导电聚合物PEDOT分散体的制备及其在抗静电涂料中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
导电聚合物聚3,4-乙撑二氧噻吩(简称PEDOT)由于具有高的电导率,较好的环境稳定性和薄膜透明性而受到广泛的关注,并在抗静电涂层、光电二极管、传感器等方面表现出了广阔的应用前景。但由于PEDOT的共轭长链带来的不溶不熔问题使其加工处理困难,从而限制了其商业应用,改善PEDOT的加工性能成为该领域重要且极具意义的研究。制备PEDOT分散体是解决其加工问题直接且重要的途径,本文围绕着探索改善PEDOT加工性能的方法展开,通过化学氧化聚合法成功制备了共聚磺酸掺杂型PEDOT分散体和基于聚氨酯乳胶粒子的PEDOT分散体两种不同类型的分散体,并研究了影响两种不同分散体稳定性的因素及其在抗静电涂料中的应用。
     本文从掺杂剂入手,以自制的苯乙烯磺酸钠(SSS)和乙烯磺酸钠(SVS)的共聚物PSS-VS为掺杂剂,制备了共聚磺酸掺杂型PEDOT/PSS-VS分散体,并研究了共聚磺酸的共聚比、分子量和用量、氧化剂用量以及理论固含量对分散体稳定性及电导率的影响。得出的最佳工艺条件为:SSS与SVS共聚摩尔比为5/5,磺酸根与单体摩尔比为2/1,氧化剂与单体摩尔比为1.5/1,理论固含量为2.8%。在该工艺条件下制备的PEDOT/PSS-VS电导率高达11.74S/cm,分散体平均粒径为447nm。
     本文从粒子形态结构入手,以自制的聚氨酯分散体(PUD)为基材,制备了基于聚氨酯乳胶粒子的PEDOT/PU分散体,并研究了不同合成条件和不同粒径大小的聚氨酯基材对分散体性能的影响。通过动态光散射和四探针测试表明,随着复合粒子中PEDOT含量的增加,PEDOT/PU分散体的粒径分布变宽,平均粒径和电导率均增加。综合考虑分散体稳定性和导电性,制备过程中EDOT/PU质量比选择1/10为宜。透射电镜分析表明,复合粒子呈核壳结构,聚氨酯乳胶基材的粒径大小对复合粒子的形貌有较大影响。
     以自制的两种PEDOT分散体为导电组分配制抗静电涂料,并应用于塑料基材,对涂膜进行了基本分析,结果表明,涂膜的附着力达到2级,透光性≧85%,耐水洗性能和稳定性好,表面电阻为108Ω,达到了抗静电涂料的要求。
Conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) has obtained extensive attention because of its high conductivity, good environmental stability and transparency film, and showed broad application prospects in the fields of antistatic coating, photoelectric diode, sensors and so on. Unfortunately, highly conjugated backbones of PEDOT which cause insoluble and non-melt problems also lead to the material being rather intractable, thus the commercial application has been limited. To improve the processing performance of PEDOT has been important and meaningful in this field of research. A direct and important mean to solve the problem is preparing PEDOT dispersions. Around to explore ways to improve the processing property of PEDOT, this article has successfully prepared two different types of PEDOT dispersions, copolymer acid doped and based on polyurethane latex particle, by chemical oxidation polymerization. And studied the affecting factors of two different dispersions stability and application in antistatic coatings.
     Starting from the doping agent, the article has synthesized copolymer acid doped PEDOT/PSS-VS dispersion using copolymer PSS-VS of sodium p-styrenesulfonate (SSS) and sodium vinylsulfonate (SVS) as dopant. The stability and conductivity of dispersion affected by copolymeric ratio, molecular weight and amount of PSS-VS and other factors were investigated and the optimal oxidative polymerization conditions have been found: the copolymeric molar ratio of SSS/SVS is 5/5, molar ratio of SO3-/EDOT and oxidation/EDOT are 2/1 and 1.5/1, the solid content is 2.8wt%. Preparing under the conditions, the conductivity and average particle size of PEDOT/PSS-VS are 11.74S/cm and 447nm respectively.
