La和Ce对牡蛎Cd吸收和理化指标的影响及其富集规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国和全球工业化进程的加快,大量重金属以多种方式进入海洋,由此造成海洋重金属污染不断加剧。海洋贝类由于其滤食特性和移动性差而极易富集重金属,重金属超标已成为贝类食品安全的重要威胁,其中以镉(cadmium, Cd)超标尤为严重。已有研究者就如何从已污染贝类中脱除Cd进行了研究,本文则从抑制Cd吸收的角度对解决贝类Cd超标的问题进行了尝试。Cd在双壳贝类中通过Ca~(2+)通道吸收,很多稀土元素具有与Ca~(2+)相近的离子半径,因此是潜在的Cd吸收抑制剂。稀土已在医药、农业等领域获得广泛应用,其中镧(lanthanum,La)和铈(cerium, Ce)已于2008年被农业部纳入了饲料添加剂品种目录用于畜禽及鱼虾养殖。由于La和Ce含量较为丰富且离子半径与Ca~(2+)相近,本文探讨了这两种稀土元素对太平洋牡蛎(Crassostrea gigas)Cd吸收的影响,并研究了这两种稀土元素在太平洋牡蛎中的富集代谢规律及其对太平洋牡蛎部分理化指标的影响,以期为La和Ce在解决海洋贝类Cd超标问题中的应用提供参考。本文结论如下:
     1、青岛市售贝类的Cd超标情况较为严重。对青岛城阳水产品批发市场中销售的太平洋牡蛎、紫贻贝(Mytilus edulis)、毛蚶(Scapharca subcrenata)、杂色花蛤(Ruditapes philippinarum)和栉孔扇贝(Chlamys ferrari)体内的Cd和Cu含量进行了为期一年的连续跟踪,每月定期取样,发现除杂色花蛤外,其余四种贝类的Cd含量在所有月份均超标,其中以栉孔扇贝和太平洋牡蛎最为严重,其Cd含量分别在7.1~16.3mg/kg·dw和4~12.7mg/kg·dw之间,而且太平洋牡蛎的Cu含量在部分月份也超标,表明解决贝类Cd超标问题已经迫在眉睫。
     2、增加海水的Ca浓度不能降低太平洋牡蛎对Cd的吸收。虽然在海水中添加CaCl_2使Ca浓度达到0.525g/L、0.7g/L和0.875g/L后可使Cd对太平洋牡蛎的96h半致死剂量从17.271mg/L升高至24.988mg/L、43.932mg/L和41.795mg/L,并显著降低由Cd引起的氧化损伤,但并不能抑制太平洋牡蛎对Cd的吸收。
     3、La和Ce均显著抑制太平洋牡蛎对Cd的吸收。在第12天,5μmol/L和10μmol/L的La(NO_3)_3对Cd吸收的抑制率分别达到了36%和44%,25μmol/L的Ce(NO_3)_3对Cd吸收的抑制率达到了41%;组织水平研究表明,La和Ce降低了Cd在太平洋牡蛎鳃达到吸附饱和的速度,从而减少了Cd由鳃向消化腺的转运。
     4、La和Ce在太平洋牡蛎体内具有较强的蓄积性,鳃和消化腺是La和Ce的主要富集部位。当太平洋牡蛎暴露于含1、5或10μmol/L La(NO_3)_3或Ce(NO_3)_3的海水24天后,其体内的La和Ce含量分别达到了79.75、199.70、425.82mg/kg·dw及42.07、158.23、236.28mg/kg·dw;组织水平研究表明,各组织器官对La和Ce富集能力的强弱顺序均为鳃>消化腺>剩余组织>肌肉;鳃是La和Ce的主要富集部位,24天时其所结合La和Ce的百分比分别为64%和51%,其次是消化腺,分别为13%和25%,肌肉结合的比例最低,仅为1.14%和2.69%;La和Ce的亚细胞水平分布之间无显著差异,均主要与MTLP(metallothionein-like protein)结合,比例分别为38.2%和35.4%,其次是细胞器,分别为25.7%和29.7%,与MRG(metal-rich granules)及HSP(heat-sensitive protein)结合的比例最低。自身脱除实验发现,31天内太平洋牡蛎体内富集的La和Ce含量无明显降低。
     5、La和Ce对太平洋牡蛎的急性毒性较低。太平洋牡蛎暴露于75μmol/L的La(NO_3)_3或Ce(NO_3)_396h后均未观察到死亡;La和Ce短时间内不会在鳃和消化腺引起氧化损伤,但是当La和Ce富集到一定程度时会使鳃和消化腺中的MDA含量显著升高;另外,Ce可抑制太平洋牡蛎鳃或消化腺中p-gp(p-glycoprotein)和MT(metallothionein)基因的表达。
     6、La和Ce对太平洋牡蛎的肌肉指数和闭壳肌质构无显著影响,但显著影响了蛋白质、脂肪、Zn和Cu含量。1μmol/L的La(NO_3)_3使太平洋牡蛎的总蛋白含量增加,但1、5μmol/L的Ce(NO_3)_3显著降低了总蛋白含量;此外,1μmol/LLa(NO_3)_3组的脂肪含量显著降低,但是10μmol/L Ce(NO_3)_3组的脂肪酸含量与空白组相比显著增加。La和Ce对太平洋牡蛎闭壳肌的质构无显著影响,但是10μmol/L Ce显著降低了壳闭肌的持水力;La和Ce对太平洋牡蛎的金属含量也有一定影响。经1、5、10μmol/L的La(NO_3)_3处理30天后,Zn的含量分别降低了48%、60%和39%,Cu的含量分别降低了63%、32%和39%;而经上述三个剂量的Ce(NO_3)_3处理后,Zn和Cu的含量分别降低了8%、44%、18%和0%、11%、28.6%。
     综上所述,La和Ce可显著抑制太平洋牡蛎对Cd的吸收,急性毒性较低,短期内不会对太平洋牡蛎造成氧化损伤,并且对太平洋牡蛎的肌肉指数、部分常规营养组分及闭壳肌的质构无太大影响。但是,La和Ce在太平洋牡蛎体内具有较强的蓄积性,这与其在畜禽中的代谢规律差别很大;此外,长时间接触La和Ce会导致氧化损伤和Zn元素含量降低,并抑制p-gp和MT基因的表达,这可能会对太平洋牡蛎的生理代谢产生不利影响。因此,La和Ce在贝类养殖及解决Cd超标问题中的应用还需要进一步的研究。
