鲜切莲藕褐变的生理生化机制及蛋白表达差异研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
莲藕(Nelumbo nucifera)是中国重要的特色水生蔬菜和出口创汇蔬菜,其营养丰富,具有清热生津、滋补胃阴等药用价值。莲藕含水量丰富、皮薄,外观洁白脆嫩,表皮保护性差、易破损,贮藏期间易失水、干缩和变色。莲藕适合鲜切加工,但切分形成的机械损伤极易导致表皮和肉质部褐变,影响莲藕感官品质和内在质量。本试验的前期研究结果表明,4℃条件下鲜切莲藕经褐变抑制剂处理后最长可贮藏15天,且明确莲藕的褐变主要是酶促褐变。本试验比较了江苏种植最多“美人红”和南京地区销售最普遍“3735”两品种莲藕鲜切后的品质及生理生化变化,并以“3735”为试材进一步探索常温贮藏条件下鲜切莲藕褐变模型建立、酚类定性及褐变前后蛋白差异表达,以深入研究鲜切莲藕褐变的机制。本研究的主要结果如下:
     1.“美人红”和“3735”贮藏过程中品质和生理特性的比较
     以“美人红”和“3735”为材料,比较了鲜切后4℃贮藏期间两品种品质和生理特性的变化。结果显示,“美人红”可溶性蛋白质、Vc及总酚含量较高,褐变相关酶POD和SOD的活性较强,而“3735”呼吸强度大、丙二醛生成量多。“美人红”和“3735”两品种莲藕鲜切后低温贮藏期间的品质和生理特性变化虽然在大多数指标上出现较为一致的趋势,如褐变加重、呼吸增强、还原糖增加、可溶性蛋白和总酚减少、Vc减少、O2·-和MDA增加、POD活力降低和SOD活力增加等,但“3735”褐变更快,呼吸增强更多,还原糖增加更迅速,O2·-含量上升较慢,MDA增加较多。因此,“美人红”品种更合适鲜切加工。
     2.鲜切莲藕贮藏期间褐变数学模型的建立
     选用极易褐变的“3735”作为材料,以清水处理为对照(CK),比较了五种保鲜剂0.1%NaHSO3、0.2%柠檬酸(CA)、0.01%抗坏血酸(AA)、0.1%L-半胱氨酸(Cys)以及复合保鲜剂(CP:0.1%、CA、0.005%AA和0.05%Cys)处理对低温条件下鲜切莲藕品质和生理生化变化的影响。结果显示,相同条件下,CP处理组褐变较轻,MDA、呼吸强度、O2·-及H202含量较低,SOD、POD、CAT活性较高。
     鲜切莲藕贮藏过程中褐变主因子分析显示,褐变与品质和生理的指标如L*、电导率、呼吸强度、MDA含量、活性氧含量及POD活性有关,其中L*贡献率高达64%;次因子分析褐变与SOD、CAT有关。以直观反映褐变度的L*值作为因变量,其它9个指标作为自变量,对L*作线性回归分析,经逐步回归后,建立鲜切莲藕L*的回归模型预测方程为:L*=65.784-11.062x3-0.101x5+0.003x6(其中X3为MDA,X5为O2·-,X6为POD)。线性回归分析可见,鲜切莲藕贮藏过程中L*与MDA含量、O2·-含量呈显著负相关,与POD活性呈显著正相关。
     3.鲜切莲藕褐变过程中酚类与褐变关系及清除自由基的能力
     试验选取不同部位的莲藕比较酚类物质含量及其清除自由基能力,并用HPLC方法定性和定量酚类物质。结果表明,莲藕不同部位酚类物质含量存在显著差异:藕皮7.19mg/g,藕节7.61mg/g,藕尖2.54mg/g,藕片2.10mg/g。藕皮中含有焦性没食子酸、羟酪胺和儿茶酚三种酚,且以焦性没食子酸为主;藕节中的主要酚类物质是羟酪胺,藕尖中只有没食子酸,藕片中则含有焦性没食子酸、羟酪胺、儿茶酚和咖啡酸四种。等量酚类物质条件下,莲藕不同部位清除率的情况为:藕片>藕尖>藕皮>藕节,四个部位酚类提取物的抗氧化能力的大小并不与其总酚含量的多少成正比,鲜切莲藕中总酚含量的高低与清除自由基的能力没有显著相关。鲜切莲藕贮藏过程中总酚含量呈现下降趋势,单位质量酚清除自由基能力则呈现先升后降最后略有上升的趋势。这些都说明酚类物质含量和组成的不同与其抗氧化能力存在密切联系。
     常温贮藏期间,鲜切藕片中的酚类物质种类不变,但含量会改变,其中与莲藕褐变关系密切的为焦性没食子酸、儿茶酚和咖啡酸,其中焦性没食子酸与莲藕清除自由基能力关系密切。
     4.鲜切莲藕褐变前后蛋白表达差异研究
     采用酚抽法和改良后的TCA-丙酮法提取莲藕中总蛋白,运用双向电泳和MALDI-TOF-TOF/MS分析及数据库检索鉴定鲜切莲藕褐变前后的差异蛋白种类及功能。试验确立了适合鲜切莲藕蛋白差异分析的双向电泳条件为:酚抽法提取总蛋白,1500μ的蛋白上样量,选用17cm,pH4-7胶条,12%胶浓度,G-250考染。
     通过比对褐变前后鲜切莲藕蛋白2-DE图谱,发现40个具有统计学意义且差异大于2倍或者小于0.5的蛋白点,其中5个褐变前存在而褐变后消失,5个褐变后新出现,8个随着褐变发生表达量上调、22个表达下调。
     40个差异蛋白点共鉴定成功38个,鉴定成功率为95%,包括4个贮藏蛋白和34个功能蛋白。34个功能蛋白中4个蛋白(L1、L3、L15、L20)只在褐变前表达,2个蛋白(L5、L12)只在褐变后表达,7个蛋白(L11、L16、L17、L21、L28、L32、L33)褐变后上调表达,其余21个差异蛋白褐变后下调表达。
     对鲜切莲藕褐变前后发生变化的蛋白进行鉴定后按功能分类,这些蛋白涉及到应激反应(7个)、细胞结构(4个)、物质和能量代谢(12个)、呼吸(4个)、信号转导(2个)、基因表达(2个),未知功能(3个),其中变化最多的差异蛋白与物质代谢调控、活性氧代谢以及呼吸调控等相关。
     鲜切莲藕褐变前后蛋白表达差异的比较显示,与褐变相关的蛋白主要功能集中在植物应激反应、细胞呼吸及物质代谢和能量代谢等方面,具体体现在通用应激蛋白USP、活性氧相关蛋白SOD、POD、铁蛋白以及细胞内能量转换核心酶ATPase等的差异表达上,这些蛋白褐变后减量表达,显示莲藕褐变后细胞代谢调控途径和方向发生改变,对抗外界环境的胁迫反应能力下降,分解代谢加强,能量利用率降低,Cu/Zn-SOD和硫氧还蛋白过氧化物酶(TPx)表达量降低,氧自由基清除能力减弱,细胞结构破坏剧烈。
Lotus root (Nelumbo nucifera) is one of the important hydrophytic perennial and export vegetable in China with rich nutrients and medical value. Lotus root has the characteristics of high water, thin skin, white color and crisp texture, but is easy to suffer water loss, shrinkage and color change during storage period. Although lotus root is suitable for fresh-cut use, the mechanical injury due to cutting process would result in serious browning thereafter quality deterioration both sensory and objective. The previous experiment showed that the maximum storage life of fresh-cut lotus root at4℃is about15days, and the browning is mainly enzymatic. This study was focused on "Meirenhong"(most important cultivar planted in Jiangsu province) and "3735"(most commonly consumered in Nanjing markets) to determine the physiological and biochemical changes after fresh-cut during storage, and further to investigate the browning model, changes of phenols and differentiate of protein expression during browning process at room temperature by taking "3735" as experimental material. The main results are as follows:
     1. Comparison of quality and physiological characteristics of "Meirenhong" and "3735"
     Quality and physiological characteristics of "Meirenhong" and "3735" during storage at4℃were measured and compared. The results showed that the higher contents of soluble protein, Vc and total phenol (TP), and the greater peroxidase (POD) and superoxide dismutase (SOD) activities were observed in "Meirenhong", while "3735" had higher respiratory rate and malondialdehyde (MDA) content. Although the change trends of most measured indexes were similar between "Meirenhong" and "3735" during storage, such as becoming more servere browning, enhancing the respiration intensity, increased in reducing sugar, O2·-and MDA, reduced in losses of soluble protein, TP and Vc, decreased in POD activity and increased in SOD activity, etc."3735" was easier to brown and had a greater respiratory rate, a greater increase in reducing sugar and MDA content, and slower O2·-increase. Overall,"Meirenhong" is more appropriate for fresh-cut use.