     Starting from the particle morphology, the article has prepared PEDOT/PU dispersion based on home-made polyurethane(PU) latex particle, and the properties of dispersion affected by different synthetic conditions and particle sizes of PU substrate are researched. By dynamic light scattering and four-probe test, the particle size distribution of PEDOT/PU dispersion broadens, and the average particle size and conductivity increase. Comprehensive consideration of stability and conductivity, the quality ratio of EDOT/PU in preparation process is 1/10. TEM analysis indicates that the composite particles show a core-shell structure, and the particle sizes of PU substrate have great influence on the morphology of composite particles.
     Antistatic coatings have been prepared using two self-made PEDOT dispersions as conductive component and applied to plastic substrates. The results of basic analysis of the coating film show that the adhesion of coating achieves 2, light transmission is more than 85%, washing performance and stability are good, the surface resistance is 108Ω, which meet the requirements of antistatic coating.
引文
[1]马建标,李晨曦.功能高分子材料[M].北京:化学工业出版社, 2000: 202-211
    [2]何天白,胡汉杰.功能高分子与新技术[M].北京:化学工业出版社, 2001: 63-86
    [3]王国建,王德海,邱军等.功能高分子材料[M].上海:华东理工大学出版社, 2006: 162-200
    [4]王国建,刘琳.特种与功能高分子材料[M].上海:中国石化出版社, 2004: 92-95
    [5]万梅香.高技术有机高分子材料进展[M].北京:化学工业出版社, 1994: 188-222
    [6]万梅香.导电高分子[J].高分子通报, 1999, 3(7): 47-53
    [7] Winter I., Reese C., Hormes J., et al. The Thermal Ageing of Poly(3,4- ethylenedioxythiophene) and Investigation by X-ray Absorption and X-ray Photoelectron Spectroscopy[J]. Chem. Phys., 1995, 194(1): 207-213
    [8] Groenendaal L.B., Jonas F., Freitag D., et al. Poly(3,4-ethylenedioxythiophene) and Its Derivatives: Past, Present and Future[J]. Adv. Mater., 2000, 12(7): 481-494
    [9] Chiu W.W., Travas S.J., Cooney R.P., et al. Spectroscopic and Conductivity Studies of Doping in Chemically Synthesized Poly(3,4-ethylenedioxythiophene)[J]. Synth. Met., 2005, 155(1): 80-88
    [10] Bund A., Neudeck S.. Effect of the Solvent and the Anion on the Doping/Dedoping Behavior of Poly(3,4-ethylenedioxythiophene) Films Studied with the Electrochemical Quartz Microbalance[J]. J. Phys. Chem. B, 2004, 108(46): 17845-17850
    [11] Leeuw D.M., Kraakman P.A., Bongaerts P.F.G., et al. Electroplating of Conductive Polymers for the Metallization of Insulators[J]. Synth. Met., 1994, 66(3): 263-273
    [12] Choi J.W., Han M.G., Kim S.Y., et al. Poly(3,4-ethylenedioxythiophene) Nanoparticles Prepared in Aqueous DBSA Solutions[J]. Synth. Met., 2004, 141(3): 293-299
    [13] Li C., Imae T.. Electrochemical and Optical Properties of the Poly(3,4-ethylenedioxy- thiophene) Film Electropolymerized in an Aqueous Sodium Dodecyl Sulfate and Lithium Tetrafluoroborate Medium[J]. Macromolecules, 2004, 37(7): 2411-2416
    [14] Lei Y., Oohata H., Kuroda S.I., et al. Highly Electrically Conductive Poly(3,4- ethylenedioxythiophene) Prepared via High-Concentration Emulsion Polymerization [J]. Synth. Met., 2005, 149(3): 211-217
