黄土半干旱区水土保持林主要树种耗水特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对干旱半干旱地区植被建设中植被与水资源关系不协调的问题,以土壤—植物—大气连续系统(SPAC)理论为基础,在山西省方山县北京林业大学径流林业试验基地上,选择主要的水土保持造林树种作为研究对象,在2002~2004年的生长季期间,利用先进的仪器和设备,同时运用多种方法和手段,分析不同水分环境条件与林木生长的关系,系统地研究该地区主要造林树种蒸腾耗水的水分生理生态学特征和耗水规律,其结果不仅有助于干旱半干旱地区植被建设中生态用水定额的确定;而且也将对今后该地区森林植被建设中物种选择和合理林分密度设计的起到科学的指导作用。
     本文主要开展了以下几方面的研究:
     ◆ 半干旱区的降水资源环境与植被建设的关系
     ◆ 8个主要造林树种的水分生理生态学特性研究
     ◆ 黄土半干旱区适宜林木生长的最佳土壤水分条件
     ◆ 林木的土壤水分环境条件及土壤水分生产力特征分级
     ◆ 试验林地土壤蒸发耗水规律
     ◆ 林木的蒸腾耗水量的模拟与预测
     ◆ 试验林分的蒸散量及分量组成比例
     水量平衡原理、土壤物理学、SPAC理论、森林水文学、森林培育学是本研究试验设计和结果分析的理论基础;Farquhar气孔限制理论、土壤水动力学原理、空气动力学能量平衡理论是具体数据估算的理论依据。
     主要研究结果如下:
     ◆ 研究地区近50年来多年平均年降水量504mm,降水量总体上呈现下降的趋势;降水主要集中在植物生长季节(5~9月);降水四季分配中降水集中于盛夏,春末夏初降水偏少,秋冬土壤补墒不足,是长期影响该地区春季造林成活率的关键所在;各季节的降水变率冬季最大,春季次之,秋季大于夏季;28%变率的降水年际变化是造成该地区防护林林分不稳定的重要原因之一。降水资源及其年际动态仍然是影响林木生长的关键因素。
     ◆ 在无水分胁迫盆栽试验条件下,研究和对比了树种的蒸腾耗水特性,结果表明,苗木蒸腾速率和气孔导度的的日变化曲线呈单峰型,水分利用效率的日变化趋势为上午时段的水分利用效率明显高于下午时段的水分利用效率,针叶树种的蒸腾速率和气孔导度最低,阔叶树种最高,灌木树种位于中间;各树种苗木的蒸腾速率和气孔导度值由高到低的排序依次为刺槐、白榆、紫穗槐、
    
    黄土半干旱区水土保持林主要树种耗水特性研究
    沙棘、山杏、柠条、油松和侧柏;水分利用效率由高到低的排序依次为侧柏、
    柠条、油松、刺槐、紫穗槐、白榆、沙棘和山杏。对不同土壤水分条件下树种
    苗木的各项生理指标研究表明:随着土壤含水量的增加,大部分树种苗木的蒸
    腾速率、气孔导度和水分利用效率随着增加。
     ,在不同的土壤水分条件下,光合速率对光强的响应曲线不相同,其光
    合速率的光响应变化趋势遵循二次项模型。在高土壤水分条件下,光合作用对
    光强变化的响应与土壤水分条件基本无关,敏感性较低;随着水分胁迫的加重,
    光合作用对光强响应的敏感性增强。
     .确定了刺槐与侧柏在干早、半干旱地区以提高水分利用效率为核心的
    适宜土壤水分条件和林地土壤水分管理标准:
     刺槐适宜的SwC闭值为11.0%~15.5%(近似于田间持水量的52.0%~
    74.0%),最适SWC为13.0%(近似于田间持水量的62.0%)左右;所允许的
    最大土壤水分亏缺SWC为1众O%(近于田间持水量的48.0%)左右;土壤水合
    补偿点为4.55%(近似于田间持水量的21.7%)左右。
     侧柏适宜的SwC闭值在9.5%~13.5%(近似于田间持水量的45.0%一
    64.0%之间;最适的SwC在10.5%(近似于田间持水量的50.0%)。所允许的最
    大土壤水分亏缺SwC为8.5%左右(田间持水量的40.5%);土壤水合补偿点3.91%
     (近似于田间持水量的18.6%)左右。
     ,林地土壤水分季节性变化划分为:冬季土壤水分稳定期(头年12月至
    翌年3月上旬)、春季土壤水分损耗期(3月中旬至6月下旬)、夏季土壤水分恢
    复期(7月、8月和9月上旬)、秋季土壤水分消退期(9月中旬至n月下旬)4
    个阶段。林地土壤水分的季节性垂直变化划分为:土壤水分速变层(0~30cm
    左右的土层)、土壤水分活跃层(30~SOcm左右的土层)、土壤水分过渡层(80~
    18Ocm的土层)、土壤水分相对稳定层(180cm或更低土层以下)4个层次。
     .调查不同密度刺槐林分林下植物状况,研究林下植被对林地土壤水分
    环境的指示作用,随着林分密度的增大,其土壤水分、光照强度有显著减小的
    趋势,林下植被的种类和数量减少,物种丰富度和物种多样性指数降低,逐步
    由典型的中生植物向早生植物过渡,反映出高密度林分林地土壤的水分竞争激
    烈,渐渐出现干早、半干早地区成龄人工林土壤干化的现象。
     .提出以光合速率和叶片水分利用效率为指标的土壤水分生产力分级标
    准,界定出“无产无效水”、“低产低效水”、“中产高效水”、“高产中效水”
    “高产高效水”的概念及其土壤水分临界含水量。
     分析表明:各试验林分绝大部分时间林木生长都处于较严重的土壤水分胁
    迫状态;除在水分条件较好的8月、9月时间里,土壤含水量能达到或接近“高
    产高效”土壤含水量之外,其它时间均处于“低产低效水”的水分范围之内。
    
