库布齐沙地常见灌木不同水分条件下水分利用效率及光响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对干旱半干旱地区植被建设中植被与水资源关系不协调的问题,以土壤-植物--大气连续系统(SPAC)理论为基础,选择几种主要的水土保持灌木柽柳(Tamarixramosissma Ledeb.)、小叶锦鸡儿(Caragana microphylla)和杨柴(Hedysarummongolicum Turcz)作为研究对象。在2006年的生长季期间,利用Li-6400便携式光合仪等仪器,分析不同水分环境条件和光照条件与林木生长的关系,系统地研究该地区几种主要灌木光合生理生态学特征,其结果不仅有助于干旱半干旱地区植被建设中生态用水定额的确定,而且也将对今后该地区植被建设中物种选择和合理林分密度设计起到科学的指导作用。
     本文主要开展了以下几方面的研究:
     1土壤水分对林木光合特性和水分利用效率的影响;
     2光辐射强度对林木光合特性和水分利用效率的影响;
     3不同水分条件下林木光合生理参数的日过程;经研究,结果表明:
     ●柽柳、小叶锦鸡儿和杨柴的净光合速率(Pn)、蒸腾速率(Tr)和水分利用效率(WUE)的日变化,与土壤水分条件密切相关,并且有明显的阈值响应。三种灌木的凋萎湿度分别为1.09%、0.71%、0.68%。
     ●对库布齐沙地几种主要灌木柽柳、小叶锦鸡儿和杨柴的光合速率、蒸腾速率、水分利用效率与土壤含水量的关系进行研究,初步了解了适宜这三种植物生长的土壤含水量。柽柳、小叶锦鸡儿和杨柴最适宜生长的土壤含水量范围分别为7.2%~10.1%、6.2%~11.0%和7.3%~9.9%。
     ●光辐射强度的变化对柽柳、小叶锦鸡儿和杨柴的光合速率、蒸腾速率和水分利用效率都有显著影响。柽柳既具有较高的光能利用效率又具有较高的水分利用效率的光强范围在980-1500μmol·m-2·s-1;小叶锦鸡儿既具有较高的光能利用效率又具有较高的水分利用效率的光强范围在800~1800μmol·m-2·s-1;杨柴既具有较高的光能利用效率又具有较高的水分利用效率的光强范围在800~1500μmol·m-2·s-1。
In ording to solve the contradiction between demand for the extension of forest vegetation and
    the limited water supply in arid and semi-arid area and based on the theory of soil-plant-atmosphere continuum, the dissertation chose the main afforestation tree species including Tamarix ramosissma Ledeb Caragana microphylla and Hedysarum mongolicum Turcz .to forest project in Growing Seasons in 2006,utilized advanced apparatus, equipments and various approaches, systematically analyzed of relationship between soil water content and light intensity and growing and photosynthesis characteristics. These studies could provides the scientific bases for accurately estimating ecological water consumption and the choice of tree species and the properly arrangement of stand density. The dissertation involved following aspects:
    1: Study on reposing to light of Tamarix ramosissima Ledeb, Caragana microphylla and Hedysarum mongolicum Turcz in different soil moisture;
    2: Study on suitable water content of Tamarix ramosissima Ledeb, Caragana microphylla and Hedysarum mongolicum Turcz;
    3: Study on diurnal course of Tamarix ramosissima Ledeb, Caragana microphylla and Hedysarum mongolicum Turcz in different soil water content; By studying the result show that:
    The relation of diurnal course of photosynthetic rate(Pn) , transpiration rate(Tr) and water use efficiency of leaf (WUE) and soil water content is close, and response to SWC is obvious, withered moisture of three shrubs is separately 1.09%,0.71%,0.68%.
    Study on the relation among photosynthesis rate, stomatal conductance, transpiration rate, water use efficiency and soil water content. The result show the suitable water content of Tamarix ramosissima Ledeb is 10.1% ~ 13.6%, Caragana microphylla is 11.0% ~ 13.4%,and Hedysarum mongolicum Turcz is9.9%~15.0%.