    [15] Marcilla R., Ochoteco E., Pozo-Gonzalo C., et al. New Organic Dispersions of Conducting Polymers Using Polymeric Ionic Liquids as Stabilizers[J]. Macromol. Rapid Commun., 2005, 26(14): 1122-1126
    [16] Fei J.F., Lim K.G., Palmore G.T.R.. Polymer Composite with Three Electrochromic States[J]. Chem. Mater., 2008, 20(12): 3832-3839
    [17] Chu C.C., Wang Y.W., Yeh C.F., et al. Synthesis of Conductive Core-Shell Nanoparticles Based on Amphiphilic Starburst Poly(n-butyl acrylate)-b-Poly(styrenesulfonate)[J]. Macromolecules, 2008, 41(15): 5632-5640
    [18]瓦尔勒,迪肯森,江学忠等.带有氟化离子交换聚合物作为掺杂物的聚噻吩并噻吩的水分散体[P]. CN Patent: 1781968, 2005-10-13
    [19] Ha Y.H., Nikolov N., Pollack S.K., et al. Towards a Transparent, Highly Conductive Poly(3,4- ethylenedioxythiophene) [J]. Adv. Funct. Mater., 2004, 14(6): 615-622
    [20] Corradi R., Armes S.P.. Chemical Synthesis of Poly(3,4-ethylenedioxythiophene)[J]. Synth. Met., 1997, 84(2): 453-454
    [21] Jonas F., Krafft W.. New Polythiophene Dispersions, Their Preparation and Their Use[P]. Eur. Patent: 440957, 1990-12-20
    [22] Krafft W., Jonas F., Muys B., et.al. Antistatic plastic parts[P]. Eur. Patent: 564911, 1993-03-24
    [23] Sakmeche N., Bazzaoui E.A., Fall M., et a1. Application of Sodium Dodecylsulfate (SDS) Micellar Solution as an Organized Medium for Electropolymerization of Thiophene Derivatives in Water[J]. Synth. Met., 1997, 84(1): 191-192
    [24]侯士峰,方惠群,陈洪渊.乙撑二氧噻吩在非水体系中的电化学聚合及其性质[J].济宁医学院学报, 1997, 20(1): 9-11
    [25]李刚. 3,4-乙撑二氧噻吩的合成工艺研究[D].浙江:浙江大学, 2007
    [26]汪斌华,邓永红,戈钧等.浸渍条件对PEDOT型固体铝电解电容器容量引出率的影响[J].功能材料, 2005, 9(36): 1377-1379
    [27]陈湘宁.导电聚合物BAYTRON及其在固体电解电容器上的应用[J].电子元件与材料, 2000, 19(3): 35-36
    [28] Zhang F., Johansson M., Andersson M.R., et al. Polymer Photovoltaic Cell with Conducting Polymer Anodes[J]. Adv. Mater., 2002, 14(9): 662-665
    [29] Tehrani P., Isaksson J., Mammo W., et al. Evaluation of Active Materials Designed for Use in Printable Electrochromic Polymer Displays[J]. Thin Solid Films, 2006, 515(4): 2485-2492
    [30] Hupe J., Wolf G.D., Jonas F.. A Known Principle with a Novel Basis. Through-Hole Contacting of Printed Circuit Boards Using Conductive Polymers[J]. Galvanotechnik, 1995, 86(10): 3404-3411
    [31] Aernouts T., Vanlaeke P., Geens W., et al. Printable Anodes for Flexible Organic Solar Cell Modules[J]. Thin Solid Films, 2004, 451-452: 22-25
    [32] Qibing P., Guido X., Markus A., et al. Electrochromic and Highly Stable Poly(3,4- ethylendioxythiophene) Switches between Opaque Blue-Black and Transparent Sky Blue[J]. Polymer, 1994, 35(7): 1347-1351
    [33] Arias A.C., Granstrom M., Petritsch K., et al. Organic Photodiodes using Polymeric Anodes[J]. Synth. Met., 1999, 102(2): 953-954
    [34] Ng S.C., Chan H.S.O., Yu W.I.. Synthesis and Characterization of Electrically Conducting Copolymers of Ethylenedioxythiophene and l,3-Propylenedioxythiophene withω-Functional Substituents[J]. J. Mater. Sci. Lett., 1997, 16(10): 809-811
    [35] Wong D.. Practical Considerations for Stabilization of Aqueous Colloidal Polymer Dispersions[J]. Pharm. Tech., 1997, 21(16): 38-50
    [36] Ghosh S., Ingan?s O.. Self-Assembly of a Conducting Polymer Nanostructure by Physical Crosslinking: Applications to Conducting Blends and Modified Electrodes[J]. Synth. Met., 1999, 101(1-3): 413-416