    摘要
     .通过土壤蒸发与水面蒸发、土壤水分的关系,建立了土壤蒸发模型,
    并根据林内外的太阳辐射比例关系计算相应的林地土壤蒸发?
Aiming to solve the contradiction between demand for the extension of forest vegetation and the limited water supply in arid and semi-arid area and based on the theory of soil-plant-atmosphere continuum, the dissertation chose the main afforestation tree species of soil and water conservation in the station of "Runoff Forestry" of Beijing Forestry University in Fangshan Country, Shanxi Province in Growing Seasons from 2002 to 2004, utilized advanced apparatus, equipments and various approaches, systematically analyzed of relationship between wood production with water consumption and studied the ecophysiological characteristics of tree transpiration and water consumption. These studies could provides the scientific bases for accurately estimating ecological water consumption and the choice of tree species and the properly arrangement of stand density. The dissertation involved following aspects: Relationship between precipitation resource in semi-arid region and forest construction. The study on ecophysiological characteristics of eight main afforestation tree species. The suitable soil moisture condition of tree growth in semi-arid region on Loess Plateau. The soil moisture circumstance of woodland and woodland soil's water availability and productivity. The rule of testing woodland soil evaporation. The simulation and prediction of stand transpiration and water consumption. Total and component proportion of woodland evapotranspiration.The theoretical basis of the experimental design and conclusion analysis are the theory of water balance, soil physics, soil-plant-atmosphere continuum, forest
    
    hydrology and silviculture. The theoretical providence of factual data estimation arethe theory of soil hydrodynamics and aerodynamic principle and energy balanceequation.Major conclusions are summarized as follows:? Under the condition of free soil water stress, the diurnal changes of transpiration rate and stomatal conductance of eight main afforestation tree species display a signal-peak curve and that of water use efficiency peak in the early morning. The transpiration rate of coniferous trees was the lowest, whilst the broad leaved trees were the highest, and the shrub species fell between coniferous species and broad leaved species. When sorted by potential transpiration rate and stomatal conductance, the decreasing orders were: Robinia pseudoacacie、Ulmus pumilas Amorpha fruticosa、 Hippophae rhamnoides、 Primus armeniaca 、 Caragana korshinskii、 Pinus tabulaeformis and Platycladus orientalis. The decreasing orders of water use efficiency were: Platycladus orientalis、 Caragana korshinski、 Pinus tabulaeformis 、 Robinia pseudoacacie 、 Amorpha fruticosa % Ulmus pumila 、 Hippophae rhamnoides 、 Prunus armeniaca. With the increase of soil water content the transpiration rate, stomatal conductance and water use efficiency increase under the different soil water content. Under the different soil water content the curve of photosynthesis with irradiance is different and presents a quadratic relation model. Under the high soil water content the sensitivity of photosynthesis with irradiance is low and has little or no relation with water and with the increase of water stress the sensitivity of photosynthesis with irradiance increases.? To increase water use efficiency, the suitable soil water condition and rules of woodland soil moisture of Robinia pseudoacacia and Platycladus oriental in semi-arid region on Loess Plateau are determined. The range of SWC being suitable to tree's growth of Robinia pseudoacacia and Platycladus oriental are respectively 11.0%-15.5% (52.0%-74.0% of saturated soil water content) and 9.5%-13.5% (45.0%-64.0% of saturated soil water content). The best SWC values are respectively 13.0% (62.0% of saturated soil water content) and 10.5% (50% of saturated soil water content) to tree's growth of Robinia pseudoacacia and Platycladus oriental. The allowable lowest SWC are respectively 10.0% (48.0% of saturated soil water content) and 8.5% (45.0% of saturated soi
引文
1.R.H.费特斯(周纪纶等译).植物群落分类.科学出版社,1985,60~81.
    2.陈发祖.蒸发测定方法.地理研究,1988,7(3):78~88.
    3.陈海滨,党坤良,安锋等.黄土高原沟壑区林地土壤水分特征的研究(Ⅱ)土壤水分有效性及其亏缺状况的分析 2004,19(1):5~8.
    4.陈海滨,孙长忠,安锋等.黄土高原沟壑区林地土壤水分特征的研究.西北林学院学报,2003,18(4):13~16.
    5.陈洪松,邵明安.中子仪的标定及其在坡地土壤水分测量中的应用.干旱地区农业研究,2003,21(2):68~72.
    6.陈隆勋,朱文琴,王文等.中国近45年来气候变化的研究.气象学报,1998,56(3):257~271.
    7.陈乾,陈添宇.利用NOAA AVHRR遥感数据估算复杂地形下流域的蒸散发.地理学报,1993,48(1):61~69.
    8.陈善福,舒庆尧.植物耐干早胁迫的生物学机理及其基因工程研究进展.植物学通报,1999,16(5):555~580.
    9.陈玉民,孙景生,肖俊夫.节水灌溉的土壤水分控制标准问题研究.灌溉排水,1997,16(1):24~28.
    10.陈云浩,李晓兵,史培军.中国西北地区蒸散发计算的遥感研究.地理学报,2001,56(3):261~268.
    11.程鸿.中国自然资源手册.北京:科技出版社,1990.
    12.程维新,胡朝炳,张兴权.农田蒸发与作物耗水量研究.北京:气象出版社,1994,42~73.
    13.代亚丽,蔡江碧,王宏丽.植被建设在黄土高原生态环境建设中的地位和作用.西北农业大学学报,2000,28(6):130~134.
    14.杜维广,张桂茹,满为群等.大豆光合作用与产量关系的研究.大豆学报,1999,18(2):154~159.
    15.段爱旺.作物群体叶面积指数的确定.灌溉排水,1996,15(1):50~53.
    16.高健,侯成林,吴泽民.淹水胁迫对I—69/55杨蒸腾作用的影响.应用生态学报,2000,11(4):518~522.
    17.高洁,傅美芬,刘成康等.干热河谷主要造林树种水分生理生态学特点.西南林学院学报,1997,17(2):30~35.
    18.高晓飞,谢云,王晓岚.冬小麦冠层消光系数日变化的实验研究.2004,26(1):137~140.
    19.高照阳,张红梅,宋华民.国内外土壤水分监测技术.节水灌溉,2004,(2):28~29.
    20.关义新.水分胁迫下植物叶片光合的气孔和非气孔限制.植物生理学通讯,1995,31(4):293~297.
    21.关义新.水分胁迫下植物叶片光合的气孔和非气孔限制.植物生理学通讯,1995,31(4):293-297.
    22.郭惠清,田有亮.杨幼树水分生理指标和光合强度与土壤含水量关系的研究.干旱区资源与环境.1998,12(2):101~106.
    23.郭建茂,王连喜,郑有飞等.宁夏南部区域蒸发(散)量遥感估算方法.南京气象学院学报,2004,27(3):302~309.
    24.郭庆荣,李玉山.黄土高原南部土壤水分有效性研究.土壤学报,1994,31(3):236~243.
    