     2. Mathematical Model on browning of fresh-cut lotus root during storage
     Six treatments of water (CK),0.1%NaHSO3,0.2%citric acid (CA),0.01%ascorbic acid (AA),0.1%L-cysteine (Cys) and composite preservative (CP:0.1%CA,0.005%AA and0.05%Cys) were used to determine the effect of each treatment on quality and physiology of fresh-cut lotus root during storage at low temperature. Compared to all treatments, CP treatment had less browning, lower levels of MDA, respiration, O2·-and H2O2and higher activities of SOD, POD and CAT.
     The primary factor on the browning of fresh-cut lotus root was mainly related to the quality and physiological indicators such as L*, conductivity, respiration, MDA content, reactive oxygen and POD activity, and the contribution rate of L*was64%. The secondary factor was mainly related to SOD and CAT activities. As the visual reflect of browning degree, L*was used for dependent variable, other nine indexes were used for independent variables, and linear regressive analysis was presented. The simplified regression model was L*=65.784-11.062x3-0.101x5+0.003x6(x3:MDA, x5:O2·-,X6:POD). The regression analysis showed that browning degree had significant negative correlation with MDA and O2·-content, but had significant positive correlation with POD activity.
     3. Relationship between phenol and browning of fresh-cut lotus root and free radical scavenging capacity in during browning
     Different parts of lotus root were chosen to compare phenol content and free radical scavenging capacity. HPLC method was used to detect the components and quantitative phenol. The results show that the total phenol contents in different parts of lotus root were different:peel7.19mg/g, node7.61mg/g, tip2.54mg/g and root flesh2.10mg/g. The components of phenols in peel were pyrogallic acid, catechol and hydroxyltyramine, and mainly was gallic acid. The main phenol in node was hydroxyltyramine, gallic acid in tip. The flesh of lotus root contained gallic acid, hydroxyltyramine, catechin and caffeic acid. Under the same phenol condition, free radical scavenging capacities in different parts of lotus root were also different:root>tip>peel>node, and this was not in direct proportion to phenol content. There was no significant relationship between phenol contents and free radical scavenging capacity. The phenol content in fresh-cut lotus root present a down trend during storage, while free radical scavenging capacities showed an ascending-descending-ascending trend.There was close relationship between the difference of phenol contents and composition and antioxidant capacity.
     Phenol composition in fresh-cut lotus root was the same during storage at room temperature, and pyrogallic acid, catechol and caffeic acid were closely related to browning, especially the amount of pyrogallic acid.
     4. Differential expression of proteins before and after browning in fresh-cut lotus root
     Trichloroacetic acid/acetone precipitation and phenol extraction were used to determine their efficiency on extracting total proteins from fresh-cut lotus root. Differential expression of proteins was analyzed by2-DE and MALDI-TOF-TOF. The suitable2-DE analysis conditions for lotus root were:phenol extraction for protein extraction,1500ug sample handling, IPG for17cm with pH4-7,12%gel concentration and G-250staining.
     By comparing2-DE protein patterns of fresh-cut lotus root before and after the browning,40protein spots were detected which had statistically significant and the difference was greater than2times or less than0.5. Among them,5spots only exited before browning, and5new spots appeared after browning,8spots increased and22spots decreased with the progress of browning.
     38spots were successfully identified based on all available information, including4storage and34functional proteins, and successful identification rate was95%. There were4proteins (L10, L3, L15and L20) expressed only before browning,2proteins (L5and LI2) expressed only after browning,7proteins (L11, L16, L17, L21, L28, L32and L33) up-expressed after browning, and the last21proteins down-expressed.
     The34functional proteins were classified into following groups:stress response (7), cell structure (4), material and energy metabolism (12), respiration (4), signal transduction (2), gene expression (2) and unknown protein (3). The group with greatest difference in protein expression was related to material metabolism and regulation, reactive oxygen species metabolism and respiratory control.
     Differential expression showed that function of distinct proteins was focut on stress response, respiratory, material and energy metabolism, etc. The distinct proteins included USP, SOD, POD, ferrin, ATPase and so on. The down-regulation of these proteins after brown showed that the way and direction of metabolic control and regulation changed, stress response activity declined, catabolism strengthened, energy utilization decreased, expression of Cu/Zn-SOD and TPx decreased, activity of cleaning reactive oxygen system weakened, and destruction of cell structure got intense after brown.
引文
[1]肖海,秋吕莉.我国莲藕保健食品研究进展[J].中国食物与营养,2006,(07):26-28.
    [2]顾智章,陈瑛.莲藕的药用[J].蔬菜,1998:28.
    [3]张福平,陈蔚辉,黄泽虹,等.莲藕的营养保健功能[J].中国果菜,2002,6:42.
    [4]张长贵,董加宝,王祯旭,等.莲藕的营养保健功能及其开发利用[J].中国食物与营养,2006,1:22-24.
    [5]李淑珍.莲藕食用价值分析及其加工[J].河南农业大学学报,2007,3:25.
    [6]袁春新,唐明霞,姜永平,等.莲藕优质高效栽培技术[J].上海农业科技,2006,3:73-74.
    [7]祝美云,党建磊,魏征,等.壳聚糖复合涂膜保鲜鲜切莲藕的研究[J].食品与机械,2010,26(1):145-147.
    [8]周明全,何建君,胡中立.湖北莲藕产业发展的若干设想及建议[J].氨基酸和生物资源,2002,24(4):22-24.
    [9]朱定,夏文水.莲藕食品的加工现状与发展[J].食品工业科技,2002,23(8):99-100.