With the rapid progression of industrialization in both China and the world, theheavy metal (especially Cd) pollution issue of seawater has turned to be a worlwideconcern. Marine bivalves are filter-feeding molluscs and can accumulate extremelyhigh levels of heavy metals. Heavy metal pollution greatly threatens the safety ofmarine bivalve-derived foods. The selection of unpolluted rearing sea area is thepreferred way for avoding heavy metal pollution in bivalves, but it is still meaningfulto develop alternative solutions. Some researches have attempted to elimiate Cd frompolluted bivalves, the current research aims to solve the problem by inhibiting Cdaccumulation in bivalves. Marine bivalves absorb cadmium through the Ca~(2+)channeland inhibitors of the channel are theoritically able to inhibit Cd accmuluation. Manyrare earth elements have radiuses similar to that of Ca~(2+)and are potential Cdaccumuliation inhibitors. The current research explores the possiblity of applying Laand Ce, which have been approved by the Ministry of Agriculture for addition tolivestock and fish feeds, in inhbiting Cd accumulation in Crassostrea gigas. Theresults are as follows:
     1. The Cd pollution issue of marine bivales sold in Qingdao markets is serious.The monthly varition of Cd and Cu contents in five common bivalves sold in aQingdao market, includign Crassostrea gigas, Mytilus edulis, Scapharca subcrenata,Ruditapes philippinarum, and Chlamys ferrari, were followed for one year. It wasfound that the Cd contents of all the bivalves except Ruditapes philippinarumexceeded the permitted value of the national standard. Chlamys ferrari andCrassostrea gigas had the highest Cd contents and were within the ranges7.1~16.3mg/kg·dw and4~12.7mg/kg·dw respectively. Besides, the Cu contents ofCrassostrea gigas also exceeded the permitted values in some months. Crassostreagigas was selected as the model bivale in subsequent researches.
     2. Increased Ca concentration in seawater cannot inhibit the absorption of Cd byCrassostrea gigas. Though elevated seawater Ca concentration of0.525g/L,0.7g/L,and0.875g/L increased the96h LD50of Cd from17.271mg/L to24.988mg/L,43.932mg/L, and41.795mg/L respectively and decreased the oxidative damageinduced by Cd in oyster gill, it could not significantly inhibit the accumulation of Cdin Crassostrea gigas.
     3. Both La and Ce significantly inhibit the accumulation of Cd in Crassostrea gigas. On day12, the inhibition rates of Cd accumulation by5μmol/L and10μmol/LLa(NO_3)_3reached36%and44%respectively and that of25μmol/L Ce(NO_3)_3reached41%. Organ-level experiments revealed that the two rare earth metals elongated thetime for saturated absorption of Cd in the gill and thus reduced the transfer of Cd fromgill to digestive gland.