    25.郭庆荣,张秉刚.土壤水分有效性研究综述.热带亚热带土壤科学,1995,4(2):119~124.
    26.韩蕊莲,侯庆春.山桃山杏苗木耗水特性研究.西北植物学报,1996,16(6):92~94.
    27.韩蕊莲,梁宗锁等.黄土高原适生树种苗木的耗水特性.应用生态学报,1994,5(2):210~213.
    28.韩仕峰,李玉山,张孝中等.黄土高原地区土壤水分的区域动态特征.西北水土保持研究所集刊,1989,10:42~56.
    29.贺康宁,张光灿,田阳等.黄土半干旱区集水造林条件下林木生长适宜的土壤水分环境.林业科学,2003,39(1):10~16.
    30.贺康宁.黄土高原半干旱区集水造林水分生产潜力研究.北京林业大学博士论文,2000.
    31.贺庆棠,刘祚昌.森林的热量平衡.林业科学,1980,(1):24~33.
    32.侯庆春,韩蕊莲,韩仕锋.黄土高原人工林草地“土壤干层”问题初探.中国水土保持,1999,(5):11~14.
    33.胡梦珺,刘文兆.黄土丘陵沟壑区灌木林地土壤水分有效性及盈亏分析.甘肃农业科技,2004,(4):41~45.
    34.胡顺军,田长彦,周宏飞.中子仪土壤水分墒情监测方法研究.干旱地区农业研究,2000,18(6):70~75.
    35.胡新生,王世绩.树木水分胁迫生理与耐旱性研究进展及展望.林业科学,1998,34(2):77~89.
    36.华孟,王坚.土壤物理学.北京:北京农业大学出版社,1993:256~263.
    37.黄明斌,张富仓,康绍忠.瞬变条件下土壤—植物系统中的水容效应及其应用研究.干旱地区农业研究,1999,17(1):45~49.
    38.贾玉彬,王文全,张新荣等.土壤水分与毛白杨蒸腾耗水关系的研究.河北林果研究 1997,12(3):273~283.
    39.贾志清,刘涛,李昌哲等.黄家二岔小流域不同树种蒸腾作用研究.水土保持通报,1999,19(5):12~15.
    40.姜宗辉,杨旭等.不同集流措施的白榆林地土壤水分与林木生长状况研究.山西水土保持科技,1997,(4):20~23.
    41.接玉玲,杨洪强,崔明刚等.土壤水分含量与苹果叶片水分利用效率关系.应用生态学报,2001,12(3):387~390.
    42.景蕊莲.作物抗旱研究的现状和思考.干旱地区农业研究,1999,17(2):79~85.
    43.巨关升,刘奉觉,郑世锴.选择树木蒸腾耗水测定方法的研究.林业科技通讯,1998,10:12~14.
    44.康绍忠,刘晓明,梁银丽等.节水农业中作物水分管理基本理论问题的探讨,水利学报,1996,(5):9~17.
    45.康绍忠,刘晓明,王振镒.冬小麦叶水势、气孔阻力、蒸腾速率与环境因子的关系.灌溉排水,1991,10(3):1~5.
    46.康绍忠,刘晓明,熊运章等.土壤—植物—大气连续体水分传输理论及其应用.北京:水利电力出版社.1994.
    47.康绍忠,熊运章,刘晓明等.用彭曼—蒙特斯模式估算作物水分散失量的研究,西北农业大学学报,1991(1):25~34.
    48.康永武.茶杆竹的叶面积指数测定.浙江林业科技,2002,22(1):45~46.
    49.柯晓新,杨兴国,张旭东.农田蒸散测算的微气象学方法.干旱地区农业研究,1995, 13(1):31~35.
    
    50.雷志栋,杨诗秀,谢森传.土壤水动力学.北京:清华大学出版社,1988,185~205.
    51.冷石林,韩仕峰.中国北方旱地作物节水增产理论与技术.北京:中国农业科技出版社,1996:78~86.
    52.李海涛,陈灵芝.应用热脉冲技术对棘皮桦和五角枫树干液流的研究.北京林业大学学报,1998,(1):1~6.
    53.李洪建,王孟本,柴宝锋.晋西北人工林土壤水分特点与降水关系研究.土壤侵蚀与水土保持学报,1998,4(4):60~65.
    54.李吉跃,高丽洪.内聚力—张力学说的新证据.北京林业大学学报,2002,(4):135~138.
    55.李吉跃,周平,招礼军.干旱胁迫对苗木蒸腾耗水的影响.生态学报,2002,22(9):1380~1386.
    56.李吉跃.太行山主要树种耐旱特性的研究(Ⅳ)—蒸腾作用与气孔调节.北京林业大学学报,1991,13(增刊2):240~250.
    57.李吉跃.太行山主要造林树种耐旱特性的研究(Ⅴ)—耐旱生产力.北京林业大学学报,1991(增刊2):251~264.
    58.李嘉珏,于洪波.甘肃黄土高原的立地分类与适地适树.北京:科技出版社,1990,15~23.
    59.李荣生,许煌灿,尹光天等.植物水分利用效率的研究进展.林业科学研究,2003,16(3):366~371.
    60.李玉霖,崔建垣,张铜会.参考作物蒸散量计算方法的比较研究.中国沙漠,2002,22(4):327~376.
    61.李远华主编.节水灌溉理论与技术.武汉:武汉水利电力大学出版社,1999:17~18
    62.梁宗锁,康绍忠,高俊凤.植物对干旱信号的感知、传递及其水分利用的控制.干旱地区农业研究,1999,17(2):71~77.
    63.林协,洪利兴等.衫木连栽林地质量评价的初步研究.人工林地力衰退研究.中国林业出版社,1996,267~275.
    64.刘昌明,王会肖等著.土壤—作物—大气界面水分过程与节水调控.北京:科学出版社,1999.
    65.刘昌明,于沪宁主编.土壤—作物—大气系统水分运动实验研究.北京:气象出版社,1997.
    66.刘昌明等.土壤水零通量面及其变化规律.见:水量转换,北京:科学出版社,1988.
    67.刘晨峰,王正宁,贺康宁等.黄土高原半干旱区几种人工林的土壤水分、光照变化及其对林分的影响.西部林业科学,2004,33(3):34~41.
    68.刘发民.利用校准的热脉冲方法测定松树树干液流.甘肃农业大学学报,1996,31(2):167~170.
    69.刘奉觉,Edwards W.R.N.,郑世锴等.杨树树干液流时空动态研究.林业科学研究,1993,(4):368~37.
    70.刘奉觉,郑世锴,藏道群.杨树人工幼林的蒸腾变异与蒸腾耗水量估算方法的研究.林业科学,1987,23:35~44.
    71.刘奉觉,郑世锴,巨关升.树木蒸腾耗水测算技术的比较研究.林业科学,1997,(2):117~126.
    72.刘奉觉,郑世锴,臧道群.杨树人工幼林蒸腾变异与耗水量估算方法的研究.林业科学,1987,23(营林专辑):35~44.
    73.刘贯山.烟草叶面积不同测定方法的比较研究.安徽农业科学,1996,24(2)
    