    [10]吴锦涛,余小林,曾洲华,等.切分蔬菜保鲜工艺研究[J].食品与发酵工业,2000,26(4):33-37.
    [1l]闫瑞香,张华云,高海燕,等.莲藕保鲜技术研究[J].保鲜与加工,2001,6:8-10.
    [12]林伯年,吴晓梅,胡军.梨和莲藕组织中多酚氧化酶特性及褐变控制[J].浙江农业大学学报,1997,23:63-67.
    [13]黄光荣.切割果蔬保鲜[J].食品科技,2000,3:28-29.
    [14]王艳颖,胡文忠,庞坤,等.机械伤害引起果蔬褐变机理的研究进展[J].食品工业科技,2007,28(11):230-233.
    [15]叶梅.植物组织褐变的研究进展[J].重庆工商大学学报,2005,22(4):326-310.
    [16]Mager, A.M., Harel. Polyphenoloxidases in plants[J]. Phytochemistry,1979,8:193-215.
    [17]Amiot, M.J., Fleuriet, A., Cheynier, V., et al. Phenolic compounds and oxidative mechanisms in fruits and vegetables[J]. Phytochemistry of Fruits and Vegetables,1997,41:51-85.
    [18]Albert, H., Mfarkhart, I.H. Chilling injury:Areviwe of possible causes[J]. Hort Science,1986, 6:1309-1333.
    [19]Mitter, R. Oxidative stress, antioxidants and stress tolerance[J]. Trends of Plant Science,2002, 7(3):405-410.
    [20]Price, A.H., Hendry, G.A.F. Ironcatalyzed oxygen radical for mation and its possible contribution to drought damage in nine native grasses and three cereals[J]. Plant Cell Environment, 1991,14:477-484.
    [21]王宝山.生物自由基与植物膜伤害[J].植物生理学通讯,1988,12(2):12-16.
    [22]陈芳,李月标,刘淑娴,等.荔枝贮藏适宜温度的研究——贮藏温度对荔枝果皮细胞膜透性及花青素含量的影响[J].制冷学报,1988,(04):5-11.
    [23]陈国刚,王祯丽,童军茂.库尔勒香梨采后果实褐变机理及控制途径[J].中国农学通报,2004,20(02):49-51.
    [24]杨爱珍,王有年,王建立,等.果实采后细胞膜结构变化及其相关因子的研究进展[J].北京农学院学报,2004,19(3):73-75.
    [25]赵丽芹.园艺产品贮藏加工学[M].2000,北京:中国轻工业出版社.
    [26]陈国刚,王祯丽,童军茂.库尔勒香梨采后果实褐变与多酚氧化酶、酚类物质及细胞膜结构的关系[J].中国农学通报,2005,21(8):83-85.
    [27]丁双阳,胡小松.鸭梨果皮褐变过程中细胞的膜伤害与超氧物歧化酶和过氧化氢酶活性的关系[J].辽宁农业科学,1992,(06):33-36.
    [28]Paliyath, G, Droillard, M.J. The mechanism of membrane deterioration and disassembly during senescence[J]. Plant Physiology Biochemistry,1989,30:789-812.
    [29]曹清明,王森,李安平.梨果肉褐变的机理及防褐技术研究[J].湖南林业科技,2004,31(02):4-7.
    [30]Frank, V.B., Eva, V., James, F.D. The role of active oxygen species in plant signal transduction[J]. Plant Science,2001,161:405-414.
    [31]林植芳,李双顺,林桂珠,等.衰老叶片和叶绿体中H202的累积与膜脂过氧化的关系[J].植物生理学通讯,1988,14(4):356-361.
    [32]王群,尹飞,李潮海.水分胁迫下植物体内活性氧自由基代谢研究进展[J].河南农业科学,2004,10:25-28.
    [33]杜秀敏,殷文璇,赵彦修,等.植物中活性氧的产生及清除机制[J].生物工程学报,2001,17(2):121-125.
    [34]王忠.植物生理学[M].2000,北京:中国农业出版社.
    [35]徐新娟.植物体内活性氧代谢及功能研究进展[J].河南科技学院学报,2007,35(2):10-12.
    [36]Adam, A., Farkas, T., Somlyai, G, et al. Consequence of O2·- generation during a bacterially induced hypersensitive reaction in tobacco:deterioration of membrane lipids[J]. Physiological and Molecular Plant Pathology,1989,34:13-26.
    [37]杨淑慎,高俊凤.活性氧、自由基与植物的衰老[J].西北植物学报,2001,21(2):215-220.
    [38]窦世娟,关军锋.采后桃果实衰老褐变与活性氧和酚类物质代谢的关系[J].河北农业科学,2003,7(3):25-29.
    [39]韩冬梅,蔡长河,吴振先.龙眼果实的采后生理与贮藏特性[J].广东农业科学,2001,(02):25-27.、
    [40]寇莉萍,刘兴华,李金龙,等.富士苹果果肉褐变对相关酶活性和膜质过氧化的影响[J].食品科学,2004,(05):179-182.
    [41]Fridovich, I. The biology of oxygen radicals[J]. Science,1978,201:875-880.
    [42]夏铁骑.自由基、活性氧、SOD及植物衰老机理研究的现状与进展[J].濮阳职业技术学院学报,2005,18(02):23-24.
    [43]王建华,刘鸿先,徐周.超氧化物歧化酶(SOD)在植物逆境和衰老生理中的作用[J].植物生理学通讯,1998,3(3):72-76.
    [44]Baker, J.E. Superoxide dismutase in ripening fruits[J]. Plant Physiology,1976,58:644-647.
    [45]金昌海,阚娟,王红梅,等.桃果实成熟软化过程中活性氧代谢的变化[J].扬州大学学报,2006,27(4):85-89.
    [46]Burnette, F. Peroxidase and its relationships to food favor and quality:A review[J]. Journal of Food Science,1977,42:1-5.
    [47]冯云霄,及华,李丽梅.保护酶与果蔬成熟衰老的关系[J].保鲜与加工,2007,7(02):11-13.
    [48]Osmond, C.B., Grace, S.C. Perspectives on photoinhibition and photorespiration in the field[J]. Journal of Experimental Botany,1995,46:1351-1362.
    [49]Shen, B., Jensen, R.G., Bohnert, H.J. Mannitol protects against oxidation by hydroxyl radicals[J]. Plant Physiology,1997,115:527-532.
    [50]Castelluccio, C., Paganga, G, Melikian, N., et al. Antioxidant potential of intermediates in phenylpropanoid metabolism in higher plants[J]. FEBS Letters,1995,368(1):188-192.
    [51]石碧,狄莹.植物多酚[M].2000,北京:科学出版社.
    [52]孙达旺.植物单宁化学[M].1992,北京:中国林业出版社.
    [53]Haslam, E. Plant polyphenols-vegetable tannins revisited[M].1989, Cambridge:Cambridge University Press.
    [54]田迪英,杨荣华.果蔬抗氧化活性与总酚含量相关性研究[J].化学世界,2004,2:70-74.
    [55]陆广念,朱志雄,宋晓敏.常见蔬菜抗氧化活性与总酚含量的研究[J].食品科技,2009,34(9):68-71.