     4. La and Ce are accumulated in high levels in Crassostrea gigas. After exposureto1,5, and10μmol/L La(NO_3)_3or Ce(NO_3)_3for24days, the contents of La reached79.75,199.70, and425.82mg/kg·dw respectively and that of Ce reached42.07,158.23, and236.28mg/kg·dw respectively. Distribution in organs revealed that gillhad the highest La and Ce contents, followed by digestive gland, remainder, andmuscle. Gill was the main organ for La and Ce storage and the percentages of the twometals were64%and51%on day24, followed by digestive gland with percentages of13%and25%respectively. Subcellular research indicated that both La and Ce boundmainly with MTLP (metallothionein-like protein) and their percentages were38.2%and35.4%respectively. Organelles were the second most important fractions for Laand Ce sequestration and the percentages were25.7%and29.7%respectively.Depuration experiments showed that no significant reduction of La and Ce contentswas observed after one month, indicating slow elimination of the two elements fromCrassostrea gigas.
     5. The acute toxicity of La or Ce to Crassostrea gigas is low. After exposure to75μmol/L (the highest concentration available in seawater) La(NO_3)_3or Ce(NO_3)_3for96h, no mortality was observed. La and Ce did not induce oxidative damage aftershort-term exposure, but long-term exposure resulted in elevated MDA levels in boththe gill and digestive gland. Besides, Ce suppressed the expression of p-gp and MTgenes, indicating difference behavior from heavy metals.
     6. Exposure to La or Ce does not cause changes in muscle index or muscletexture, but influences the contents of protein, lipid, Zn, and Cu. La(NO_3)_3in1μmol/Lincreased the protein contents in Crassostrea gigas, but1and5μmol/L Ce(NO_3)_3reduced the index. Besides,1μmol/L La(NO_3)_3reduced the lipid content, but10μmol/L Ce(NO_3)_3increased the lipid content. Exposure to La and Ce did not affectthe texture of adductor muscle, but10μmol/L Ce(NO_3)_3significantly reduced thewater-holding capacity of the muscle. Exposure to La(NO_3)_3and Ce(NO_3)_3significantly reduced the contents of Ca, Cu, and Zn. After exposure to1,5, and10μmol/L La for30days, the Zn contents decreased by48%,60%,39%and the Cu contents decreased by63%,32%,39%. After exposure to the three concentrations ofCe(NO_3)_3, the contents of Zn and Cu decreased by8%,44%,18%and0%,11%, and28.6%respectively.
     It was concluded that both La and Ce significantly inhibited the accumulation ofCd in Crassostrea gigas and did not induce oxidative damage or cause markedchanges in texture and nutrient contents. Because rare earth elements have gainedwide practical applcations freshwater aquaculture, La and Ce have potentialapplications in reducing Cd accumulation in marine bivalves. However, La and Cewere accumulated in very high levels in oyster soft tissues and cannot be eliminatedwithin a short time, which differed significantly from the metabolism of rare earthelements in livestocks; besides, long-term exposure to rare earth element led tooxidatve damage and reduced Zn contents, which possibly cause adverse effect on thephysiological activities of bivalves. Further researches are necessary for promotingthe application of La and Ce in marine bivalve rearing and Cd bioaccumulationihnibition.
引文
[1] Angelidis M O, Aloupi M. Geochemical study of coastal sediments influenced byriver-transported pollution: Southern Evoikos Gulf, Greece[J]. Marine Pollution Bulletin,2000,40(1):77-82.
    [2]刘昌岭,张经,于志刚﹒黄海海域大气气溶胶特征及重金属的大气输入量研究[J]﹒海洋环境科学,1998,17(4):1-6.
    [3] Pekey H. The distribution and sources of heavy metals in Izmit Bay surface sedimentsaffected by a polluted stream[J]. Marine Pollution Bulletin,2006,52(10):1197-1208.
    [4]田金,李超,宛立,等﹒海洋重金属污染的研究进展[J]﹒水产科学,2009,28(7):413-418.
    [5]于萍﹒锦州湾重金属污染特征和风险评估[D]﹒山东青岛:中国海洋大学,2011.
    [6] Meng W, Qin Y, Zheng B, et al. Heavy metal pollution in Tianjin Bohai Bay, China[J].Journal of Environmental Sciences,2008,20(7):814-819.
    [7]朱爱美﹒青岛胶州湾环境质量研究与生态风险评估[D]﹒吉林长春:吉林大学,2007.