    74.刘克彪.不同密度人工梭梭林土壤含水量和林下植被的演替.防护林科技,1998,35(2):
    75.刘世荣,蒋有绪.中国暖温带森林生物多样性研究.中国科学技术出版社,1998:90~144.
    76.刘世荣,温远光等.中国森林生态系统水文生态功能规律.北京:中国林业出版社,1996.
    77.刘晓东,朱春全,雷晶品等.杨树人工林冠层光合辐射分布的研究.林业科学.2000,36(3):2~7.
    78.刘志刚,马钦彦,潘向丽等.华北落叶松人工林放叶过程中的辐射特征.生态学报.1997,17(5):519~524.
    79.吕勇.水土保持林的密度调控.林业资源管理,2001,(6):50~53.
    80.罗斌.我国旱区节水林业体系探讨.世界林业研究,1995(5):58~63.
    81.马李一,孙鹏森,等.油松刺槐单木与林分水平耗水量的尺度转换.北京林业大学学报,2001,23(4):1~5.
    82.马履一.国内外土壤水分研究现状与进展.世界林业研究,1997,(5):26~32.
    83.马尚明.从西吉降水特征看宁南山区防旱抗旱综合增产途径.干旱区农业研究,1996,14(3):36~41.
    84.马雪华.川西高山暗针叶林区的采伐与水土保持.林业科学,1963.
    85.马雪华.森林水文学.北京:中国林业出版社,1993.
    86.马忠明.有限灌溉条件下作物—水分关系的研究.干旱地区农业研究,1998,16(2):75~79.
    87.满荣洲等.华北油松人工林蒸腾的研究.北京林业大学学报,1986,(2):1~7.
    88.么枕生,丁裕国.气候统计.北京:气象出版社,1990.
    89.莫兴国,刘苏峡,于沪宁等.冬小麦能量平衡及蒸散分配的季节变化分析.地理学报,1997,52(6):536~542.
    90.倪郁,李唯.作物抗旱机制及其指标的研究进展与现状.甘肃农业大学学报,2001,(1):14~22.
    91.齐亚东,周晓峰等.天然柞木次生林的能量关系和蒸腾、蒸发的研究.1987年国际森林水文学研究方法讨论会论文,1987.
    92.曲红.晋西黄土高原的集水措施对林地位生态环境的影响.北京林业大学硕士论文.1998.
    93.阮成江,李代琼.黄土丘陵区沙棘的蒸腾特性及影响因子.应用与环境生物学报,2001,7(4):327~331.
    94.阮成江,李代琼.黄土丘陵区沙棘气孔导度及其影响因子.西北植物学报,2001,21(6):1078~1084.
    95.阮宏华,郑阿宝,钟育谦.次生栎林蒸腾强度与蒸腾量的研究.南京林业大学学报,1999,(4):32~35.
    96.山仑,邓西平,苏佩等.挖掘作物抗旱节水潜力—作物对多变低水环境的适应与调节.中国农业科技导报,66~70.
    97.山仑.提高半干旱地区农田生产力的现实途径和未来策略.中国科学院西北水土保持研究所集刊,1988,(8):1~9.
    98.山仑等.黄土高原旱地农业的理论与实践.北京:科学出版社,1993.
    99.上官周平.冬小麦对有限水分高效利用的生理机制.应用生态学报,1999,10(5):567~569.
    100.上官周平.干旱逆境对作物光合作用的影响.见:山仑等主编.旱地农业生理生态基 础,1998:68~77.
    
    101.邵明安,杨文治.黄土区土壤水分有效性研究.水利学报,1987,(8):38~44.
    102.申登峰,周晓雷,闫月娥等.绿洲防护林体系主要造林树种蒸腾特征研究.甘肃林业科技,2003,28(1):1~6.
    103.申双和.国外森林蒸散的测定、计算与模拟.中国农业气象.1991,12(1):51~55.
    104.盛承禹等编著.中国气候总论.北京:科学出版社,1986.
    105.盛炜彤,杨承栋.关于杉木林下植被对改良土壤性质效用的研究.生态学报,1997,17(4):377~385.
    106.时永杰,杨志强.中国北方半干旱地区生态环境的退化及其防治.我国西部荒漠化生态环境及其治理论文集,2003,103~109.
    107.宋从和.波文比能量平衡法的应用及其误差分析.河北林学院学报,1993,8(1):85~96.
    108.宋凤斌,戴俊英,谷卫彬.水分胁迫对玉米叶片水分状况的影响.吉林农业大学学报,1995,17(1):5~9.
    109.宋永昌.植被生态学.上海:华东师范大学出版社,2001.
    110.苏建平,康博文.我国树木蒸腾耗水研究进展.水土保持研究,2004,11(2):177~180.
    111.孙长忠,黄宝龙,陈海滨等.黄土高原人工植被与其水分环境相互作用关系研究.北京林业大学学报,1998,20(3):7~14.
    112.孙长忠,黄宝龙.单株平衡法的建立.林业科学,1996,32(4):378~381.
    113.孙慧珍,周晓峰,赵惠勋.白桦树干液流的动态研究.生态学报,2002,22(9):1387~1391.
    114.孙景生,肖俊夫,段爱旺,等.夏玉米耗水规律及水分胁迫对其生长发育和产量的影响.玉米科学,1999,7(2):45~48.
    115.孙鹏森,马李一,马履一等.油松刺槐林潜在耗水量的预测及其与造林密度的关系.北京林业大学学报,2001,23(2):1~6.
    116.孙鹏森.京北水源保护林格局及不同尺度树种蒸腾耗水特性研究.北京林业大学博士学位论文,2000.
    117.汤成章.植物对水分胁迫的反应及适应性.植物生理学通讯,1983,(3):24~29.
    118.汤章城.植物的干旱生理研究.生态学报,1983,3(3):196~204.
    119.田砚亭.利用氚水测定树蒸腾量和生物量方法的介绍.北京林业大学学报,1984,6(2):59~72.
    120.仝川,杨劼,李军等.干旱条件下皇甫川流域4种灌木蒸腾特征比较研究.内蒙古大学学报,2004,35(2):197~202.
    121.王百田,王斌瑞,张府娥等.集水技术与林木生长的土壤水环境研究.水土保持通报,1997,17(6):7~13.
    122.王百田.干旱半干旱地区集流造林工程设计.水土保持学报,1993,74(6):60~66.
    123.王斌瑞,王百田.黄土高原径流林业.北京:中国林业出版社,1996,17~31.
    124.王斌瑞.晋西黄土高原主要树种凋萎湿度的研究.北京林业大学学报,1988,10(4):17~23.
    125.王焘等.逆境胁迫过程中作物光合作用下降的气孔与非气孔行为的理论分析.见:邹琦等主编.作物栽培生理研究,北京:中国农业科技出版社,1998,276~277.
    126.王飞.历史时期黄土高原生态环境建设分析.水土保持研究,2001,8(2):137~141.
    127.王华田.北京市水源保护林区主要树种耗水性研究.北京林业大学博士学位论文,2002.
    128.王家保,林秋金,叶水德等.5种测量热带果树单叶面积的方法研究.热带农业科学,2003,23(1):11~14.
    