    [56]余小林,孟凌华,邓瑞君,等.数种果蔬的抗氧化活性评价[J].食品科学,2001,22(12):52-56.
    [57]杨冬梅,金月亭,柯乐芹,等.12种常见蔬菜抗氧化活性的比较研究[J].中国食品学报,2007,7(5):24-29.
    [58]张美月,杨荣,习洋,等.多种果蔬抗氧化活性研究[J].河北农业大学学报,2008,31(3):97-101.
    [59]乜兰春,孙建设,李明.酚类物质与果蔬品质研究进展[J].中国食品学报,2003,3(4):93-98.
    [60]宋立江,狄莹.植物多酚研究与利用的意义及发展趋势[J].化学进展,2000,12(2):161-170.
    [61]Sonia, Z.V., Alicia, R.C. Respiratory activity and phenolic compounds in pre-cut celery[J]. Food Chemistry,2007,100:1654-1660.
    [62]陈伟,夜明志,周洁.植物酚类物质研究进展[J].福建农业大学学报,1997,26(4):502-508.
    [63]陈守江,姜松.果蔬中的酚类化合物及其抗氧化作用[J].安徽技术师范学院学报,2003,17(2):144-148.
    [64]凌关庭.有“第七类营养素”之称的多酚类物质[J].中国食品添加剂,2000,1:28-37.
    [65]连毅,李燕.果蔬褐变及其影响因素研究进展[J].食品与药品,2006,8(10):32-36.
    [66]Eskin, N.A.M. Biochemistry of food processing:browning reactions in foods[M].1990, London:Academic Press.
    [67]王清,王蒂.加工型马铃薯品种多酚氧化酶活性的变化规律[J].植物遗传资源学报,2003,4(1):21-26.
    [68]陈坚生,杨幼慧,詹金花,等.果酒中酚类物质及其非酶促褐变的研究进展[J].食品科学,2009,30(7):281-284.
    [69]赵齐川.食品褐变和酶[J].生命的化学,1985,6:13.
    [70]赵喜亭,王会珍,赵月丽,等.铁棍山药褐变特性研究[J].河南农业科学,2009,7:94-98.
    [71]童刚平,邬应龙,陆胜民.鲜切荸荠褐变抑制剂组合的筛选[J].食品工业科技,2004,12:64-67.
    [72]王静,徐为民,诸永志,等.贮藏温度对鲜切牛蒡褐变的影响[J].江苏农业学报,2008,24(4):492496.
    [73]姚洪军,罗晓芳.植物组培材料酚类物质HPLC特性及其与褐变的关系[J].内蒙古农业大学学报,2007,28(2):111-113.
    [74]蓝碧锋,廖春芳.新鲜莲藕的采后生理及其保鲜技术的研究进展[J].农产品加工(学刊),2008,(5):59-62.
    [75]郁志芳,彭贵霞,夏志华,等,鲜切山药酶促褐变机理的研究[J].食品科学,2003,24(5):44-49.
    [76]Maisuthisakul, P., Pongsawatmanit, R., Gordon, M.H. Characterization of the phytochemicals and antioxidant properties of extracts from teaw (cratoxylum formosum dyer)[J]. Food Chemistry, 2007,100(4):1620-1629.
    [77]高雪.植物苯丙氨酸解氨酶研究进展[J].现代农业科技,2009,1:30-33.
    [78]刘程惠,胡文忠,姜爱丽,等.不同贮藏温度下鲜切马铃薯的生理生化变化[J].食品与机械,2008,24(2):3842.
    [79]严守雷.莲藕多酚提取分离鉴定及生物活性研究[D].华中农业大学,2003.
    [80]严守雷,王清章,彭光华,等.莲藕多酚浸提工艺研究[J].食品研究与开发,2006,27(04):55-58.
    [81]许勇泉,尹军峰,袁海波,等.果蔬加工中褐变研究进展[J].保鲜与加工,2007,7(3):11-14.
    [82]徐刚,姚银安.蛋白质组学在研究植物响应逆境机理上的应用[J].广西植物,2009,29(3):372-376.
    [83]Wilkins, M.R. Government backs proteome proposal[J]. Nature,1995,378:653.
    [84]Anderson, N.L., Anderson, N.G Proteome and proteomics:new technologies, new concepts, and new word[J]. Electrophoresis,1998,19:1853-1861.
    [85]Humphery, S.I., Cordwell, S.J., Blackstock, W.P. Proteome research:complementarily and limitations with respect to the RNA and DNA worlds[J]. Electrophoresis,1997,18:1217-1242.
    [86]刘丽杰,于景华,唐中华,等.非模式植物蛋白质组研究进展[J].广西植物,2007,27(2):217-233.
    [87]Lanfen, H., Berndt, P., Roder, D. Two-dimensional map of human brain protein[J]. Electrophoresis,1999,20(4):907-916.
    [88]Chris, S., Shauna, S. Plant functional genomics[J]. Science,1999,285:380-383.
    [89]Weiss, G.H., Kiefer, J.E. Some properties of a measure of resolution in gel electrophoresis and capillary zone electrophoresis[J]. Electrophoresis,1997,18(11):2008-2011.
    [90]Rabilloud, T. Solubilization of proteins for electrophoretic analyses[J]. Electrophoresis,1996, 17(5):813-829.
    [91]Valcu, C.M., Schlink, K. Efficient extraction of proteins from woody plant samples for two-dimensional electrophoresis[J]. Proteomics,2006,6(14):4166-4175.
    [92]夏书华,王明荣,蔡有余.蛋白质组学中的双向电泳技术[J].国外医学遗传学分册,2001,24(6):331-336.
    [93]程国栋,袭明月.蛋白质组研究进展[J].黄山学院学报,2004,6(3):106-108.
    [94]喻娟娟,戴绍军.植物蛋白质组学研究若干重要进展[J].植物学报,2009,44(4):410-425.
    [95]杨何义,应万涛,钱小红.蛋白质组技术的研究进展[J].自然科学进展,2002,12(1):13-17.
    [96]黄丽俊,王建华.蛋白质组研究技术及其进展[J].生物学通报,2005,40(8):4-6.
    [97]Kahn, P. From genome to proteome:looking at a cell's proteins[J]. Science,1995,270: 369-370.
    [98]高飞,王彦平,周宜君,等.植物应答非生物胁迫的蛋白质组学研究进展[J].中国农业科技导报,2008,10(6):9-15.
    [99]徐幼平,徐秋芳,蔡新忠.适于双向电泳分析的番茄叶片总蛋白提取方法的优化[J].浙江农业学报,2007,19(2):71-74.
    [100]许培磊,白吉刚,王秀娟,等.低温对不同基因型黄瓜叶蛋白质组的影响[J].中国农业 科学,2009,42(2):588-596.
    [101]王世刚,王宇,康咏,等.辣椒CMS型雄性不育系与保持系花期叶片蛋白质组分析[J].中国蔬菜,2007,1(2):0-16.
    [102]张侨,韩莹琰,范双喜,等.叶用莴苣叶片蛋白质双向电泳技术体系的建立[J].中国农学通报,2010,26(13):279-283.