    [8]王嘉华﹒大连湾沉积物中重金属的污染状况及物源指示意义研究[D]﹒辽林大连:大连海事学院,2012.
    [9] Godt J, Scheidig F, Grosse-Siestrup C, et al. The toxicity of cadmium and resulting hazardsfor human health[J]. Journal of Occupational Medicine and Toxicology,2006,1(1):22.
    [10] Graeme K A, Pollack C V. Heavy metal toxicity, Part I: arsenic and mercury[J]. The Journalof Emergency Medicine,1998,16(1):45-56.
    [11] Graeme K A, Pollack C V. Heavy metal toxicity, part II: lead and metal fume fever[J]. TheJournal of Emergency Medicine,1998,16(2):171-177.
    [12] Ibrahim D, Froberg B, Wolf A, et al. Heavy metal poisoning: clinical presentations andpathophysiology[J]. Clinics in Laboratory Medicine,2006,26(1):67-97.
    [13] Engel D W. Accumulation and cytosolic partitioning of metals in the American oysterCrassostrea virginica[J]. Marine Environmental Research,1999,47(1):89-102.
    [14] Munoz-Barbosa A, Gutierrez-Galindo E A, Flores-Munz G. Mytilus californianus as anindicator of heavy metals on the northwest coast of Baja California, Mexico[J]. MarineEnvironmental Research,2000,49(2):123-144.
    [15] Regoli F, Orlando E. Mytilus galloprovincialis as a bioindicator of lead pollution: biologicalvariables and cellular responses[J]. Science of The Total Environment,1993,134(Supplement2):1283-1292.
    [16] Olivier F, Ridd M, Klumpp D. The use of transplanted cultured tropical oysters (Saccostreacommercialis) to monitor Cd levels in North Queensland coastal waters (Australia)[J].Marine Pollution Bulletin,2002,44(10):1051-1062.
    [17] Zorba M A, Jacob P G, Al-Bloushi A, et al. Clams as pollution bioindicators in Kuwait'smarine environment: metal accumulation and depuration[J]. Science of The TotalEnvironment,1992,120(3):185-204.
    [18] Torres M A, Barros M P, Campos S C G, et al. Biochemical biomarkers in algae and marinepollution: A review[J]. Ecotoxicology and Environmental Safety,2008,71(1):1-15.
    [19] Das S, Jana B B. In situ cadmium reclamation by freshwater bivalve Lamellidensmarginalis from an industrial pollutant-fed river canal[J]. Chemosphere,2003,52(1):161-173.
    [20] Ike A, Sriprang R, Ono H, et al. Bioremediation of cadmium contaminated soil usingsymbiosis between leguminous plant and recombinant rhizobia with the MTL4and the PCSgenes[J]. Chemosphere,2007,66(9):1670-1676.
    [21]苏静怡﹒贝类中重金属镉的风险评估[D]﹒山东青岛:中国海洋大学,2012.
    [22]姜元欣,王伟涛,陈德慰,等﹒广西北部湾水域贝类重金属污染分析与南宁市民贝类食用风险分析[J/OL]﹒食品工业科技,http://www.cnki.net/kcms/detail/11.1759.TS.20130118.1400.013.html
    [23]康飞金﹒宁波海域滩涂主要养殖贝类重金属残留及其安全性评价[D]﹒浙江宁波:宁波大学,2011.
    [24] Gutknecht J. Cadmium and thallous ion permeabilities through lipid bilayer membranes[J].Biochimica et Biophysica Acta (BBA)-Biomembranes,1983,735(1):185-188.
    [25] Sunda W G, Engel D W, Thuotte R M. Effect of chemical speciation on toxicity ofcadmium to grass shrimp, Palaemonetes pugio: importance of free cadmium ion[J].Environmental Science&Technology,1978,12(4):409-413.
    [26] P rt P, Wikmark G. The influence of some complexing agents (EDTA and citrate) on theuptake of cadmium in perfused rainbow trout gills[J]. Aquatic Toxicology,1984,5(4):277-289.
    [27] Roesijadi G, Unger M E. Cadmium uptake in gills of the mollusc Crassostrea virginica andinhibition by calcium channel blockers[J]. Aquatic Toxicology,1993,24(3-4):195-205.
    [28] Bordin G, McCourt J, Rodríguez A. Trace metals in the marine bivalve Macoma balthica inthe Westerschelde estuary (The Netherlands). Part1: Analysis of total copper, cadmium,zinc and iron concentrations-locational and seasonal variations[J]. The Science of The TotalEnvironment,1992,127(3):255-280.