    129.王进鑫,黄宝龙.世界旱区径流林业的研究进展.南京林业大学学报,2000,24(3):5~10.
    130.王九龄.西部干旱半干旱地区生态建设中的造林问题.世界林业研究,2000,13(4):5~6.
    131.王俊儒,李生秀.不同生育时期水分有限亏缺对冬小麦产量及其构成因素的影响.西北植物学报,2000,20(2):193~200.
    132.王克勤,王斌瑞.集水造林林分水分生产力研究.林业科学,2000,36(专刊):1~9.
    133.王克勤等.集水造林防止人工林植被土壤干化的初步研究.林业科学,1998,34(4):14~21.
    134.王力,邵明安,侯庆春.黄土高原土壤干层初步研究.西北农林科技大学学报,2001,29(4):34~38.
    135.王孟本,柴宝峰,李洪建等.黄土区人工林的土壤持水力与有效水状况.林业科学,1999,35(2):6~14.
    136.王孟本,李洪建,柴宝峰等.树种蒸腾作用、光合作用和蒸腾效率的比较研究.植物生态学报,1999,23(5):401~410.
    137.王沙生,高荣孚,吴贯明.植物生理学.北京:中国林业出版社,1990.
    138.王伟.植物对水分亏缺的某些生化反应.植物生理学通讯,1998,34(5):388~400.
    139.王佑民,刘秉正.黄土高原防护林生态特征.北京:中国林业出版社,1994:106~110.
    140.王正菲,崔启武.林冠蒸发散的计算.中国科学院林业土壤研究所集刊第一集,1965,40~45.
    141.魏天兴,余新晓,朱金兆等.黄土区防护林主要造林树种水分供需关系研究.应用生态学报,2001,12(2):185~189.
    142.魏天兴,朱金兆,张学培等.晋西南黄土区刺槐油松林地耗水规律的研究.北京林业大学学报,1998,20(4):36~40.
    143.魏天兴,朱金兆.林分蒸散耗水量测定方法述评.北京林业大学学报,1999,21(3):85~91.
    144.文建雷,王姝清,刘志龙.水分胁迫条件下元宝枫的光合特征及水分利用效率.西北林学院学报,2003,18(2):1~3.
    145.吴林,李亚东,刘洪章等.果树水分胁迫研究进展.吉林农业大学学报,1996,18(2):91~97.
    146.吴钦孝,杨文治.黄土高原植被建设与持续发展.北京:科学出版社,1998.
    147.吴彦,刘庆,陈庆恒等.亚高山30a人工针叶林物种多样性的定量分析[J].应用与环境生物学报,2001,7(5):408~415.
    148.伍微模,吕双庆,王冀平.中子水分仪在棉田土壤上的标定研究.干旱地区农业研究,2002,20(1):84~87.
    149.肖文发,徐德应,刘世荣等.杉木人工林针叶光合与蒸腾作用的时空特征.林业科学,2002,38(5):38~46.
    150.肖文发,徐德应.森林能量利用与产量形成的生理生态基础.北京:中国林业出版社,1999.
    151.谢贤群,吴凯.麦田蒸腾需水量的计算模式.地理学报,1997,52(6):528~535.
    152.谢贤群,左大康,唐登银.农田蒸发—测定与计算.北京:气象出版社,1991,15~46.
    153.谢永生.论黄土高原生态建设中若干重大问题.水土保持通报,2000,7:22~26.
    154.熊伟,王彦辉等.宁南山区华北落叶松人工林蒸腾耗水规律及其对环境因子的影响.林业科学,2003,39(2):1~7.
    
    155.熊伟,王彦辉,程积民等.三种草本植物蒸散量的对比试验研究.水土保持学报,2003,17(1):170~172.
    156.熊伟.六盘山北侧主要造林树种耗水特性研究.中国林业科学研究院博士论文,2003.
    157.徐德应,曾庆波.用能量平衡—波文比法测定海南岛热带季雨蒸散初试.热带亚热带森林生态系统研究,1986,(3):183~196.
    158.徐世昌,戴俊英,沈秀瑛等.水分胁迫对玉米光合性能及产量的影响.作物学报,1995,2(3):354~363.
    159.许大全.光合作用气孔限制分析中一些问题.植物生理学通讯,1997,33(4):241~244.
    160.闫文德,田大伦,项文化.樟树林冠层生态因子及其对蒸腾速率的影响.林业科学,2004,40(2):170~173.
    161.严平,韦朝领,蒋跃林等.土壤水分对小麦光合作用影响的研究.作物杂志,2002:13~14.
    162.阎桂琴,赵桂仿,胡正海.秦岭太白红杉群落特征及其物种多样性的研究[J].西北植物学报,2001,21(3):497~506.
    163.杨承栋.森林土壤研究几个方面的进展.世界林业研究,1994(4):14~19.
    164.杨洪强.植物对土壤干旱的识别与逆境信使的产生和传输.水土保持研究,2001,8(3):72~77.
    165.杨维西.试论我国北方地区人工植被的土壤干化问题.林业科学,1996,32(1):78~85.
    166.杨文治,邵明安.黄土高原土壤水分研究.北京:科学出版社,2000.
    167.杨新民,杨文治.干旱地区人工林地土壤水分平衡初探.水土保持通报,1988,8(3):32~38.
    168.杨新民.黄土高原灌木林地水分环境特性研究.干旱区研究,2001,18(1):77~89.
    169.姚茂和,盛炜彤,熊有强.林下植被对杉木林地力影响的研究—人工林地力衰退研究.中国林业出版社,1996b.
    170.姚茂和,盛炜彤,熊有强.杉木林下植被及其生物量的研究—人工林地力衰退研究.中国林业出版社,1996a:157~160.
    171.余新晓,陈丽华.黄土地区防护林生态系统水量平衡研究.生态学报,1996,16(3):238~245.
    172.余新晓,张建军,朱金兆等.黄土地区防护林生态系统土壤水分条件的分析与评价.林业科学,1996,32(4):289~296.
    173.余新晓.土壤水动力学及其应用.北京:中国林业出版社,1995,143~149.
    174.喻方圆,徐锡增,Robert D G.水分和热胁迫处理对4种针叶树苗木气体交换和水分利用效率的影响.林业科学,2004,40(2):38~44.
    175.原焕英,许喜明.黄土高原半干旱丘陵沟壑区人工林土壤水分动态研究.西北林学院学报,2004,19(2):5~8.
    176.袁建英,张金屯,席跃翔.山西关帝山亚高山灌丛、草甸物种多样性的研究.草业学报,2004,13(3):34~39.
    177.袁永慧,邓西平.西北干旱与复水对小麦光合和产量的影响.植物学报,2004,24(7):1250~1254.
    178.曾小平,赵平,彭少麟.鹤山人工马占相思林水分生态研究.植物生态学报,2000,24(1):69~73.
    179.翟志席,郭玉海,马永泽等.植物生态生理学.北京:中国林业出版社,1997.
    180.詹志明,冯兆东,秦其明.陇西黄土高原陆面蒸散的遥感研究.地理与地理信息科学,2004,20(1):16~19.
    