    Photosynthetic rate, transpiration rate and water use efficiency of leaf have clear threshold value response to photosynthetic active radiation. the fitting sphotosynthetic active radiation cause higher sunshine use efficiency and water use efficiency of Tamarix ramosissima Ledeb is 980~1500μmol·m~(-2)·s~(-1), the fitting sphotosynthetic active radiation cause higher sunshine use efficiency and water use efficiency of Caragana microphylla is 800~1800μmol·m~(-2)·s~(-1), the fitting sphotosynthetic active radiation cause higher sunshine use efficiency and water use efficiency of Hedysarum mongolicum Turcz is 800~1500μmol·m~(-2)·s~(-1).
引文
[1] 陈新军,张光灿等.黄土丘陵区紫丁香叶片气体交换参数的日变化及光响应[J].中国水土保持科学.200012(4):102-107.
    [2] 邓雄,李小明等.多枝柽柳气体交换特性研究[J].生态学报,2003,1(1):180-188.
    [3] 高卿远等.北疆平原荒漠区不同生长型芦荟叶片水势蒸腾速率及水分利用效率的研究[J].中国草地.1995.5:60-66.
    [4] 郭志华,张宏达,李志安,等.鹅掌楸(Liriodendron chinense)苗期光合特性研究[J].生态学报,1999,19(2):164-169.
    [5] 郭建平,高素华等.杨柴对高CO_2浓度和土壤干旱胁迫的响应[J].植物资源与环境学报,2002,11(1):14-16.
    [6] 贺康宁,张光灿,田阳等.黄土半干旱区集水造林条件下林木生长适宜的土壤水分环境[J].林业科学,2003,39(1):10-16.
    [7] 黄振英,董学军等.沙柳光合作用和蒸腾作用日动态变化的初步研究[J],西北植物学报,2002,22(4):817-823.
    [8] 蒋高明,何维明.一种在野外自然条件下快速测定光合作用—光响应曲线的新方法.植物学通报,1999,19(6):712-718.
    [9] 江天然,张立新,毕玉蓉等.水分胁迫对梭梭叶片气体交换特征的影响[J].兰州大学学报,2003,23(6):57-62.
    [10] 李吉跃,TERENCEJB.多重复干旱循环对苗木气体交换和水分利用效率的影响[J].北京林业大学学报,1999,21(3):1-8.
    [11] 李小磊,张光灿等,黄土丘陵区不同土壤水分条件下核桃叶片水分利用效率的光响应[J].中国水土保持科学,2005.3(1)43-47(65).
    [12] 李雪华,蒋德明等.山杏幼苗水分生理生态特性及凋萎湿度的研究[J].干旱区资源与环境,2004,18(5):168-171.
    [13] 李秧秧.2000.碳同位素技术在C3作物水分利用效率研究中的应用[J].西北农学报,14(2):115-121.
    [14] 梁宗锁,李有新,康绍忠.影响夏玉米单叶WUE的冠层因子分析[J].西北农业学报,1996,5(1):13-16.
    [15] 刘丹,陈祥伟等.Vc对水分胁迫下紫丁香和小叶锦鸡儿生理活动的影响[J],东北林业大学学报,2000,32(3):16-18.
    [16] 刘淑明,孙丙阎,孙长忠等.供水对黄土高原主要造林树种水分利用效率的影响[J].西北林业林学院学报,2004,19(2):15-17.
    [17] 马成仓,高玉葆等.小叶锦鸡儿和狭叶锦鸡儿的光合特性及保护酶系统比较[J],生态学报,2004,24(8):1594-1602.
    [18] 马成仓,高玉葆等.小叶锦鸡儿和狭叶锦鸡儿的生态和水分调节特性比较研究[J],生态学报,2004,24(8):1442-1451.
    [19] 马全林,王继和等.固沙树种梭梭在不同水分梯度下的光合生理特征[J],西北植物学报,2003,23(12):2120-2126.
    [20] 山仑,徐萌.节水农业及其生理生态基础[J].应用生态学报,1991,2(1):70-76.
    [21] 山仑.植物水分利有效率和半干旱地区农业用水[J].植物生理学通讯,1994,30(1):61-66.
    [22] 山仑.1996.旱地区农业中有限水高效利用的研究[J].水土保持研究,3(1):8-13.
    [23] 盛炜彤.2000.关于我国西部地区造林绿化中几个问题的思考[J].世界林业研究,13(2):5-6.
    [24] 苏培玺等.荒漠植物梭梭和沙拐枣光合作用、蒸腾作用及水分利用效率特征[J].西北林学院学报2003,23(1):11-17.