    [37] Dai C., Chang C., Chi H., et al. Emulsion Synthesis of Nanoparticles Containing PEDOT using Conducting Polymeric Surfactant: Synergy for Colloid Stability and Intercalation Doping [J]. J Poly Sci: Poly Chem, 2008, 46(7): 2536–2548
    [38] Kim T.Y., Kim J.E., Kim Y.S., et al. Preparation and Characterization of Poly(3,4-ethylenedioxythiophene) (PEDOT) using Partially Sulfonated Poly(styrene -butadiene-styrene) Triblock Copolymer as a Polyelectrolyte [J]. Curr. Applied Phys., 2009, 9 (1): 120–125
    [39]陈晓华,刘俊峰,杨建.聚3,4-乙撑二氧噻吩的合成及性能[J].化工新型材料, 2006, 34(6): 65-68
    [40] Armes S.P., Miller J.F., Vincent B.. Aqueous Dispersions of Electrically Conducting Monodisperse Polypyrrole Particles[J]. J. Colloid Interface Sci., 1987, 118(2): 410-416
    [41] Armes S.P., Aldissi M.. Preparation and Characterization of Colloidal Dispersions of Polypyrrole using Poly(2-vinyl pyridine)-Based Steric Stabilizers[J]. Polymer, 1990, 31(3): 569-574
    [42] Sun X., Hagner M.. Novel Poly(acrylic acid)-mediated Formation of Composited, Poly(3,4-ethylenedioxythiophene)-Based Conducting Polymer Nanowires[J]. Macromolecules, 2007, 40(24): 8537-8539
    [43] Cloutet E., Mumtaz M., Cramail H.. Synthesis of PEDOT Latexes by Dispersion Polymerization in Aqueous Media[J]. Mater. Sci. Eng. C, 2009, 29(2): 377–382
    [44] Wiersma A.E., Steeg L.M.A., Jongeling T.J.M.. Waterborne Core-Shell Dispersions Based on Intrinsically Conducting Polymers for Coating Applications[J]. Synth. Met., 1995, 71(3): 2269-2270
    [45] Wiersma A.E., Steeg L.M.A.. Dispersion of Electrically Conductive Particles in a Dispersing Medium[P]. Eur. Patent: 589529A1, 1993-09-20
    [46] Bremer L.G.B., Verbong M.W.C.G., Wcbcrs M.A.M., et al. Preparation of Core-Shell Dispersions with a Low Tg Polymer Core and a Polyaniline Shell[J]. Synth. Met., 1997, 84(2): 355-356
    [47] Lascelles S.F., Armes S.P.. Synthesis and Characterization of Micrometersized Polypyrrole-Coated Polystyrene Latexes[J]. Adv. Mater., 1995, 7(10): 864-866
    [48] Lascelles S.F., Armes S.P.. Synthesis and Characterization of Micrometre-Sized, Polypyrrole-Coated Polystyrene Latexes[J]. J. Mater. Chem., 1997, 7(8): 1339-1347
    [49] Lascelles S.F., Armes S.P., Zhdan P.A., et al. Surface Characterization of Micrometre-Sized, Polypyrrole-Coated Polystyrene Latexes: Verification of a‘Core-Shell’Morphology[J]. J. Mater. Chem., 1997, 7(8): 1349-1355
    [50] Barthet C., Armes S.P., Lascelles S.F., et al. Synthesis and Characterization of Micrometer-Sized, Polyaniline-Coated Polystyrene Latexes[J]. Langmuir, 1998, 14(8): 2032-2041
    [51] Cairns D.B., Armes S.P., Bremer L.G.B.. Synthesis and Characterization of Submicrometer-Sized Polypyrrole-Polystyrene Composite Particles[J]. Langmuir, 1999, 15(23): 8052-8058
    [52] Cairns D.B., Armes S.P., Chehimi M.M., et al. X-ray Photoelectron Spectroscopy Characterization of Submicrometer-Sized Polypyrrole-Polystyrene Composites[J]. Langmuir, 1999, 15(23): 8059-8066
    [53] Khan M.A., Armes S.P.. Synthesis and Characterization of Micrometer-Sized Poly(3,4-ethylenedioxythiophene)-Coated Polystyrene Latexes[J]. Langmuir, 1999, 15(10): 3469-3475
