AquaCrop模型在华北地区夏玉米生产中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,作物水分生产力预测已成为干旱、半干旱地区发展非充分灌溉、实现水资源优化配置的重要环节,对指导农业生产、合理开发利用水资源、实现区域可持续发展具有重要的指导意义。随着科技的不断发展,国内外专家学者已建立了许多该方面的模型和系统,但大多只限于科研阶段,能够大范围推广的模型较少,真正面向用户、简洁实用的模型少之又少,而且大多数模型所需数据较多且较为详细,因此限制了模型在实际生产中的推广应用。FAO针对上述存在的问题研发了AquaCrop模型,实现了以较少数据作物生长模拟、作物蒸腾和土壤蒸发的分离、生产力预测、优化灌溉制度等多种目标,直观性较强,应用对象范围较广,是一个真正面向用户、简洁实用的模型。
     国外对该模型的开发和应用研究较多,但国内对该模型的研究尚属起步阶段,特别是能否在中国使用,目前尚未见有此类研究的相关文献。因此,本文就上述问题以河北省农林科学院旱作农业研究所衡水试验站农田灌溉试验为基础,以FAO领导研发的AquaCrop模型为工具,以试验站2008年大田试验为数据来源,对AquaCrop模型进行调试,运用参数化的AquaCrop模型模拟了作物蒸腾与土壤蒸发过程,并以2007年夏玉米的生产力情况对该模型进行验证,了解AquaCrop模型在华北地区的适用情况。研究成果如下:
     1.模型调试结果为:衡水2008年大田试验四个水分处理的冠层生长、土壤水分含量模拟结果与实测结果较为吻合;农田土壤水分平衡参数的模拟误差(RMSE)为0~0.058;作物生产力的模拟误差为0.034~0.065;水分利用效率的模拟误差为0.004~0.099。结果表明AquaCrop模型在模拟夏玉米冠层生长、土壤水分平衡、夏玉米生产力及水分利用效率方面具有较好的准确性,因此将其应用于华北地区夏玉米生产力模拟是可行的。
     2.通过调试获得了适宜衡水地区的模型参数:最大冠层覆盖CCx为90%;根系最大可能膨胀速率为2.8 cm/day;水分胁迫对根区膨胀的影响因子为-5;作物衰老对最大作物系数Kcbx的影响因子为0.13;叶片开始衰老时土壤水分损耗临界点p(sen)的降低比率为12%;参考土壤损耗影响因子p为0.5;ET0对土壤损耗影响因子的调整Ca为1.3;参考收获指数HI0为48%;HI的存在周期为48d;收获指数开始出现时冠层的最小覆盖度为11%。
     3.通过对模型输入参数的敏感性分析,得出作物参数中HI存在周期、叶片衰老日期对模拟产量、生物量的影响显著;土壤参数中土壤厚度、田间持水量和径流曲线数对模拟产量、生物量的影响显著。
     4.利用参数化的AquaCrop模型对2008年夏玉米的作物蒸腾与土壤蒸发进行了模拟,真正实现了利用较少的参数达到作物蒸腾与土壤蒸发分离的目的。
     5.运用参数化的AquaCrop模型模拟了2007年夏玉米生产力。结果显示模拟效果较好,在衡水地区具有一定的适用性。
     6.2007年、2008年夏玉米不同水分处理间的增产幅度表明,郑单958在接近正常年份灌1水较为合理。
North China is an important grain production base, and the shortage of water resources has seriously hampered the development of agricultural production. To make use of limited water resources to develop agricultural production and receive a higher output, it is necessary to understand crop water response mechanism and rainfall or irrigation to grow in different conditions on crop growth and yield clearly so as to make full use of existing water resources to improve crop production and yield. This makes revealing microcosmic crop water response mechanism and macroscopically quantitative analysis an important part of solving a serious shortage of water resources and achieving regional sustainable development in North China. Yet to forecast output is becoming increasingly important in the optimization of limited irrigation water to enhance sustainable agriculture. It is not only provides an important theoretical basis for planning and designing water-saving irrigation system, assessing water management decision-making, optimization of non-sufficient irrigation water distribution and establishing irrigation schedule, but also guides agricultural production and the rational development and utilization of water resources with an important guiding significance.