    [103]刘雄,陈怀新,李顺意.莲藕采收后生理生化指标的研究[J].湖北大学学报(自然科学版),2000,22(2):188-191.
    [104]冯彤,潘慧生.采后脱皮莲藕贮藏期间生理变化初探[J].仲凯农业技术学院学报,1998,11(1):38-40.
    [105]于新,蓝碧锋,张金云,等.莲藕采后生理及保鲜技术研究进展[J].广州食品工业科技,2003,18(3):50-53.
    [106]许金蓉,周俊斌,王清章,等.不同品种莲藕生理生化特性研究[J].广州食品工业科技,2003,19(04):24-27.
    [107]罗金国,李洁,王清章.鲜切莲藕片的防褐变研究[J].食品研究与开发,2006,27(06):74-76.
    [108]张京芳.鲜切莲藕酶褐变的控制方法[J].资源开发与市场,2005,21(02):91-92.
    [109]段泽敏,王贤萍,周柏玲,等.马铃薯、莲藕加工过程中的褐变控制[J].山西农业科学,2004,32(4):52-56.
    [110]王清章,彭光华,金悠,等.莲藕中酚类物质的提取分析及酶促褐变底物的研究[J].分析科学学报,2004,20(01):38-40.
    [111]李宁,郁志芳,赵友兴,等.莲藕多酚氧化酶的酶学特性[J].江苏农业学报,2002,18(01):63-64.
    [112]高愿军,郝亚勤,南海娟,等.莲藕多酚氧化酶酶学性质的研究[J].食品研究与开发,2006,(07):17-19.
    [113]陈艳乐,孙益飞.莲藕中多酚氧化酶特性的研究[J].温州师范学院学报(哲学社会科学版),2000,21(6):59-61.
    [114]许金蓉,周明全,何建军,等.莲藕不同部位的酶活性研究[J].湖北农业科学,2005,(03):89-90.
    [115]许金蓉,周明全,何建军,等.莲藕不同生长期的生理活性研究[J].湖北农业科学,2005,(02):79-81.
    [1]白青云,管爱萍.莲藕膳食纤维的特性与提取工艺研究[J].淮阴工学院学报,2007,16(1):57-60.
    [2]王瑜,高畅,姜丽艳,等.莲藕多糖的提取及生物活性的研究[J].食品科技,2007,(05):113-116.
    [3]余美料,陈镇,黎海妮,等.莲藕总黄酮的提取及鉴别[J].右江民族医学院学报,2005,27(1):96-97.
    [4]王清章,彭光华,金悠,等.莲藕中酚类物质的提取分析及酶促褐变底物的研究[J].分析科学学报,2004,20(01):38-40.
    [5]高愿军,郝亚勤,南海娟,等.莲藕多酚氧化酶酶学性质的研究[J].食品研究与开发,2006,(07):17-19.
    [6]胡军.莲藕中多酚氧化酶的特性及莲藕的护色[J].食品与发酵工业,1989,(03):47-51.
    [7]胡晓丹,卢黎明,谢笔钧.莲藕酶促褐变的研究[J].江苏食品与发酵,1999,(2):1-4.
    [8]李洁,王清章.莲藕中的酶促褐变及其控制[J].山西食品工业,2000,2:10-12.
    [9]张京芳.鲜切莲藕酶褐变的控制方法[J].资源开发与市场,2005,21(02):91-92.
    [10]王清章,刘怀超,孙颉.莲藕贮藏中褐变度及多酚氧化酶活性的初步研究[J].中国蔬菜,1997,(3):4-6.
    [11]张桂.果蔬采后呼吸强度的测定方法[J].理化检验-化学分册,2005,41:596-597.
    [12]仇立亚,范明红,李启明,等.莲藕贮藏期间褐变生理的比较研究[J].食品科技,2008,(7):231-234.
    [13]曲春香,沈颂东,王雪峰,等.用考马斯亮蓝测定植物粗提液中可溶性蛋白质含量方法的研究[J].苏州大学学报(自然科学版),2006,2:20-23.
    [14]曹建康,姜微波,赵玉梅.果蔬采后生理生化实验指导[M].2007,北京:中国轻工业出版社.
    [15]高晗,孙俊良,高愿军,等.气调包装对鲜切莲藕保鲜效果研究[J].食品科学,2008,29(10):612-614.
    [16]李合生.植物生理化实验原理和技术[M].2000:高等教育出版社
    [17]Elstner, E.F., Heapel, A. Inhibition of nutrition formation from hydroxylammouniun chloride: a Simple assay for superoxide dismutase[J]. Analytical Biochemistry,1976,70:616-620.
    [18]Cano, M.P., Lobvo, M.G. Peroxidase and ployphenol oxidase in long term frozen stored papaya slices differences among hermaphrodite and female papaya fruits[J]. Food Agriculture, 1998,76(1):35-44.
    [19]Giannopolits, C.N., Ries, S.K. Superoxidedismutases, I:occurrence in higher plants[J]. Plant Physiology,1977,59:309-314.
    [20]连毅,李燕.果蔬褐变及其影响因素研究进展[J].食品与药品,2006,8(10):32-36.
    [21]苏新国,蒋跃明,李月标,等.4-HR对鲜切莲藕褐变以及贮藏品质的影响[J].食品科学,2003,24(12):142-145.
    [22]黄建韶,田宏现.莲藕中多酚氧化酶的性质[J].吉首大学学报(自然科学版),2002,23(2):82-84.
    [23]Janave, M.T. Enzymic degradation of chlorophyllin cavendishbananas:in vitro evidence for two independent degradative pathways[J]. Plant Physiology Biochemistry,1997,35:837-846.
    [24]Mager, A.M., Harel. Polyphenoloxidases in plants[J]. Phytochemistry,1979,8:193-215.
    [25]李淑珍.莲藕食用价值分析及其加工[J].河南农业大学学报,2007,3:25.
    [26]刁英,韩延闯,何建军,等.莲藕研究进展[J].氨基酸和生物资源,2004,26(01):8-11.
    [27]许晓春,林朝朋,徐齐钴.几种保鲜剂处理对切分莲藕贮藏效果的影响[J].贮藏加工,2008,(02):242-244.
    [28]罗金国,李洁,王清章.鲜切莲藕片的防褐变研究[J].食品研究与开发,2006,27(06):74-76.
    [29]冯彤,潘慧生.采后脱皮莲藕贮藏期间生理变化初探[J].仲凯农业技术学院学报,1998,11(1):38-40.
    [30]祝美云,党建磊,魏征,等.壳聚糖复合涂膜保鲜鲜切莲藕的研究[J].食品与机械,2010,26(1):145-147.
    [31]许晓春,林朝朋,朱定和.切分莲藕褐变抑制剂的筛选[J].食品工业,2008,(02):51-53.
    [32]罗金国,王清章,张学杰,等.切割莲藕贮藏期间的变化及防褐变剂的筛选[J].湖北农业科学,2007,46(01):124-126.
    [33]周雄祥.莲藕气调贮藏保鲜技术研究[D].华中农业大学,2007.
    [1]Soliva, F.R., Grigelmo, M.N., Odriozola, S.I., et al. Browning evaluation of readyto-eat apples as affected by modified atmosphere packaging[J]. Journal of Agricultural and Food Chemistry, 2001,49(8):3685-3690.