    [29] Wang X, Zhou Y, Yang H, et al. Investigation of heavy metals in sediments and Manilaclams Ruditapes philippinarum from Jiaozhou Bay, China[J]. Environmental Monitoringand Assessment,2010,170(1):631-643.
    [30] Nesto N, Romano S, Moschino V, et al. Bioaccumulation and biomarker responses of tracemetals and micro-organic pollutants in mussels and fish from the Lagoon of Venice, Italy[J].Marine Pollution Bulletin,2007,55(10-12):469-484.
    [31] Frazier J. Bioaccumulation of cadmium in marine organisms[J]. Environental HealthPerspectives,1979,28:75-79.
    [32] Hung Y W. Effects of temperature and chelating agents on cadmium uptake in the Americanoyster[J]. Bulletin of Environmental Contamination and Toxicology,1982,28(5):546-551.
    [33] Kamunde C. Early subcellular partitioning of cadmium in gill and liver of rainbow trout(Oncorhynchus mykiss) following low-to-near-lethal waterborne cadmium exposure[J].Aquatic Toxicology,2009,91(4):291-301.
    [34] Fraysse B, Baudin J P, Garnier-Laplace J, et al. Effects of Cd and Zn waterborne exposureon the uptake and depuration of57Co,110mAg and134Cs by the Asiatic clam (Corbiculafluminea) and the zebra mussel (Dreissena polymorpha)–whole organism study[J].Environmental Pollution,2002,118(3):297-306.
    [35] Jackim E, Morrison G, Steele R. Effects of environmental factors on radiocadmium uptakeby four species of marine bivalves[J]. Marine Biology,1977,40(4):303-308.
    [36] Denton G R W, Burdon-Jones C. Influence of temperature and salinity on the uptake,distribution and depuration of mercury, cadmium and lead by the black-lip oysterSaccostrea echinata[J]. Marine Biology,1981,64(3):317-326.
    [37] Ayling G M. Uptake of cadmium, zinc, copper, lead and chromium in the pacific oyster.Crassostrea gigas, grown in the Tamar River, Tasmania[J]. Water Research,1974,8(10):729-738.
    [38] Arockia Vasanthi L, Revathi P, Arulvasu C, et al. Biomarkers of metal toxicity andhistology of Perna viridis from Ennore estuary, Chennai, south east coast of India[J].Ecotoxicology and Environmental Safety,2012,84(0):92-98.
    [39] Roméo M, Gnassia-Barelli M. Metal distribution in different tissues and in subcellularfractions of the Mediterranean clam Ruditapes decussatus treated with cadmium, copper, orzinc[J]. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology andToxicology,1995,111(3):457-463.
    [40] Wallace W G, Luoma S N. Subcellular compartmentalization of Cd and Zn in two bivalves.II. Significance of trophically available metal (TAM)[J]. Marine Ecology,2003,257:125-137.
    [41] Pan K, Wang W X. The subcellular fate of cadmium and zinc in the scallop Chlamys nobilisduring waterborne and dietary metal exposure[J]. Aquatic Toxicology,2008,90(4):253-260.
    [42] Satish Nair P, Robinson W E. Histidine-rich glycoprotein in the blood of the bivalveMytilus edulis: role in cadmium speciation and cadmium transfer to the kidney[J]. AquaticToxicology,2001,52(2):133-142.
    [43] Geffard A, Amiard J C, Amiard-Triquet C. Kinetics of metal elimination in oysters from acontaminated estuary[J]. Comparative Biochemistry and Physiology Part C: Toxicology&Pharmacology,2002,131(3):281-293.
    [44] Dolah F, Siewicki T, Collins G, et al. Effects of environmental parameters on theelimination of cadmium by eastern oysters, Crassostrea virginica[J]. Archives ofEnvironmental Contamination and Toxicology,1987,16(6):733-743.
    [45] Bebianno M J, Langston W J. Turnover rate of metallothionein and cadmium in Mytilusedulis[J]. BioMetals,1993,6(4):239-244.
    [46] George S G, Viarongo A. An integration of current knowledge of the uptake, metabolismand intracellular control of heavy metal in mussels. In: Vernberg, F.J.,Thurberg, F.P.,Calabrese, A., Vernberg, W.B.(Eds.), Marine Pollution and Physiology: Recent Advances.University of South Carolina Press, Columbia, pp.125-44.1985.
    [47] Campbell P G C, Giguère A, Bonneris E, et al. Cadmium-handling strategies in twochronically exposed indigenous freshwater organisms–the yellow perch (Perca flavescens)and the floater mollusc (Pyganodon grandis)[J]. Aquatic Toxicology,2005,72(1-2):83-97.