     The studies on the exploitation and application about AquaCrop model are much more in foreign countries but much less in China ,and it has no relational papers on this model especially whether the model is suitable for predicting crop productivity and optimizing the management in China. The farmland observation data,being the base of this research,are obtained at Hengshui Experimental Station of Institute of Dryland Farming and Water-saving Agriculture, Hebei Province Agriculture and Forestry Academy. This station is the representative of North China. It takes crop water response model AquaCrop excogitated under the leading of FAO as a tool, and model parameters are estimated or optimized according to meteorological data, soil moisture data and crop data investigated of Experiment Station from the year 2008. Then we can use the parameterized AquaCrop model simulate crop transpiration and soil evaporation to study if the AquaCrop model suits the application of the North China Plain by comparing the simulated productivity and the measured productivity in 2007. Research results are as follows:
     1. Based on Hengshui summer maize field experiment in 2008, with the application of meteorological data, soil moisture data of different irrigation schedules and crop data for debugging AquaCrop model, local model parameters suited to simulate summer maize productivity are obtained. The results of their testing is that the changing trend of simulated values is consist to that of measured values on canopy cover and soil water content, and the error (RMSE) range of simulated soil water balance is between 0 and 0.058, that of crop productivity between 0.034 and 0.065 and that of water use efficiency simulation between 0.004 and 0.099.
     2. The model parameters suitable for Hengshui area after debugging are that maximum canopy cover is 90%, root maximum possible expansion rate 2.80 cm/day, shape factor of expansion of root zone when crop is water stressed -5, shape factor of adjustment of Kcbx when senescence is triggered 0.13, decrease with p(sen)once senescence is triggered 12%, reference depletion factors 0.5, adujstment depletion factors by ET0 1.3, Reference Harvest Index 48% and Threshold green canopy cover below which Harvest Index can no longer increase 11%.
     3. Through the input parameters sensitivity of the model, the cycle of building up HI and the date of canopy starting to senescence of crop parameters affect yield and biomass remarkably, as well as soil layers depth, FC and CN.
     4. Paper simulates the process of summer maize transpiration and soil evaporation with the parameterized AquaCrop model in 2008. And the object of dividing crop transpiration and soil evaporation with little data is arrived.