    [2]吴锦铸,余小林,曾洲华,等.切分蔬菜保鲜工艺研究[J].食品与发酵工业,2000,26(4):33-37.
    [3]彭丽桃,蒋跃明,杨书珍.适度加工果蔬生理特性及质量控制措施[J].农业工程学报,2002,18(3):178-185.
    [4]于新,蓝碧锋,张金云,等.连藕采后生理及保鲜技术研究进展[J].广州食品工业科技,2003,18(3):50-53.
    [5]吴光旭,张长峰.复合护色液对鲜切莲藕护色效果研究[J].食品科技,2006,(05):111-114.
    [6]张京芳.鲜切莲藕酶褐变的控制方法[J].资源开发与市场,2005,21(02):91-92.
    [7]许晓春,林朝朋,徐齐钻.几种保鲜剂处理对切分莲藕贮藏效果的影响[J].贮藏加工,2008,(02):242-244.
    [8]潘永贵.控制鲜切果蔬酶促褐变添加剂类型及应用方法[J].保鲜与加工,2007,7(5):54-56.
    [9]高晗,孙俊良,高愿军,等.气调包装对鲜切莲藕保鲜效果研究[J].食品科学,2008,29(10):612-614.
    [10]车东,卢立新.鲜切莲藕气调包装及其质量评价[J].食品与生物技术学报,2008,27(01):44-48.
    [11]罗金国,李洁,王清章.鲜切莲藕片的防褐变研究[J].食品研究与开发,2006,27(06):74-76.
    [12]Autio, W.R., Bramlage, W.J. Chilling sensitivity of tomato fruit in relation to ripening and senescence[J]. Journal of American Society and Hortical Science,1986,111:201-204.
    [13]刘亭,钱政江,屈红霞,等.利用LI-6262 CO2/H2O分析仪测定果蔬的呼吸强度[J].保鲜与加工,2010,10(4):55-56.
    [14]Pukacka, S., Ratajczak, E. Production and scavenging of reactive oxygen species in Fagus sylvatica seeds during storage at varied temperature and humidity[J]. Journal of Plant Physiology, 2005,162:873-885.
    [15]张美霞,琚争艳,阚建全.鲜切藕片褐变程度的数学模型研究[J].食品工业科技,2009,(01):116-118.
    [16]周俊辉,孔祥伟,黄政华.莲藕除锈与保鲜的初步研究[J].江西农业学报,2007,19(3): 51-53.
    [17]Popham, P.L., Novacky, A. Use of dimethyl sulfoxide to detect hydroxyl radical during bacteria-induced hypersensitive reaction[J]. Plant Physiology,1991,96:1157-1160.
    [18]许晓春,林朝朋,朱定和.切分莲藕褐变抑制剂的筛选[J].食品工业,2008,(02):51-53.
    [19]连毅,李燕.果蔬褐变及其影响因素研究进展[J].食品与药品,2006,8(10):32-36.
    [20]林植芳,李双顺,林桂珠,等.衰老叶片和叶绿体中H202的累积与膜脂过氧化的关系[J].植物生理学通讯,1988,14(4):356-361.
    [21]金昌海,阚娟,王红梅,等.桃果实成熟软化过程中活性氧代谢的变化[J].扬州大学学报,2006,27(4):85-89.
    [22]Dawsond, W., Meltonl, D., Watkinsc, B. Cell wall changes in nectarines (prunus persica): solubilization and depolymerization of pectic and neutral polymers during ripening and in mealy fruit [J]. Plant Physiology,1992,100:1203-1210.
    [23]高愿军,郝亚勤,南海娟,等.莲藕多酚氧化酶酶学性质的研究[J].食品研究与开发,2006,27(7):17-19.
    [24]李宁,郁志芳,赵友兴,等.莲藕多酚氧化酶的酶学特性[J].江苏农业学报,2002,18(1):63-64.
    [25]王艳颖,胡文忠,庞坤,等.机械伤害引起果蔬褐变机理的研究进展[J].食品工业科技,2007,28(11):230-233.
    [26]叶梅.植物组织褐变的研究进展[J].重庆工商大学学报,2005,22(4):326-310.
    [27]林河通,席玛芳,陈绍军.龙眼果实采后失水果皮褐变与活性氧及酚类代谢的关系[J].植物生理与分子生物学学报,2005,31(3):287-297.
    [28]李湘利,刘静,魏子浩,等.姜蒜浸提液与壳聚糖复合保鲜切分莲藕护色效果的研究[J].食品科技,2010,35(1):253-257.
    [29]Halliwell, B., Gutteridge, J.M. Role of free radicals and catalytic metal ions in human disease: an overview[J]. Methods in Enzymology,1990,186:1-85.
    [30]徐新娟.植物体内活性氧代谢及功能研究进展[J].河南科技学院学报,2007,35(2):10-12.
    [31]Adam, A., Farkas, T., Somlyai, G., et al. Consequence of O2'- generation during a bacterially induced hypersensitive reaction in tobacco:deterioration of membrane lipids[J]. Physiological and Molecular Plant Pathology,1989,34:13-26.
    [32]Price, A.H., Hendry, G.A.F. Ironcatalyzed oxygen radical for mation and its possible contribution to drought damage in nine native grasses and three cereals[J]. Plant Cell Environment, 1991,14:477-484.
    [33]王群,尹飞,李潮海.水分胁迫下植物体内活性氧自由基代谢研究进展[J].河南农业科 学,2004,10:25-28.
    [34]许勇泉,尹军峰,袁海波,等.果蔬加工中褐变研究进展[J].保鲜与加工,2007,7(3):11-14.
    [35]王清章,彭光华,金悠,等.莲藕中酚类物质的提取分析及酶促褐变底物的研究[J].分析科学学报,2004,20(01):38-40.
    [36]郁志芳,李宁,赵友兴,等.鲜切莲藕贮藏中的酚类物质变化及控制褐变的抑制剂组合筛选[J].南京农业大学学报,2003,26(1):78-81.
    [37]杨淑慎,高俊凤.活性氧、自由基与植物的衰老[J].西北植物学报,2001,21(2):215-220.
    [38]吴振先,苏美霞,陈维信,等.贮藏荔枝果皮多酚氧化酶及过氧化物酶与褐变的研究[J].华南农业大学学报,1998,19(1):12-15.
    [1]陈伟,夜明志,周洁.植物酚类物质研究进展[J].福建农业大学学报,1997,26(4):502-508.
    [2]刘红锦,徐为民,王静,等.果蔬的褐变及其控制方法[J].食品保鲜,2008,29(4):159-162.
    [3]Robards, K., Prenzler, P.D., Tucker, G., et al. Phenolic compounds and their role in oxidative processes in fruits[J]. Food Chemistry,1999,66(4):401-436.
    [4]陈守江,姜松.果蔬中的酚类化合物及其抗氧化作用[J].安徽技术师范学院学报,2003,17(2):144-148.
    [5]Keith, R.W., Duane, L.T., Mahlum, D. Quantitative Paper-Chromatographic determination of phenols[J]. Journal of Chromatography A,1958,1:534-536.