    181.张超,王会肖.土壤水分研究进展及简要评述.干旱地区农业研究 2003,21(4):117~121.
    182.张光灿,刘霞,贺康宁.黄土半干旱区刺槐和侧柏林地土壤水分有效性及生产力分级研究.应用生态学报,2003,14(6):858~862.
    183.张光灿.黄土半干旱区集水造林水分环境容量研究.北京林业大学博士学位论文,2000.
    184.张恒敢,杨四军,顾克军等.应用数字图像处理测定作物叶面积的简便方法.江农业科学,2002(3):20~22.
    185.张建国,李吉跃,沈国舫.树木耐旱特性及其机理研究.中国林业出版社,2000.
    186.张建国.中国北方主要造林树种耐旱特征及其机理的研究.北京林业大学,1993.
    187.张金屯.植被数量生态学方法.北京:中国科技出版社,1995.
    188.张劲松,孟平,尹昌君.杜仲蒸腾强度和气孔行为的初步研究.林业科学,2002,38(3):34~37.
    189.张劲松等.植物蒸散耗水量计算方法综述.世界林业研究,2001,14(2):23~28.
    190.张启昌,杜凤国,夏富才等.美国椴光合蒸腾的生理生态.北华大学学报,2000,1(5):436~438.
    191.张沁文.论黄土高原农业.北京:中国统计出版社,1989,8~25.
    192.张学利,杨树军.干旱、半干旱地区林业用地土壤水分研究进展.辽宁农业科学,2001(3):28~30.
    193.招礼军.我国北方主要造林树种耗水特性及其抗旱造林技术研究.北京林业大学博士学位论文,2003.
    194.赵明,李爱德,王耀琳等.沙生植物的蒸腾耗水与气象因素的关系研究.干旱区资源与环境.2003,17(6):131~137.
    195.赵松龄.集水农业引论.西安:科学技术出版社,1994.
    196.植被生态学的目的和方法.科学出版社林业部科技司编,1994.
    197.中国农业遗传研究室.北方旱地农业.北京:中国农业科学技术出版社,1986,292~298.
    198.钟育谦,郑阿宝,阮宏华等.下蜀次生林蒸腾强度的时空变化.南京林业大学学报,1999,23(1):61~64.
    199.周平,李吉跃,招礼军.北方主要造林树种苗木蒸腾耗水特性研究.北京林业大学学报,2002,24(5):50~55.
    200.周择福,李昌哲.北京九龙山不同立蓄水量及水分有效性研究.林业科学研究,1995,8(2):182~187.
    201.邹琦.植物光合作用的气孔与非气孔限制.见:邹琦等主编.作物抗旱生理生态研究,北京:中国农业科学技术出版社,1994:155~163.
    202. Angus, D. E., Watts, P.J. Evapotranspiration—How good is Bowen ration method? Agric. Water Mgt., 1984, 8:33~150.
    203. Arnon, I. Physiological principles of dry land crop production, in: Physiological aspect of dry land farming, ed. by Gupta, U.S., New Delhi Bombay Calcutta:1~146.
    204. Baker, N.J. A possible role for photo system in environmental perturbations of photosynthesis. Physiologia Plantarum, 1991,81:563~570.
    205. Barnett, N., Madramootoo, C.A., Perrone, J. Performance of some evapotranspiration equations at a site in Quebec. Canadian Agricultural Engineering, 1998, 40(2):89~95.
    206. Barrett, D.J., Hatton, T.J., Ash, J.E., et al. Transpiration by trees from contrasting forest types. Aust. J. Bot, 1996, 44:249~263.
    207. Bemhofer, C., et al. Applied single and two layer canopy models to drive conductance of a scots pine planation from micro meteorogical measurements. Theoretical and Applied Climatology, 1996, 53(l/3):95~104.
    
    208. Berry, J.A., Downton, W.J.S.Environmental regulation of photosynthesis. In:Govindjee(ed), Photosynthesis. New York: Academic press, 1982, 263-243.
    209. Bormann, H., et al. Effects of data availability on estimation of evapotranspiration. Physics and Chemistry of the Earth, 1996,21(3):171~175.
    210. Bowman, W.D., Roberts, S.W. Seasonal and diurnal water relation's adjustments in three evergreen chaparral shrubs. Ecology, 1985, 66(3):738~742.
    211. Brengle, K.G Crop of arid and semiarid areas of India problems and potentials, in: Arid zone research and development, ed. by Mann, H.S., 1982,2:1~15.
    212. Brestic, M. Cornic,G, Fryer, M.J. et al. Dose photorespiration protect the photosynthetic apparatus in French bean leaves from photo inhibition during droughts tress. Planta, 1995,196:450-457.
    213. Choudhury, B. Modeling the effect of weather condition and soil water potential on canopy temperature for corn. Agric Meteorology, 1983,29: 169-182.
    214. Cienciala, E., Lindroth, A. Gas-exchange and sap flow measurements of Salix viminalis trees in short-rotation forest. I. Transpiration and sap flow. Trees, 1995, 9:289-294.
    215. Clarkson, D.T., Carvajal, M., Henzler.T., et al. Root hydraulic conductance diurnal aquaporin Expression and the effects of nutrients tress. Journal of experimental Botany, 2000,51:61-70.
    216. Cochard, H., Brda, N., Granier, A. Whole tree hydraulic conductance and water loss regulation in Quercus during drought: evidence for stomatal control of embolism? Ann. Sci. For., 1996,53:197-206.
    217. Cowan, I.R., Raven, J.A., Hartung, W., et al. Possible role for abscisic acid in coupling stomatal conductance an photosynthetic carbon metabolism in leaves. Aust. J. Plant Physiol.,1982, 9: 489-498.
    218. Denmead, O.T. Plant physiological methods for studying evapotranspiration: problems of telling the forest from the trees. Agric. Water Manag., 1984, 8:167-189.
    219. Dewar, R.C. Interpretation of an empirical model for stomatal conductance in terms of guard cell function. Plant Cell Environ. 1995, 18:365-37.
    220. Doussan, C, Vercambre, G, Pages, L. Modelling of the hydraulic architecture of root systems: an integrated approach to water absorption—distribution of axial and radial conductance in maize. Annals of Botany, 1998, 81,225-232.
    221.Dunin, et al. Evaluation of the ventilated chamber technique for measuring evaporation from a forest. Hydro. Proc, 1986, 1:47-62.
    222. Dye, et al. A comparison of heat pulse method and deuterium tracing method for measuring transpiration from Eucalyptus grandis trees. J. Exp. Bot, 1992,43:337-343.
    223. Edwards W.R.N. Precision weighing lysimeter for trees, using a simplified tared—balance design. Tree physiol, 1986,1:127-141.
    224. Ehleringer J R. Variation in gas exchange characteristics among desert plants. In: Schulze E D,Caldwell M M eds. Ecophysiology of photosynthesis. New York: Springer— verlag,1995,361-392
    225. Farquhar, GD., Sharkey, T.D. Stomatal conductance and photosynthesis. Ann Rev Plant Physiology, 1982, 33:317-345.
    