    [48] Sokolova I M, Ringwood A H, Johnson C. Tissue-specific accumulation of cadmium insubcellular compartments of eastern oysters Crassostrea virginica Gmelin (Bivalvia:Ostreidae)[J]. Aquatic Toxicology,2005,74(3):218-228.
    [49] Ahearn G A, Sterling K M, Mandal P K, et al. Heavy metal transport and detoxification bycrustacean epithelial lysosomes. Epithelial Transport Physiology, Humana Press. p.49-71..
    [50] Amiard J C, Amiard-Triquet C, Barka S, et al. Metallothioneins in aquatic invertebrates:Their role in metal detoxification and their use as biomarkers[J]. Aquatic Toxicology,2006,76(2):160-202.
    [51] Giguère A, Campbell P G C, Hare L, et al. Sub-cellular partitioning of cadmium, copper,nickel and zinc in indigenous yellow perch (Perca flavescens) sampled along a polymetallicgradient[J]. Aquatic Toxicology,2006,77(2):178-189.
    [52] Silvestre F, Dierick J F, Dumont V, et al. Differential protein expression profiles in anteriorgills of Eriocheir sinensis during acclimation to cadmium[J]. Aquatic Toxicology,2006,76(1):46-58.
    [53] Epel D. Use of multidrug transporters as first lines of defense against toxins in aquaticorganisms[J]. Comparative Biochemistry and Physiology-Part A: Molecular&IntegrativePhysiology,1998,120(1):23-28.
    [54] Bard S M. Multixenobiotic resistance as a cellular defense mechanism in aquaticorganisms[J]. Aquatic Toxicology,2000,48(4):357-389.
    [55] Cornwall R, Toomey B H, Bard S, et al. Characterization of multixenobiotic/multidrugtransport in the gills of the mussel Mytilus californianus and identification of environmentalsubstrates[J]. Aquatic Toxicology,1995,31(4):277-296.
    [56] Minier C, Moore M N. Induction of multixenobiotic resistance in mussel blood cells[J].Marine Environmental Research,1996,42(1-2):389-392.
    [57] Venn A A, Quinn J, Jones R, et al. P-glycoprotein (multi-xenobiotic resistance) and heatshock protein gene expression in the reef coral Montastraea franksi in response toenvironmental toxicants[J]. Aquatic Toxicology,2009,93(4):188-195.
    [58] Neyfakh A A. Use of fluorescent dyes as molecular probes for the study of multidrugresistance[J]. Experimental Cell Research,1988,174(1):168-176.
    [59] Smital T, Luckenbach T, Sauerborn R, et al. Emerging contaminants--pesticides, PPCPs,microbial degradation products and natural substances as inhibitors of multixenobioticdefense in aquatic organisms[J]. Mutation Research/Fundamental and MolecularMechanisms of Mutagenesis,2004,552(1-2):101-117.
    [60] Smital T, Kurelec B. The chemosensitizers of multixenobiotic resistance mechanism inaquatic invertebrates: a new class of pollutants[J]. Mutation Research/Fundamental andMolecular Mechanisms of Mutagenesis,1998,399(1):43-53.
    [61] Ivanina A V, Sokolova I M. Effects of cadmium exposure on expression and activity ofP-glycoprotein in eastern oysters, Crassostrea virginica Gmelin[J]. Aquatic Toxicology,2008,88(1):19-28.
    [62] Achard M, Baudrimont M, Boudou A, et al. Induction of a multixenobiotic resistanceprotein (MXR) in the Asiatic clam Corbicula fluminea after heavy metals exposure[J].Aquatic Toxicology,2004,67(4):347-357.
    [63] Contardo-Jara V, Pflugmacher S, Wiegand C. Multi-xenobiotic-resistance a possibleexplanation for the insensitivity of bivalves towards cyanobacterial toxins[J]. Toxicon,2008,52(8):936-943.
    [64]乔庆林﹒我国贝类净化产业发展战略探讨[J]﹒现代渔业信息,2010,25(10):3-4.
    [65] Clara Rebou as do Amaral M, de Freitas Rebelo M, Paulo Machado Torres J, et al.Bioaccumulation and depuration of Zn and Cd in mangrove oysters (Crassostrearhizophorae, Guilding,1828) transplanted to and from a contaminated tropical coastallagoon[J]. Marine Environmental Research,2005,59(4):277-285.
    [66] Chan K W, Cheung R Y H, Leung S F, et al. Depuration of metals from soft tissues ofoysters (Crassostrea gigas) transplanted from a contaminated site to clean sites[J].Environmental Pollution,1999,105(3):299-310.