    [6]Rodriguez, I., Llompart, M.P., Cela, R. Solid-phase extraction of phenols[J]. Journal of Chromatography A,2000,885(1-2):291-304.
    [7]李爱珍,邵秀芝,严奉伟.莲藕中多酚类物质的提取工艺研究[J].中国食品添加剂,2009,(05):80-83.
    [8]胡晓丹,卢黎明,谢笔钧.莲藕酶促褐变的研究[J].江苏食品与发酵,1999,(2):1-4.
    [9]严守雷,王清章,彭光华,等.莲藕多酚浸提工艺研究[J].食品研究与开发,2006,27(4):55-58.
    [10]严守雷,王清章,陈福生.莲藕多酚萃取工艺的响应面法优化研究[J].食品科学,2007,28(11):231-235.
    [11]严守雷,王清章,彭光华,等.莲藕多酚对微生物抑制作用的研究[J].食品研究与开发,2006,27(02):148-151.
    [12]严守雷,王清章,彭光华.莲藕多酚抗氧化作用研究[J].中国粮油学报,2005,20(04):77-81.
    [13]Pirie, A., Mullins, M.G. Changes in anthocyanin and phenolics content of grapevine leaf and fruit tissue treated with sucrose, nitrate and abscisic acid[J]. Plant Physiology,1976,58:468-472.
    [14]Stefanie, B., Gerald, S., Sabine, K., et al. Characterisation of various grape seed oils by volatile compounds, triacylglycerol composition, total phenols and antioxidant capacity[J]. Food Chemistry,2008,108:1122-1132.
    [15]张美霞,琚争艳,阚建全.鲜切藕片褐变程度的数学模型研究[J].食品工业科技,2009,(01):116-118.
    [16]颜军,苟小军,邹全付,等.分光光度法测定Fenton反应产生的羟基自由基[J].成都大学学报,2009,28(2):91-94.
    [17]王清章,彭光华,金悠,等.莲藕中酚类物质的提取分析及酶促褐变底物的研究[J].分析科学学报,2004,20(01):3840.
    [18]许金蓉,周明全,何建军,等.莲藕不同生长期的生理活性研究[J].湖北农业科学,2005,(02):79-81.
    [19]Amiot, M.J., Fleuriet, A., Cheynier, V., et al. Phenolic compounds and oxidative mechanisms in fruits and vegetables[J]. Phytochemistry of Fruits and Vegetables,1997,41:51-85.
    [20]姚洪军,罗晓芳.植物组培材料酚类物质HPLC特性及其与褐变的关系[J].内蒙古农业大学学报,2007,28(2):111-113.
    [21]Ju, Z.G., Yuan, Y.B., Liu, C.L., et al. Relationships among simple phenol, flavonoid and anthocyanin in apple fruit peel at harvest and scald susceptibility [J]. Postharvest Biology and Technology,1996,8(2):83-93.
    [22]Maisuthisakul, P., Pongsawatmanit, R., Gordon, M.H. Characterization of the phytochemicals and antioxidant properties of extracts from Teaw (Cratoxylum formosum Dyer)[J]. Food Chemistry,2007,100(4):1620-1629.
    [23]石碧,狄莹.植物多酚[M].2000,北京:科学出版社.
    [24]宋立江,狄莹.植物多酚研究与利用的意义及发展趋势[J].化学进展,2000,12(2):161-170.
    [25]Albert, H., Mfarkhart, I.H. Chilling injury:a reviwe of possible causes[J]. Hort Science,1986, 6:1309-1333.
    [26]Adam, A., Farkas, T., Somlyai, G., et al. Consequence of O2'- generation during a bacterially induced hypersensitive reaction in tobacco:deterioration of membrane lipids[J]. Physiological and Molecular Plant Pathology,1989,34:13-26.
    [27]Price, A.H., Hendry, G.A.F. Ironcatalyzed oxygen radical for mation and its possible contribution to drought damage in nine native grasses and three cereals[J]. Plant Cell Environment, 1991,14:477-484.
    [28]李红卫,冯双庆,赵玉梅.冬枣果皮色泽与酚类物质含量相关性的研究[J].北京农学院学报,2004,19(4):63-66.
    [29]余小林,孟凌华,邓瑞君,等.数种果蔬的抗氧化活性评价[J].食品科学,2001,22(12):52-56.
    [30]Husain, S.R., Cillard, J., Cillard, P. Hydroxyl radical scavenging activity of flavonoids[J]. Phytochemistry,1987,26(9):2489-2491.
    [31]Liu, R.H., Yu, B.Y., Qiu, S.X., et al. Study on scavenging activities for superoxide anion radicals and structure-activity relationship of polyphenolic compounds from leaves of Crataegus[J]. Journal of Chinese Pharmacy,2005,40(14):1066-1069.
    [1]Wilkins, M. Government backs proteome proposal[J]. Nature,1995,378(6538):653-656.
    [2]Anderson, L., Seilhamer, J. A comparison of selected mRNA and protein abundances in human liver[J]. Electrophoresis,1997,18(34):533-537.
    [3]Humphery-Smith, I., Cordwell, S.J., Blackstock, W.P. Proteome research:complementarity and limitations with respect to the RNA and DNA worlds[J]. Electrophoresis,1997,18:1217-1242.
    [4]Damerval, C., Vienne, D.D., Zivy, M., et al. Technical improvements in two-dimensional electrophoresis increase the level of genetic variation detected in wheat-seedling proteins[J]. Electrophoresis,1986,7(1):52-54.
    [5]Park, O.K. Proteomic studies in plants[J]. Journal of Biochemistry and Molecular Biology, 2004,37(1):133-138.
    [6]Hochholdinger, F., Sauer, M., Dembinsky, D., et al. Proteomic dissection of plant development[J]. Proteomics,2006,6(14):4076-4083.
    [7]Schnable, P.S., Hochholdinger, f., Nakazono, M. Global expression profiling applied to plant development J]. Current Opinion in Plant Biology,2004,7(1):50-56.
    [8]郝玉龙,徐伟民,杨祸馨.基于臭氧生鲜切片莲藕保鲜包装的试验研究[J].包装工程,2008,29(10):55-57.
    [9]胡晓丹,卢黎明,谢笔钧.莲藕酶促褐变的研究[J].江苏食品与发酵,1999,(2):1-4.
    [10]李洁,王清章.莲藕中的酶促褐变及其控制[J].山西食品工业,2000,2:10-12.
    [11]罗金国,李洁,王清章.鲜切莲藕片的防褐变研究[J].食品研究与开发,2006,27(06):74-76.
    [12]王向阳,姜丽佳,王忠英.莲藕的酶促褐变及其贮藏中褐变的控制[J].农业工程学报,2009,(04):276-280.
    [13]曹建康,姜微波,赵玉梅.果蔬菜后生理生化实验指导[M].2007,北京:中国轻工业出版社.
    [14]Saravanan, R.S., Rose, J.K.C. A critical evaluation of sample extraction techniques for enhanced proteomic analysis of recalcitrant plant tissues[J]. Proteomics,2004,4:2522-2532.
    [15]Sarry, J.E., Sommerer, N., Sauvage, F.X., et al. Grape berry biochemistry revisited upon proteomic analysis of the mesocarp[J]. Proteomics,2004,4:201-215.