     5. Parameterized AquaCrop model is used to simulate summer maize productivity in 2007. The results show that the simulation effect of the model are better, and it is fit to apply in Hengshui.
     6. The range of productivity increasing between different treatments shows that Zhengdan 958 is more suitable to irrigate 1 time in almost well-balanced year .
引文
[1]曹永华.美国CERES作物模拟模型及其应用[J].世界农业,1991, (9):52-55
    [2]陈南祥.复杂系统水资源合理配置理论与实践—以南水北调中线工程河南受水区为例[D].西安理工大学, 2006
    [3]陈亚新,于健.考虑缺水滞后效应的作物-水模型研究[J].水利学报,1998(4): 70-74
    [4]董树亭,胡昌浩,岳寿松等.夏玉米群体光合速率特性及其与冠层结构、生态条件的关系[J].植物生态学与地植物学学报,1992,16(4):372-379
    [5]高亮之,金之庆.中国不同类型水稻生育期的农业气象生态模式及其应用[J].农业气象,1982,8(2):1-8
    [6]高亮之,金之庆,黄耀等.水稻计算机模拟模型及其应用之一:水稻钟模型-水稻发育的计算机模型[J].中国农业气象,1989,10(2):3-10
    [7]郭相平,康绍忠.玉米调亏灌溉的后效性[J].农业工程学报,2000,16(4):58-60
    [8]黄耀,高亮之.水稻群体茎蘖动态的计算机模型[J].生态学杂志,1994,13(4):27-32
    [9]姜杰,张永强.华北平原灌溉农田的土壤水量平衡和水分利用效率[J].水土保持学报,2004,18(3):62-66
    [10]康绍忠,蔡焕杰,冯绍元.现代农业与生态节水的技术创新及未来研究的重点[J].农业工程学报,2004(1):1-6
    [11]孔东.含盐土壤节水灌溉下作物-水-盐响应关系及模型研究[D].内蒙古农业大学博士学位论文,2004
    [12]李军.作物生长模拟模型的开发应用进展[J].西北农业大学学报,1997,25(4):102-107
    [13]刘建栋.农业气候资源数值模拟中气候资料处理模式的研究[J].中国农业气象,1999,20(3): 1-5
    [14]刘建栋,丁强,傅抱璞.黄淮海地区夏玉米气候生产力的数值模拟研究[J].地理科学进展,1997,(12):增刊. 63-68
    [15]刘忠民,山仑,邓西平,辛业全.宁南山区草田轮作研究Ⅱ.不同轮作制度下的农田水分平衡[J].水土保持学报,1993,7(4):67-71
    [16]李连朝,王学臣.水分亏缺下细胞延伸与细胞膨压和细胞壁特性的关系[J].植物生理学通讯,1998,34(3):161-167
    [17]李少昆,王崇桃.作物株型和冠层结构信息获取与表述的方法(综述)[J].石河子大学学报,1997,1(3):250-256
    [18]刘文兆.作物生产、水分消耗与水分利用效率间的动态联系[J].自然资源学报, 1998,13(1):23-27
    [19]刘翼浩等.黄淮海地区作物生产力商品基地与集约种植的研究.“七五”课题论文集,北京农业大学出版,1990
    [20]林忠辉,莫兴国,项月琴.作物生长模型研究综述[J].作物学报,2003,29(5):750-758
    [21]李自珍,王万雄.多种环境外力作用下作物生长系统的动力学模型及过程数值模拟[J].应用数学和力学,2003,24(6):644-652
    [22]莫兴国,薛玲,林忠辉.华北平原1981-2001年作物蒸散量的时空分异特征[J].自然资源学报,2005,20(2):181-188
    [23]明夏军,刘孟雨,贾绍凤.华北地区水资源及水安全问题的思考与研究[J].自然资源学报,2004,19(5):550-560
    [24]梅旭荣.现代旱作节水农业发展的战略研究[A].北方旱作区节水高效型农牧业综合发展研究[C].中国农业科学技术出版社,2005:3-11
    [25]潘学标.作物模型原理[M].北京:气象出版社,2003
    [26]戚昌翰,殷新佑.作物生长模拟的研究进展[J].作物杂志,1994,(4): 1-2
    [27]戚昌瀚,殷新佑,刘桃菊等.水稻生长日历模拟模型(RICAM)的调控决策系统(RICOS)研究[J].江西农业大学学报,1994,16(4): 323-327
    [28]宋凤斌,戴俊秀.水分胁迫对玉米叶片活性氧清除酶类活性的影响[J].吉林农业大学学报,1995,17(3):9-15
    [29]山仑,陈国良.黄土高原旱地农业的理论与实践[M].北京:科学出版社,1993
    [30]孙忠富,陈人杰.温室番茄生长发育动态模型与计算机模拟系统初探[J].中国生态农业学报,2003,11(2):84-88
    [31]唐登银等.黄淮海平原农业可持续发展研究[M].北京:气象出版社,1999:69-70
    [32]田展.气候变化对中国小麦生产影响模拟研究[D].山西农业大学,2003
    [33]王长燕,赵景波,李小燕.华北地区气候暖干化的农业适应性对策研究[J].干旱区地理,2006,29(5):646-652
    [34]王金平,孙雪峰.作物水分与产量关系的综合模型[J].灌溉排水,2001,(2):76-80
    [35]王健,蔡焕杰,陈凤等.夏玉米田蒸发蒸腾量与棵间蒸发的试验研究[J].水利学报,2004,11:108-113
    [36]王丘,阮文彪.中国水资源问题与农业可持续发展[J].安徽农业大学学报(社会科学版),2000,9(4):11-13
    [37]王世耆,程延平.作物产量与天气气候[M].北京:科学出版社,1991
    [38]魏占民,陈亚新,史海滨. BP神经网络的作物-水模型的初步研究[J].灌溉排水,2002,21(2): 12-16
    [39]魏占民,陈亚新,史海滨.关于作物-水模型敏感指标意义的认识[J].灌溉排水,2002,6(21)