    [67]李学鹏﹒重金属在双壳贝类体内的生物富集动力学及净化技术的初步研究[D]﹒浙江杭州:浙江工商大学,2008.
    [68] Huang G Q, Sun J P, Wang D F, et al. Chitosan oligosaccharide-Ca complex accelerates thedepuration of cadmium from Chlamys ferrari[J]. Journal of Ocean University of China,2012,11(2):219-226.
    [69]孙继鹏﹒壳寡糖金属配合物对扇贝体内重金属镉的影响[D]﹒山东青岛:中国海洋大学,2009.
    [70]程珊珊﹒牡蛎中重金属镉、铅的富集及脱除方法的研究[D]﹒广东湛江:广东海洋大学,2011.
    [71]朱常龙﹒壳寡糖衍生物对太平洋牡蛎体内重金属镉的影响[D]﹒山东青岛:中国海洋大学,2010.
    [72] Hiraoka Y. Reduction of heavy metal content in Hiroshima Bay oysters (Crassostrea gigas)by purification[J]. Environmental Pollution,1991,70(3):209-217.
    [73] Das S, Jana B B. Dose-dependent uptake and Eichhornia-induced elimination of cadmiumin various organs of the freshwater mussel, Lamellidens marginalis (Linn.)[J]. EcologicalEngineering,1999,12(3-4):207-229.
    [74] Baldisserotto B, Kamundeb C, Matsuo A, et al. Acute waterborne cadmium uptake inrainbow trout is reduced by dietary calcium carbonate[J]. Comparative Biochemistry andPhysiology, Part C,2004,137:363–372.
    [75] Zohouri M A, Pyle G G, Wood C M. Dietary Ca inhibits waterborne Cd uptake inCd-exposed rainbow trout, Oncorhynchus mykiss[J]. Comparative Biochemistry andPhysiology Part C,2001,130:347-356.
    [76] Franklin N M, Glover C N, Nicol J A, et al. Calcium/cadmium interactions at uptakesurfaces in rainbow trout: Waterborne versus dietary routes of exposure[J]. EnvironmentalToxicology and Chemistry,2005,24(11):2954-2964.
    [77] Wang W X, Fisher N S. Effects of calcium and metabolic inhibitors on trace element uptakein two marine bivalves[J]. Journal of Experimental Marine Biology and Ecology,1999,236(1):149-164.
    [78] Bjerregaard P, Depledge M H. Cadmium accumulation in Littorina littorea, Mytilus edulisand Carcinus maenas: the influence of salinity and calcium ion concentrations[J]. MarineBiology,1994,119(3):385-395.
    [79] Schinkel A H, Smit J J M, van Tellingen O, et al. Disruption of the mouse mdr1aP-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increasedsensitivity to drugs[J]. Cell,1994,77(4):491-502.
    [80] Xia X J, Zhang Y, Wu J X, et al. Brassinosteroids promote metabolism of pesticides incucumber[J]. Journal of Agricultural and Food Chemistry,2009,57(18):8406-13.
    [81] Rasmussen R S, Morrissey M T. The effects of processing methods and storage oncadmium levels in Pacific Oysters (Crassostrea gigas)[J]. Journal of Aquatic Food ProductTechnology,2007,16(3):3-17.
    [82]杨小满,孙恢礼﹒海洋贝类中镉污染现状及脱除技术展望﹒“亚运食品安全与广东食品产业创新发展”学术研讨会暨2009年广东省食品学会年会,广州,广东省食品学会,2009.
    [83] Palasz A, Czekaj P. Toxicological and cytophysiological aspects of lanthanides action[J].Acta Biochimica Polonica,2000,47(4):1107-14.
    [84]陈丽娟﹒稀土元素的化学性质与稀土应用[J]﹒科技咨询,2006,(32):30.
    [85] Tang J, Johannesson K H. Speciation of rare earth elements in natural terrestrial waters:assessing the role of dissolved organic matter from the modeling approach[J]. Geochimicaet Cosmochimica Acta,2003,67(13):2321-2339.
    [86] Hirano S, Suzuki K T. Exposure, metabolism, and toxicity of rare earths and relatedcompounds[J]. Environental Health Perspectives,1996,104Suppl1:85-95.
    [87]高玮﹒纳米稀土材料的产业化前景与发展重点[J]﹒稀土信息,2011,(4):5-7.
    [88]张新民,宋宗文,李钟华﹒稀土在石化工业中的应用回顾与发展建议[J]﹒化学通报,1999,(12):35-38.