    [16]刁英,韩延闯,何建军,等.莲藕研究进展[J].氨基酸和生物资源,2004,26(01):8-11.
    [17]Jiang, Y.Q., Yang, B., Harris, N.S., et al. Comparative proteomic analysis of NaCl stress-responsive proteins in arabidopsis roots[J]. Journal of Experimental Biology,2007,58(13): 3591-3607.
    [18]Minagawa, H., Honda, M, Miyazaki, K., et al. Comparative proteomic and transcriptomic profiling of the human hepatocellular carcinoma[J]. Biochemical and Biophysical Research Communications,2008,366:186-192.
    [19]Blackstock, W.P., Weir, M.P. Proteomics:quantitative and physical mapping of cellular proteins[J]. Trends of Biotechnology,1999,17(3):121-127.
    [20]陈晶瑜,郭宝峰,付丽,等.适合双向电泳的植物全蛋白提取方法比较[J].中国农学通报,2010,26(23):97-100.
    [21]Canovas, F.M., Dumas-Gaudot, E., Recorbet, G, et al. Plant proteome analysis[J]. Proteomics, 2004,4:285-298.
    [22]Annamraju, D.S., Nathan, W.O., David, W.E. Plant protein isolation and stabilization for enhanced resolution of two-dimensional polyacrylamide gel electrophoresis[J]. Analytical Biochemistry,2008,379:192-195.
    [23]王艳颖,胡文忠,庞坤,等.机械伤害引起果蔬褐变机理的研究进展[J].食品工业科技,2007,28(11):230-233.
    [24]Kvint, K., Nachin, L., Diez, A., et al. The bacterial universal stress protein:function and regulation[J]. Current Opinion in Microbiology,2003,6:140-145.
    [25]王三根.植物的应激反应和应激蛋白[J].生命的化学,1995,15(1):21-23.
    [26]Pockley, A.G Heat shock proteins as regulators of the immune response[J]. The Lancet,2003, 8(362):469-474.
    [27]计红,杨焕民,吴永魁.热应激蛋白研究进展及其应用前景[J].生物学杂志,2005,22(4):59-62.
    [28]Vierling, E. The role of heat shock proteins in plants[J]. Annual Review Plant Physiology and Plant Molecular Biology,1991,42:579-620.
    [29]Mathew, A., Mathur, S.K., Jolly, C., et al. Stress-specific activation and repression of heat shock factors 1 and 2[J]. Molecular and Cellular Biology,2001,21(21):7163-7171.
    [30]李春子,成善汉.植物小分子热激蛋白的进化及表达调控研究进展[J].热带生物学报,2010,1(2):193-196.
    [31]龚兴国,于红.HSP60的功能[J].生物化学与生物物理进展,2003,30(4):649.
    [32]王义琴,张利明,李文彬,等.植物病原相关蛋白研究进展[J].生物工程进展,2000,20(5):36-38.
    [33]王群,尹飞,李潮海.水分胁迫下植物体内活性氧自由基代谢研究进展[J].河南农业科学,2004,10:25-28.
    [34]杜秀敏,殷文璇,赵彦修,等.植物中活性氧的产生及清除机制[J].生物工程学报,2001,17(2):121-125.
    [35]Rosen, D.R., Siddique, T., Patterson, D., et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis[J]. Nature,1993,362:59-62.
    [36]Tewari, R.K., Kumar, P., Sharma, P.N., et al. Modulation of oxidative stress responsive enzymes by excess cobalt[J]. Plant Science,2002,162:381-388.
    [37]杨淑慎,高俊凤.活性氧、自由基与植物的衰老[J].西北植物学报,2001,21(2):215-220.
    [38]Rhee, S., Chae, H., Kim, K. Peroxiredoxins:a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling[J]. Free Radical Biology and Medicine, 2005,38(12):1543-1552.
    [39]Aust, S.D., Morehouse, L.A., Thomas, C.E. Role of metals in oxygen radical reactions[J]. Journal of Free Radicals in Biology and Medicine,1985,1(1):3-25.
    [40]Seckback, J. Ferreting out the secrets of plant ferritin-a review[J]. Journal of Plant Nutrition, 1982,5:369-394.
    [41]Larade, K., Storey, K.B. Accumulation and translation of ferritin heavy chain transcripts following anoxia exposure in a marine invertebrate[J]. Journal of Experimental Biology,2004, 207(8):1353-1360.
    [42]Harrison, P.M., Arosio, P. The ferritins:molecular properties, iron storage function and cellular regulation[J]. Biochimicaet Biophysica Acta,1996,1275:161-203.
    [43]Thei, E.C. The ferritin family of iron storage proteins[J]. Advances in Enzymology and Related Areas of Molecular Biology,1990,63:421-449.
    [44]Chasteen, N.D. Ferritin:Uptake, storage, and release of iron[J]. Metal Ions in Biological Systems,1998,35:479-514.
    [45]Rho, B.S., Hung, L.W., Holton, J.M., et al. Functional and structural characterization of a thiol peroxidase from mycobacterium tuberculosis[J]. Journal of Molecular Biology,2006,361(5): 850-863.
    [46]Li, J., Zhang, W.B., Loukas, A., et al. Functional expression and characterization of echinococcus granulosus thioredoxin peroxidase suggests a role in protection against oxidative damage[J]. Gene,2004,326(4):157-165.
    [47]Serrano, R. Structure and function of plasma membrane ATPase[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1989,40:61-94.
    [48]Mccarty, R.E. A plant biochemist's view of H+-ATPases and ATP synthases[J]. Journal of Experimental Biology,1992,172(1):431-441.
    [49]Kost, B., Lemiche, E., Chua, N.H. Cytoskeleton in plant development[J]. Current Opinion in Plant Biology,1999,2:462-470.
    [50]Semertenko, A.P., Allwood, E.G., Khan, S., et al. Interaction of pollen specific actin-depolymerizing factor with actin[J]. Plant Journal,2001,25:203-212.
    [51]Wegierski, T., Billy, E., Nasr, K, et al. Bmslp, a G-domain-containing protein, associates with Rcllp and is required for 18S rRNAbiogenesis in yeast[J]. RNA,2001,7(9):1254-1267.
    [52]张盈,夏琳,逄文强,等.腺苷酸激酶与AMP信号在感知及维持机体能量中的作用[J].生命科学,2011,23(5):434-439.
    [53]杜光伟,周严,袁建刚,等.RRMRNA结合蛋白的结构与功能[J].生物化学与生物物理进展,1999,26(4):305-307.
    [54]双宝,韩英鹏,李明,等.真核细胞翻译起始因子5A (eIF5A)研究进展[J].东北农业大学学报,2010,41(8):156-160.
    [55]肖强,郑海雷.14-3-3蛋白与植物细胞信号转导[J].细胞生物学杂志,2005,27:417-422.
    [56]崔娜,李天来,李悦.植物中14-3-3蛋白的主要功能[J].生物技术,2007,17(2):86-89.
    [57]Farnham, P.J., Platt, T. Rho-independent termination:dyad symmetry in DNA causes RNA polymerase to pause during transcription in vitro[J]. Nucleotides and Nucleic Acids Research, 1981,9(3):563-577.