    [25] 孙伟,王德利,王立等.模拟光条件下禾本科植物和藜科植物蒸腾特性与水分利用效率比较.生态学报,2003,23(4):814-819.
    [26] 田大伦,罗勇,项文化等.樟树幼树光合特性及其对CO_2浓度和温度升高的响应.林业科学,2004,40(5):88-92.
    [27] 田晶会,贺康宁,王百田等.黄土半干旱区侧柏蒸腾作用及其与环境因子的关系[J].北京林业大学学报.2005,27(3):53-56
    [28] 田晶会,贺康宁等.黄土半干旱区侧柏气体交换和水分利用效率日变化研究[J].北京林业大学学报.2005.1(1):42-46.
    [29] 王百田,杨雪松.黄土半干旱区油松与侧柏林分适宜土壤含水量研究[J].水土保持学报,2002,16(1):80-83.
    [30] 王斌瑞,王百田.1996.黄土高原径流林业[M].北京:中国林业出版社,145-148.
    [31] 王会肖,刘昌明.作物水分利用效率内涵及研究进展[J].水科学进展,2005.3(1)99-104.
    [32] 王会肖,刘昌明.作物光合蒸腾与水分高效利用的试验研究[J].应用生态学报,2003.10,14(10):23-29.
    [33] 王晶英,赵雨森等.银中杨光合作用和蒸腾作用对土壤干旱的响应[J].中国水土保持科学,2006,8,4(4):56-61.
    [34] 王克勤,王斌瑞.集水造林林分水分生产力研究[J].林业科学,2000,36(专刊):1-8.
    [35] 王克勤.集水造林与水分生态[M].中国林业出版社,2002
    [36] 王彦辉,张星耀,张守攻.2002.我国林业生态环境的建设[J].科学对社会的影响,12(2):4-5.
    [37] 王雁,马武昌.扶芳藤、紫藤等7种藤本植物光能利用特性及耐荫性比较研究[J].林业科学研究,2004,17(3):305-309
    [38] 王九龄.2000.西部干旱半干旱地区生态建设中的造林问题[J].世界林业研究,13(4):5-6.
    [39] 吴琦等.水分条件对梭梭气体交换特性的影响[J].干旱区研究.2005.3(1):79-84.
    [40] 文建雷等.水分胁迫条件下元宝枫的光合特征及水分利用效率研究[J].西北林学院学报,2003,18(2):1-3.
    [41] 熊伟,王彦辉,睦澎涛.树木水分利用效率研究综述[J].生态学杂志[J].2005,24(4):412-421.
    [42] 杨洪强等.果树根系对地上部的调控及其与水分利用效率的关系[J].园艺学报,2001.28(增刊):603-608.
    [43] 杨世杰.植物生物学[M].北京:科学出版社,2000:130-149.
    [44] 杨建伟等.不同干旱土壤条件下杨树的耗水规律及水分利用效率研究[J].植物生态学报.2004,28(5):630-636.
    [45] 喻方圆,徐锡增等.水分和热胁迫处理对4种针叶树苗木气体交换和水分利用效率的影响[J].林业科学.2004.3(2)38-44.
    [46] 徐炳成,山仑,黄瑾.黄土丘陵区不同理地条件下沙棘光合生理日变化特征比较.西北植物学报,2003,23(6):949-953.
    [47] 曾凡江,张希明等.柽柳的水分生理特性研究进展[J].应用生态报,2002,13(5):611-614.
    [48] 赵俊芳等.不同水分条件下旱稻水分利用效率的研究[J].中国生态农业学报.2003.10(4):111-113.
    [49] 张光灿、刘霞等.金矮生苹果叶片气体交换参数对土壤水分的响应[J].植物生态学报,2004.28(1):66-72.
    [50] 张海清,常金宝.额济纳旗柽柳气体交换与水分利用效率日变化研究[J].内蒙古师范大学学报(自然科学汉文版),2006.6,2(35):232-236.
    [51] 张淑勇,张光灿等.土壤水分对五叶爬山虎光合与蒸腾作用的影响[J].中国水土保持科学,2006.8,4(4):62-66.
    [52] 张岁歧,山仑.植物水分利用效率及其研究进展[J].干旱地区农业研究,2002.12(4)2-5.
    [53] 张岁歧,山仑,薛青武.营养与作物抗旱性[A].北京;中国农业出版社,2001.189-200.
    [54] 张正斌,徐萍.水分利用效率—未来农业研究的关键问题[J].世界科技研究与发展.2005.2.