    226. Farquhar, G Feedfoward response of stomata to humidity. Aust J. Plant physical, 1978, 5: 787-800.
    227. Flerching, GW., et al. Modelling evapotranspiration and surface budgets across a watershed. Water Resources Research, 1996, 32(8):2539~2548.
    228. Francno, C.M., Magalhaes, A.C. Techniques for the measurement of transpiration of individual plants. Arid Zone Res., 1965,25:211-224.
    229. Gimenez, K., Mitchell, V., Lawlor, D. Regulation of photosynthesis rate of two sunflower hybrids under water stress.Plant Physiology, 1992,98:516-524.
    230. Gowing, D.J.G, Jones, H.G, Davies, W.J. Xylem—trans—ported abscisic acid: the relative importance of its mass and its concentration in the control of stomatal aperture. Plant Cell Envi-ron. 1993, 16:453-459.
    231. Graan, T, Boyer, J S. Very high CO2 partially restores photosynthesis in sunflower at low water r potential. Planta,l990,181:378~384.
    232. Grainier, A., et al. Comparison of xylem sap flow and water vapour flux at the stand level and derivation of canopy conductance for Scots pine. Theoretical and Applied Climatology, 1996, 53(1/3)115-122.
    233. Grainier, A., et al. Transpiration of natural forest and its dependence on climatic factors. Agri. For. Meteorol., 1996,78(1/2):19~26.
    234. Grusev, Y.M. Modelling annual dynamics of soil water storage for agro— and natural ecosystems of the steppe and forest—steppe zones on a local scale. Agri. For. Meteorol, 1997, 85(3/4):171~191.
    235. Hanks, R.J. Yield and water—use relationships. In: Limitations to efficient water use in crop production (Ed. By Taylor H M et al.), American Society of Agronomy. Inc.,Madison. WI. 1982:393-411.
    236. Hatton, T.J., Moore, S.J., Reece, P.H. Estimating stand transpiration in Eucalyptus populnea woodland with the head pulse method: measurement errors and sampling strategies. Tree physiology, 1995,219-227.
    237. HeeMyong, R. Water use of young 'Fuji' apple trees at the soil moisture regions in drainage lysimeters. Agricultural Water Management, 2001, 50(3):185~196.
    238. Hinckley, T.M., Brooks, J.R., et al. Water flux in a hybrid poplar stand. Tree Physiol, 1994,14:1005-1018.
    239. Hogg,E.H., Saugier, B., et al. Response of trembling aspen and hazelnut to vapor pressure deficit in a boreal deciduous forest. Tree Physiol. 2000,20:725-734.
    240. Irvine, J., Perks, M.P., et al. The response of pinus sylverstris to drought: stomatal control of transpiration and hydraulic conductance. Tree Physiol. 1998,18:393-402.
    241. Jackson, GE., Irvine, J., Grace, J. Xylem cavitation in two mature Scots pine forests growing in a wet and a dry area of Britain. Plant Cell Environ. 1995,18:1141-1418.
    242. Johnson, I.R., Melkonian, J.J., Thornley, J.H.M., et al. A model of water flow through plants incorporating shoot/root 'message' control of stomatal conductance. Plant Cell Environ, 1991,14:531-544.
    243. Johnson, I.R., Melkonian, J.J., Thornley, J.H.M., et al. A model of water flow through plants incorporating shoot/root 'message' control of stomatal conductance. Plant Cell Environ, 1991,14:531-544.
    244. Jones, H.G, Lakso, A.N., Syvertsen, J.P. Physiological control of water status in temperate and subtropical fruit tree. Hor Rev, 1985, (7):301~304.
    
    245. Jones, H.G, Lakso, A.N., Syvertsen, J.P. Physiological control of water status in temperate and subtropical fruit tree. Hor Rev, 1985, (7):301~304.
    246. Jones, P.G Plant and microclimate. Cambridge University press,1983.
    247. Kanechi, M., Kunitomo, E., Inagaki, N., et al. Water stress affects on ribulose—1,5— bisphosphate carboxylase and its relationship to photosynthesis in sunflower leaves. In: Mathis P eds. Photosynthesis: from light to biosphere. Hague:Kluwer Academy Publishers, 1995,597-600.
    248. Crop water requirments. FAO Irrigation and Drainage, 1984,24.
    249. Kaufrnann, M.R. Automatic determination of conductance, transpiration and environmental conditions in forest trees. For. Sci., 1981, 27:817-827.
    250. Kim, C.P. Impact of soil heterogeneity in a mixed—layer model of the planetary boundary layer. Hydrological Sciences Journal, 1998,43(4):633~658.
    251. Knight, et al. Transpiration from 100—year—old lodge pole pine forests estimated with whole—tree potometers. Ecology, 1981, 62:717-726.
    252. Kowailik, P., et al. Diurnal water relations of beech (Fugus Sylvationca. L.) trees in the mountains of Italy. Agri. For. Meteorol., 1997, 84(1/2): 11-23.
    253. Kozlowski, T.T. Water deficits and plant growth. New York: Academic press, 1967.
    254. Ladefoged, K. A Method for measuring the water consumption of large intact tree. Physiological plantarum, 1960, 13:648-658.
    255. Lagergren, F., Lindroth, A. Transpiration response to soil moisture in pine and spruce trees in Sweden. Agriculture and For. Meteor. 2002,112:67-85.
    256. Larcher, W. Physiological plant ecology (third edition). New York, Berlin: Heidelberg, Aufl., Spinger-Verlag, 1995.
    257. Levitt, J. Response of plants to environmental stress. New York: Academic Press, 1972.
    258. Lindroth, A., Cienciala, E. Measuring water use efficiency of eucalypt trees with chambers and micrometeorological techniques—comment. J. Hydrol., 1995, 169:281-283.
    259. Loustau, D., Berbigier, P.P., et al. Transpiration of a 64—year—old maritime pine stand in Portugal. I. Seasonal course of water flux through maritime pine. Oecologia, 1996, 107:33-42.
    260. Mcnaughton K.G, Black, T.A. A Study of evapotranspiration from a Douglas fir forest using the energy balance approach. Water Res., 1973, 9(10): 1579-1590.
    261. Meinzer, F.C. Grantz, D.A. Coordination of stomatal, hydraulic and canopy boundary layer properties: do stomata balance conductances by measuring transpiration? Physiol. Plant. 1991,83:324-329.
    262. Meinzer, F.C, Goldstein, G. R, Jackson, N.M., et al. Environmental and physiological regulation of transpiration in tropical forest gap species: the influence of boundary layer and hydraulic properties. Oecologia, 1995, 101:514-522.
    263. Mohammad, F.S. Calibration and use of evapotranspiration equations under arid climatic conditions. International Agriculture Engineering Journal, 1998, 7(3—4): 185-200.
    264. Monteith, J.L. Vegetation and the Atmosphere. Principles, Academic Press (London), 1975.
    265. Monteith, J.L., Unsworth, M.H. Principles of environmental physics. Edward Arnold, New York, 1990,291.
    266. Moriana A,Villalobos F J,Fereres E. Stomatal and photosynthetic responses of olive (Olea europaea L.) leaves to water deficits. Plant,Cell & Environment,2002,25 (3):395~415.
    