    [40]魏占民,陈亚新,史海滨.控制灌溉定额试验处理的作物-水模型确认分析.中国农业工程学会农业水土工程专业委员会.农业水土工程学[C].呼和浩特:内蒙古教育出版社,2001,8: 94-98
    [41]信乃诠,王立祥.中国北方旱区农业[M].江苏:江苏科学技术出版社,1998
    [42]谢云,James R. Kiniry.国外作物生长模型发展综述[J].作物学报,2002,28(2):190-195
    [43]徐建华.现代地理学中的数学方法[M].北京:高等教育出版社, 2002
    [44]严美春,曹卫星,李存东等.小麦发育过程及生育期机理模型的检验和评价[J].中国农业科学,2000,33(2):43~50
    [45]婚杨新,延军平.华北平原气候变暖的农业效应[J].陕西师范大学继续教育学报(西安),2000,17(4):111-114
    [46]俞希根,孙景生,刘祖贵等.亏缺灌溉对棉花生长发育和产量的影响[J].灌溉排水,2000,19(3):33-37
    [47]余旭升.土地资源人口承载量的预测及在人地关系研究的意义[J].自然资源学报,1991,6(2): 117-125
    [48]殷新佑,戚昌瀚.水稻生长日历模拟模型及应用研究[J].作物学报,1994,20(3):339-346
    [49]殷新佑.作物生长模拟研究综述.江西农业大学学报,1991,(增刊2):55-58
    [50]宇振荣.作物生长模拟模型研究和应用.生态学杂志,1994,13(1):69-73
    [51]张丽辉.含盐土壤节水灌溉下作物水盐响应研究[D].内蒙古农业大学硕士学位论文,2002
    [52]张宇,陶炳炎.冬小麦生长发育的模拟研究[J].南京气象学院学报,1991,14(1):113-121
    [53] Aggarwal P. K. and Kalra N. Analyzing the limitations set by climatic factors, genotype, and water and nitrogen availability on productivity of wheat II. Climatically potential yields and management strategies. Field Crops Res. 1994, 38: 93-103
    [54] Arkley R. J.. Relationship between Plant growth and transpiration. 1963,Hilgardia(J), 34: 559-584
    [55] Baker D N, Hesketh J D, Duncan W G.. Simulation of growth and yield in cotton, 1. Gross photosynthesis, respiration, and growth. Crop Sci, 1972, 12: 431-435
    [56] Becker M., Johnson D. E., Wopereis M. C. S. and Sow A. Rice yield gaps in irrigated systems along an agro- ecological gradient in West Africa. J. Plant Nutr. Soil Sci., 2003.166: 61-67
    [57] Berkhout. J. J. A. et al. Quantification of agroecological characterization. In: A. H. Bunting (Eds), Agricultural environments, characterization. Classification and mapping C. A. B. international Wallingford, 1987. 185-197
    [58] Blank H. Optimal irrigation decisions with limited water(D). Ph. D. Thesis, DePartment of Civil Engineering, Colorado State University, Fort Collins, CO, 1975.
    [59] Bouma. J. and A. K. Bregt (Eds). Land qualities in space and time. Pudoc, Wageningen, 1989
    [60] Chen L H, Huang G K, Splinter W E. Developing a physical-chemical model for a plant growth system. ASAE Trans, 1969, 12: 698-702
    [61] Chen Yaxin, Wei Zhanmin, Shi haibin, Qu Zhongyi. Simulative Study on Models of Crop Response to Water for High-efficient Water-Saving Irrigation. Session 2: Sustainable Agriculture (l)(C). Promoting G1obal Innovation of Agricultural Science & Technology.
    [62] Childs S W, Gilley J R, Splinter W E. A simplified model of corn growth under moisture stress. Trans Am Soc Agric Eng, 1977, 20: 858-865
    [63] Curry R B, Chen L H. Dynamic simulation of plant growth, II. Incorporation of actual daily weather and partitioning of net photosynthetic. ASAE Trans, 1971, 14: 1170-1175.