    [55] 郑有飞,万长建,颜景义等.小麦的水分利用效率及其最优化问题[J].中国农业气象,1997,18(4):13-18.
    [56] 中国科学院上海植物生理研究所.现代植物生理学实验指南[M].北京:科学出版社,1999,89-95.
    [57] 周海燕,张景光等.湿润条件下几种锦鸡儿属灌木的气体交换特征及调节机制[J],中国沙漠,2002,22(4):316-320.
    [58] 朱林,许兴,植物水分利用效率的影响因子研究综述[J],干旱地区农业研究,2005,6(23):204-209.
    [59] 朱万泽,薛建辉等,台湾桤木种源对水分胁迫的光合响应及其抗旱性[J].水土保持学报.18(4):170-173.
    [60] Bunce J A, Sicher R C. Water stress and dry-to-day variation in apparent photosynthetic acclimation of field-grown soybeans to elevated carbon dioxide concentration. Photosynthetica, 2001, 39(1):95-101.
    [61] Chaitanya K V, Jutur P P. Ramachandra Reddy. Water stress effects on photosynthesis in different mulberry cultivars [J]. Plant Growth Regulation, 2003, 40: 75-80.
    [62] Damesin C, B,,mhal S, Jofre R. Between tree variation8 in leaf 813 C of Qu~~us pubescens and Qu~us ilex among Mediterranean habits with diferent water availahility. Oecolo.gia, 1997, 111:26-35
    [63] Emil C, Anders L. Gas exchange and sap flow measurements of Salix viminalis trees in a short-rotation forest [J].Trees, 1995, 9:295-301.
    [64] Flexas J, Medrano H. Drought.inhibition of photosynthesis in C3 plant:Stomatal an d non-stomatal limitations revisited. Ann Bot.2002, 89:183-189
    [65] Johnson J D, Tognetti R., Paris P. Water relations and gas exchange in poplar and willow under water stress and elevated atmospheric CO_2 [J]. Physiologia Plantarum, 2002, 115(1):93-100.
    [66] Johnson R C, Yang yang L. Water relations, forage production, and photosynthesis in tall Feseuedivergently selected for carbon isotope discrimination[J].CropSci, 1999,39:1663-1670
    [67] JoshuaL A, Ann S E. Physiological variation among Populus fremotii populations: short and long-term relationships between δ~(13) andwateravailability [J].TreePhysiol., 2001, 21: 1149-1155.
    [68] Kellomaki S, Wang Kai-Yun. Effects of long-term CO_2 and temperature elevation on crown nitrogen distribution and daily photosynthetic performance of Scotspine [J]. Forest Ecology and Management, 1997, 99:309-326
    [69] Kozlowski T T, Kramer P L, Pallardy S G, et al. The Physiological Ecology of Wood Plants [M]. New York: 1991, Academic Press.
    [70] Kumar A, Turner N C, Singh D P, et al. Diurnal and seasonal patterns of water potential, photosynthesis, evapotranspiration and water use efficiency of cluster bean. Photosynthetica, 1999, 37(4):601-607.
    [71] Kumar B, Pandey D M, Goswai C L, Jain S. Effect of growth regulators on photosynthesis, transpiration and related parameters in water stressed cotton [J]. BIOLOGIA PLANTARUM, 2001, 44(3):475-478..
    [72]Lawlor D W. Limitation to photosynthesis in water-stressed leaves: stomata vs metabolism and the role of ATP [J]. Ann. Bot. 2002, 89: 871-885.
    [73] Seppo K and Wang K Y. Photosynthetic responses to needle water potentials in Scots pine after a four-year exposure to elevated CO_2 and temperature [J]. Tree Physiol, 1996, 16(9): 765-772.
    [74] Tezara W., Mitchell V.J., Driscoll S.D. and Lawlor D.W. Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP [J]. Nature , 1999,401: 914-917.
    
    
    
    [75]Zackary Johnson, Richard T. The low-light reduction in the quantum yield of photosynthesis: potential errors and biases when calculating the maximum quantum yield [J]. Photosynthesis Research, 2003, 75:85-95.
    
    [76]Zhang Z J, Shi L, Zhang J Z, et al. Photosynthesis and growth responses of Parthenocissus quinquefolia Planch to soil water availability. Photosynthetica, 2004,42 (1): 87-92.