    267. Nobel, P.S. Physiochemical and environmental plant physiology. Academic Press, San Diego, 1991, 635.
    268. Oltchev, A. et al. Stomatal and surface conductance of a spruce forest model simulation and field measurements. Physics and Chemistry of the Earth, 1998, 34(4):453~458.
    269. Powell, D.B.B., Thorpe, M.R. Dynamic aspects of plant—water relations in environmental effects on crop physiology. London, Academic Press, 1977,259~279.
    270. Price, J.C. Estimation of regional scale evapotranspiration through analysis of satellite the thermal—infrared data. IEEE Transactions on Geoscience and Romote Sensing, 1982, 20(3):286~292.
    271. Rana, G Evapotranspiration measurement for tall plant canopies: the sweet sorghum case. Theoretical and Applied Climatology, 1996, 54(3/4): 187-200.
    272. Richads, L.A. Soil water and plant growth. In: Shaw, B.T., eds. Soil physical
    273. Richard, S., Alexander, H., Tom, H., et al. Energy balance of a natural jarrah (Eucalyptus marginata) forest in western Australia: measurements during the spring and summer. Agricultural and forest meteology, 2001,109(2):79~104.
    274. Robert, J. Forest transpiration: A conservative hydrological process? Joun. of Hydrol. 1983, 66:133-141.
    275. Roberts, J. The use of tree—cutting techniques in the study of the water relations of pinus sylvestris. L. J. Exp. Bot, 1977,28:751-767.
    276. Rutter,A.J. Studies on the water relations of pinus sylverstris in plantation conditions. V. Responses to variation in soil water conditions. J. Appl. Ecol. 1967,4:73-81.
    277. Schaap, M.G et al. Forest floor evaporation in a dense Douglas fir stand. Agri. For. Meteorol., 1997, 97:193(1/4):97~113.
    278. Schiller, G, Cohen, Y. Water regime of a pine forest under a Mediterranean climate. Agric. For. Meteorol, 1995,74:181-193.
    279. Schuepp, P.H. Leaf boundary layers: Tansley Review No. 59. New Phytol. 1993, 125:477-507.
    280. ScottR, et al. Time scales of land surface evapotranspiration response. J. of Climate, 1997, 10(4):559~566.
    281. Smith, et al. Measurement of sap flow in stems. J. Exp. Bot., 1996,47:1833-1844.
    282. Sperry, J.S., Alder, N.N., Eastlack, S.E. The effect of reduced hydraulic conductance on stomatal conductance and xylem cavitation. J. Exp. Bot. 1993,44:1975-1082.
    283. Sperry, J.S., Pockman, W.T. Limitation of transpiration by hydraulic conductance and xylem cavitation in Betula occidentals. Plant Cell Environ, 1993,16:279-287.
    284. Steward, B.A. Dry land farming: the North American experience, proceedings on international conference of dry land farming, bushland, Texas, USA, 1988, 54-59.
    285. Swanson, R.H. Significant historical developments in thermal methods for measuring sap flow in trees. Agric. For. Meteorol, 1994,72:113-132.
    286. Tezara, W., Lawlor, D.W. Effects of water stress on the biochemistry and physiology of photosynthesis in sunflower. In:Mathis P eds. Photosynthesis from light to biosphere. Hague: Kluwer Academy Publishers,1995,625~628.
    287. UNESCO. Plant—water relationships in arid and semi—arid conditions, Arid zone research, 1960.
    
    288. Veihmeyer, F.J. The availability of soil moisture to plantsrresults of empirical experiments with fruit trees. Soil Sci.,1972, 111:268-294.
    289. Vertessy, R.A., Hatton, B., O'Sullivan, S.K., et al. Relationship between diameter, sapwood area, leaf area and transpiration in a young mountain ash forest. Tree physiology, 1995, 15:559-568.
    290. Vertessy, R.A., Hatton, T.J., Reece, P., et al. Estimating stand water use of large mountain ash trees and validation of the sap flow measurement technique. Tree physiology, 1997, 17:747-756.
    291. Vose, J.M., Wayne, T.S. Assessing seasonal leaf area dynamics and vertical leaf distribution in Eastern White Pine (Pinus Strobes L.) with a portable light meter. Tree Physiology, 1990, 7:125-134.
    292. Waring, et al. Estimating water flux through stems of Scot pine with titrated water and phosphous-32. J. Exp. Bot, 1979,30:459-471.
    293. Waring, R.H., Whitehead,D., Jarvis, P.G The contribution of stored water to transpiration in Scots pine. Plant Cell Environment, 1979, (2):309~317.
    294. Yamanaka, T, et al. Evapotranspiration beneath the soil surface: some observational evidence and numerical experiments. Hydrological Process, 1998,12( 13/14):2193-2203.
    295. Zhang, J., Davies, W.J. Does ABA in the xylem control the rate of leaf growth in soil dried maize and sunflower plants. Journal of Experiment Botany, 1990,41:1125-1132.
    296. Zimmermann, M.H., Brown, C.L. Trees, structure and function. II. Berlin: Heidelberg, Springer, New York, 1974.
    297. Zweifel R., et al. Midday stomatal closure in Norway spruce—reaction in the upper and lower crown. Tree Physiol. 2002,22:1125-1136.
    298. Zwieniecki, M.A., Melcher, P.J., Holbrook, N.M. Hydrogel control of xylem hydraulic resistance in plants. Science, 2001,291:1059-1062.