szajowski, RF., Brus, L.E., Quantum Confinement in Size-Selected, Surface-Oxidized. Silicon Nanocrystals[J]. Science.1993,262:1242-1244.
    [15]Cao, L., Wang, X., Meziani, M.J., Lu, F.S. Wang, H.F., Luo, P.J., Lin, G.Y., Harruff, B.A. Veca, L.M., Murray, D.S. Xie, Y. Sun, Y.P. Carbon Dots for Multiphoton Bioimaging[J] Journal of American Chemical Society.2007,129:11318-11319.
    [16]Merkoci, A., Aldavert, M., Marin, S., Alegret, S., New materials for electrochemical sensing V:Nanoparticles for DNA labeling[J]. Trac-Trends in Analytical Chemistry 2005,24: 341-349.
    [17]Lamiya, E., Ieee, Nanomaterials based optical and electrochemical biosensors[J]. Ieee Nmdc 2006:Ieee Nanotechnology Materials and Devices Conference 2006, Proceedings.2006, New York:Ieee.288-289.
    [18]Liu, M.C., Shi, G.Y., Zhang, L., Cheng, Y.X., Jin, L.T. Quantum dots modified electrode and its application in electroanalysis of hemoglobin[J]. Electrochemical Communications 2006,8, 305-310.
    [19]Peng, H., TravasSejdic, J. Simple aqueous solution route to luminescent carbogenic dots from carbohydrates[J]. Chemical of Material.2009,21:5563-5565.
    [20]Hu, S.L., Bai, P.K., Cao, S.R., Sun, J. Preparation of Fluorescent Carbon Nanoparticles by Pulsed Laser[J]. Chemical Journal Chinese University-Chinese.2009,30:1497-1500.
    [21]Hu, S.L., Niu, K.Y., Sun, J., Yang, J., Zhao, N.Q., Du, X.W. One-step synthesis of fluorescent carbon nanoparticles by laser irradiation[J].Journal of Materials Chemistry.2009,19:484-488.
    [22]Sun,Y. P., Wang, X. Lu F. S., Cao,L., Meziani, M. J. Luo P. J. G.,Gu, L. R., Veca, L. M. Doped Carbon Nanoparticles as a New Platform for Highly Photoluminescent Dots[J]. The Journal of Physics Chemistry C.2008,112:18295-18298.
    [23]El Nadi, L., Omar, M.M., Moniem, H.A. Formation of nano wires by laser ablation of graphite, in MTPR-06:Modern Trends in Physics Research[J]. L. EINadi, Editor.2007, Amer Inst Physics:Melville, p.173-176.
    [24]Aoqui, S., Uematsu, T., Sakai, T., Dependence of catalytic nano dots prepared Si substrate in carbon-nano tubes growth[J]. Transactions of the Materials Research Society of Japan, Vol 31, No 2, ed. S. Somiya and M. Doyama. Vol.31.2006, Amsterdam:Elsevier Science Bv. 471-474.
    [25]Goncalves, H., Jorge, P.A.S., Femandes, J.R.A., DaSilva, J. Hg(Ⅱ) sensing based on functionalized carbon dots obtained by direct laser ablation[J]. Sens. Actuator B-Chem.2010, 145,702-707.
    [26]Bai, E.Y., Han, M,. Zhang, X., Yang, S. Electrochemically generated fluorescent fullerene nanoparticles as a new and viable bioimaging platform[J]. Journal of Material Chemical. 2011,21:819-823.
    [27]Liu, Q., Lu, X.B., Li, J., Yao, X., Li, J.H., Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes[J]. Biosens. Bioelectron.2007,22,3203-3209.