    [54] Khan M.A., Armes S.P., Perruchot C., et al. Surface Characterization of Poly(3,4-ethylenedioxythiophene)-Coated Latexes by X-ray Photoelectron Spectroscopy[J]. Langmuir, 2000, 16(9): 4171-4179
    [55] Heywang G., Jonas F.. Poly(alkylenedioxythiophene)s-New, Very Stable Conducting Polymers[J]. Adv. Mater., 1992, 4(2): 116-118
    [56] Han M.G., Foulger S.H.. Crystalline Colloidal Arrays Composed of Poly(3,4- ethylenedioxythiophene)-Coated Polystyrene Particles with a Stop Band in the VisibleRegime[J]. Adv. Mater., 2004, 16(3): 231-234
    [57] Han M.G., Foulger S.H.. Preparation of Poly(3,4-ethylenedioxythiophene) (PEDOT) Coated Silica Core–Shell Particles and PEDOT Hollow Particles[J]. Chem. Commun., 2004, 19(4): 2154-2155
    [58]刘尚合,武占成.静电放电及危害防护[M].北京:北京邮电大学出版社, 2004, 68-69
    [59]申亮,徐景坤,洪啸吟.导电高分子在抗静电领域中的应用[J].中国皮革, 2004, 33(13): 40-43
    [60] Frank L.. PEDOT/PSS, Synthesis, Characterization, Properties and Applications[R]. Shanghai: Shanghai Conference of Science and Technology of Synthetic Metals, 2002
    [61] Kudoh Y., Akami K., Matsuya Y.. Chemical Polymerization of 3,4-Ethylenedioxythioph- ene Using an Aqueous Medium Containing an Anionic Surfactant[J]. Synth. Met., 1998, 98(1): 65-70
    [62] Kim T.Y., Kim I.E., Suh S.K.. Effects of Alcoholic Solvents on the Conductivity of Tosylate-Doped Poly(3,4-ethylenedioxythiophene) (PEDOT-OTs)[J]. Polym. Int., 2006, 55(1): 80-86
    [63]汪斌华,邓永红,戈钧.不同溶剂中导电聚合物PEDOT的化学氧化聚合及光谱研究[J].功能材料, 2005, 10(36): 1610-1612
    [64] Han D., Yang G., Song J., et al. Morphology of Electrodeposited Poly(3,4-ethylenedioxy thiophene)/Poly(4-styrene sulfonate) Films[J]. J. Electroanal. Chem., 2007, 602(1): 24-28
    [65] Dobrynin A., Rubinstein M.. Theory of Polyelectrolytes in Solutions and at Surfaces[J]. Prog. Polym. Sci., 2005, 30(11): 1049-1118
    [66] Noble K.L.. Waterborne Polyurethanes[J]. Prog. Org. Coat., 1997, 32(3): 131-136
    [67] Melchiors M., Sonntag M., Kobusch C., et al. Recent Developments in Aqueous Two-Component Polyurethane (2K-PUR) Coatings[J]. Prog. Org. Coat., 2000, 40(2): 99-109
    [68] Li C.Y., Chiu W.Y., Don T.M.. Polyurethane/Polyaniline and Polyurethane-Poly(methyl methacrylate)/Polyaniline Conductive Core-Shell Particles: Preparation, Morphology, and Conductivity[J]. J. Poly. Sci.: Poly. Chem., 2007, 45(3): 3902-3911
    [69]瞿金清,黄洪,胡剑青等.水性聚氨酯分散体[J].中国皮革, 2001, 30(17): 6-9
    [70]李坚,周晓彤.非离子型水分散性聚氨酯的制备及性能研究[J].中国胶粘剂, 2003, 12(1): 26-29
    [71]瞿金清,陈焕钦.高固含量水性聚氨酯分散体的合成[J].化工学报, 2003, 54(6): 868–871
    [72]孙东成,黄中元.基于磺酸盐的阴/非离子型高固含量聚氨酯分散体的合成与表征[J].化工学报, 2009, 2(60): 496-501
    [73]过梅丽.高聚物与复合材料的动态力学热分析[M].北京:化学工业出版社, 2002, 36-37
    [74] Luo S.C., Yu H.H., Wan A.C.A., et al. A General Synthesis for PEDOT-Coated Nonconductive Materials and PEDOT Hollow Particles by Aqueous Chemical Polymerization[J]. Small, 2008, 4(11): 2051-2058
    [75]鲍俊杰,饶喜梅,瞿启云等.水性聚氨酯基导电材料研究进展[J].中国胶粘剂, 2006, 15(10): 48-52
    [76] Kvarnstr?m C., Neugebauer H., Blomquist S., et al. In Situ Spectroelectrochemical Characterization of Poly(3,4-ethylenedioxythiophene)[J]. Electrochim. Acta, 1999, 44(16): 2739-2750