    [64] Curry R B. Dynamic simulation of plant growth, I. Development of a model. ASAE Trans, 1971, 14(5): 946-959
    [65] De Wit C T. Photosynthesis of leaf canopies. Wageningen, Netherlands: Inst Biol Chem Res Field Crops Herb. Agric Res Rep, 1965. 663
    [66] De Wit C.T.. Transpiration and Crop yields. Verslad, van Land bouck, Onderzoek (M). 1958, 64 (6)
    [67] De Wit C T. Dynamic concepts in biology. In: Prediction and Management of Photosynthetic Productivity. Proceedings International Biological Program/Plant Production Technical Meeting. Wageningen, Netherlands: PUDOC, 1970.17-23
    [68] Donald E, Hawkins R H, Jiang R Y, et al. Runoff curve number method: examination of the initial abstraction. TRB 2004 Annual Meeting CD-ROM, 2004
    [69] Doorenbos J., Kassam A.H. Yield response to water. FAO Irrig. Drain. pap. 33(M), Food and Agrieulture Organization of the United Nations, Rome, 1979
    [70] Downey L.A.. Water-yield relations for nonforage crops. J. Irrig. Drain. Div. ASCE(J), 1972,98(IRI):107-115
    [71] Duncan W G, Hesketh J D. Net photosynthetic rates, relative leaf growth rates, and leaf numbers of 22 races of maize grown at eight temperatures. Crop Sci, 1968, 8: 670-674
    [72] FAO. Report on the agroecological zones project.1. Methodology and results for African. World resource Report 48. FAO. Rome. 1978
    [73] Haiso, T C. Limits to crop productivity imposed by water deficits. In Abstract of the Internatonal Congress of Plant Physology. New Delhi. 1988, 2, 127-136
    [74] Hsiao, T.C., L. Heng, P. Steduto, B. Rojas-Lara, D. Raes, and E. Fereres. 2009. AquaCrop - The FAO crop model to simulate yield response to water: III. Parameterization and testing for maize. Agron. J. 101:448–459 (this issue)
    [75] Hamid J. Farahani, Gabriella Izzi and Theib Y. Oweis. Parameterization and Evaluation of the AquaCrop Model for Full and Deficit Irrigated Cotton. Agron J. 2009.101:469-476
    [76] Hanks, R. J.. Model for predicting plant yield as influenced by water use. Agron. J.(J),1974, 66: 660-655
    [77] Hijmans R J, Guiking-lens I M, Van Diepen C A. WOFOST, user guide for the WOFOST6.0 crop growth simulation model, Wageningen: Technical document, DLO Winand Staring Centre, 1994.145
    [78] Hi1er E.A., Clark R.N. Stress day index to characterize effects of water stress on crop yields. Trans. ASAE (J), 1971, 14(4): 757-761
    [79] Jame Y.W. and Cut forth H.W.. Crop growth models for decision support systems. Can. J. Plant Sci.,1996, 76: 9-19
    [80] Jensen M.E.. Water consumption by agricultural plants. In: Kozlowski, T.(Ed.). Water deficits and Plants Growth, Vol, 2(M) Academic Press, New York, 1968, 1-22
    [81] Jones C A, Kiniry J R.CERES-Maize: A Simulation model of maize growth and development. College station, US: Texas A&M Univ.press,1986
    [82] Keulen,H. van et al. Bioeconomic capability of west-African dryland, CABO-DLO research report, 1991. 102
    [83]L.K. Heng, T.C. Hsiao, P. Steduto et.al. Validating the FAO AquaCrop Model on Fully Irrigated and Water Deficient Maize and Soybean.2008
    [84] Minhas B.S., ParikhK.5.,SrinivasanT.N.. Towards the structure of a production function for wheat yields with dated in Puts of irrigation water. Water Resour. Res. (J), 1974, 10(3): 383-393
    [85] Pasquale STEDUTO, Theodore C. HSIAO, Elias FERERES, Dirk RAES and Lee HENG. AquaCrop--FAO’s crop water productivity model. Expo Zaragoaz, June 2008
    [86] Penning de vries F W T, Jansen D M. simulation of ecophysiological processes of growth in several annual crops.Wageningen:hudoc,1989
    [87] Penning de Vries F W T, van Laar H H. Simulation of plant growth and crop production. In: Penning de Vries F W T, van Laar H H eds. Simulation Monographs. Wageningen, Netherlands: PUDOC, 1982. 114-136
    [88] Philip, J.R. 1957. Evaporation, moisture and heat fields in the soil. J. Meteorol. 14:354-366
    [89] Pinnschmidt H. O., Chamarek V., Cabulisan N., Dela Pena E, Long N. D., Savary, S., Klein-Gebbinck H. W. and Teng, P. S. Yield gap analysis of rained lowland systems to guide rice crop and pest management. In: Kropff M. J. , Teng P. S., Aggarwal P. K, Bouma J., Bouman B. A. Jones M. J. W. and van Laar H. H. (ed s). Application of systems approaches at the field level. Systems Approaches for Sustainable Agricultural Development, Vol.2, Kluwer Acad. Publ., Dordrecht, the Netherlands, 1997: 321-338
    [90] Raes, D., P. Steduto, T.C. Hsiao, and E. Fereres. 2009. AquaCrop—The FAO crop model to simulate yield response to water: II. Main algorithms and soft ware description. Agron. J. 101:438–447 (this issue)
    [91] Rao N.H., SarmaP.B.5., Subhash C.. A simple dated production function for use in irrigated agriculture. Agri. Water Manage., (J) 1988, 13: 25-32
    [92] Rappoldt,C. Crop growths simulation model documental version3.0. Centre for World Food studies, Wageningen, 1986.04
    [93] Ritchie, J.T. 1972. Model for predicting evaporation from a row crop with incomplete cover. Water Resources Research 8(5): 1204-1213
    [94] Ritchie, J.T. 1975. Evaluating irrigation needs for southeastern U.S.A. p. 262–279. In Proc., Contribution of Irrigation and Drainage to the World Food Supply. Specialty Conf., Biloxi, MS. 14–16 Aug. 1974. ASCE, New York
    [95] Ritchie J T, Other S. Description and performance of CERES- Wheat: a user- Oriented wheat yield model. Willis W O. ARS wheat yield project. US: USEA-ARS, ARS-38, 1985, 159-175
    [96] Ritchie J T.IBSNAT and CERES-Rice model. Weather and rice, IRRI, 1987, 271-282
    [97] Sam Geerts, Dirk Raes, Magali Garcia et.al. Calibration of the FAO-AquaCrop Model for the Under-Utilized Crop Quinoa (Chenopodium quinoa Willd.) ASA-CSSA-SSSA. 2007 International Annual Meetings
    [98] Splinter W E. Modeling of plant growth for yield prediction. Agricultural Meteorology, 1974, 14: 243-253
    [99] Stapleton H N, R P Meyers. Modeling subsystems for cotton-the cotton plant simulation. Transactions of the ASAE, 1971, 14(5): 950-953
    [100] Steduto, P., T.C. Hsiao, D. Raes, and E. Fereres. 2009. AquaCrop—The FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agron. J. 101:426–437(this issue)
    [101] Stewart J.I., Hagan R.M.. Functions to predict effects of crop water deficits. J. lrrig. Drain. Div.,ASCE(J),1973,99(IR4): 421-439
    [102] Stewart J.I., Hagan R.M., Pruitt W.O.. Production function sand predicted irrigation programs for Principal crops as required for water resources planning and increased water use efficiency (R). Final Report, U.S. Department of Interior, Washington DC, 1976, 80.
    [103] University of Cordoba. Research on sustainable irrigation (including advanced modelling on irrigation scheduling), including deficit irrigation. NOSTRUM-DSS & INECO JOINT EVENT“IWRM through coordination, dissemination, and exploitation of research outcomes”. 2007
    [104] Van Keulen H. Simulation of water use and herbage growth in arid regions. In: Penning de Vries F W T, van Laar H H eds. Simulation Monographs. Wageningen, Netherlands: PUDOC, 1982. 176
    [105] Vaux H. J.,Pruitt W. O.. Crop-water production functions. In: Hillel D. (Ed.). Advances in Irrigation,Vol.2(M),Academic Press,1983,61-97
    [106] Yinlong Xu,A Preliminary Analysis on the Climate Change Responses of PRECIS Scenario Simulation. internal document of Britain Hadely center. 2001