    [89]杨遇春,钱九红﹒能源工业中的稀土[J]﹒稀土,1994,15(4):58-66.
    [90]胡意,郭菲,汪泱﹒稀土在医药领域的研究进展[J]﹒实验与检验医学,2009,27(1):75-78.
    [91]张海霞,陈明辉,张然﹒浅谈稀土在农业生产中的应用[J]﹒农业装备技术,2007,33(4):17-19.
    [92]汪水平,田渊,王文娟﹒稀土元素在畜牧业上的研究与应用[J]﹒饲料博览,2003,8(1):23-25.
    [93]刘学剑﹒稀土饲料添加剂在畜禽生产中的应用进展[J]﹒江西饲料,1994,(1):5-6.
    [94]刘海涛,武金风﹒稀土在水产养殖业中的应用[J]﹒饲料博览,1992,(5):27-28.
    [95]潘洪宾,徐国刚﹒轻稀土元素在低碳渔业发展中的应用探讨[J]﹒四川稀土,2009,(4):20-23.
    [96] Qiu J W, Xie Z C, Wang W X. Effects of calcium on the uptake and elimination of cadmiumand zinc in asiatic clams[J]. Archives of Environmental Contamination and Toxicology,2005,48(2):278-287.
    [97] Rengel Z. Effects of Al, rare earth elements, and other metals on net45Ca2+uptake byamaranthus protoplasts[J]. Journal of Plant Physiology,1994,143(1):47-51.
    [98] Cui L Q, Xu W, Ai Q H, et al. Effects of dietary chitosan oligosaccharide complex with rareearth on growth performance and innate immune response of turbot, Scophthalmusmaximus L.[J]. Aquaculture Research,2012: n/a-n/a.
    [99]崔丽卿﹒稀土及稀土壳寡糖配合物对大菱鲆生长、非特异性免疫以及镉含量的影响[D]﹒山东青岛:中国海洋大学,2012.
    [100]江振莹,贾志海,李志明,等﹒稀土元素在鲤鱼体内的蓄积和分布[J]﹒吉林农业大学学报,2008,30(1):52-55,69.
    [101]孟晓红,贾瑛,付超然﹒重金属稀土元素污染在水生物体内的生物富集[J]﹒农业环境保护,2000,19(1):50-52.
    [102]王华婷,孙吴,陈莹,等﹒稀土元素在鱼体内脏中的富集及对肝脏中酶活性的影响[J]﹒中国环境科学,1999,19(2):141-144.
    [103]习海波,安森亚﹒稀土元素在反刍动物饲料中的应用[J]﹒动物科学与动物医学,2004,21(4):51-53.
    [104]吕景智﹒小白鼠稀土代谢动力学的研究[D]﹒重庆:西南农业大学,2003.
    [105]高粱﹒稀土农用进展及其对环境影响的评价[J]﹒农业环境与发展,1988,(3):24-28.
    [106]刘苏静,周青﹒农用稀土的生态毒理学效应[J]﹒中国生态农业学报,2007,15(3):187-190.
    [107]张贵生﹒稀土元素对鲤鱼肝胰脏多种酶及MDA含量的影响[J]﹒生物技术,2008,18(2):36-38.
    [108] Haley T J. Toxicity, in Handbook on the Physics and Chemistry of Rare Earths., Jr. Sand E K.A., L., Editors.1979, North-Holland: Amsterdam. p.553-585.
    [109]陈祖义,朱旭东﹒稀土元素的骨蓄积性、毒性及其对人群健康的潜在危害[J]﹒生态与农村环境学报,2008,24(1):88-91.
    [110]张金超,王鹏,孙静,等﹒从稀土对骨代谢的影响看稀土的药用及安全性[J]﹒化学进展,2009,21(5):919-928.
    [111]中华人民共和国农业部公告第1126号﹒饲料添加剂品种目录﹒2008.
    [1]贺亮,范必威﹒海洋环境中的重金属及其对海洋生物的影响[J]﹒广州化学,2006,31(3):63-69.
    [2] Wasi S, Tabrez S, Ahmad M. Toxicological effects of major environmental pollutants: anoverview[J]. Environmental Monitoring and Assessment,2013,185(3):2585-2593.
    [3] Raftopoulou E K, Dimitriadis V K. Comparative study of the accumulation anddetoxification of Cu (essential metal) and Hg (nonessential metal) in the digestive gland andgills of mussels Mytilus galloprovincialis, using analytical and histochemical techniques[J].Chemosphere,2011,83(8):1155-1165.
    [4] Raimundo J, Costa P M, Vale C, et al. DNA damage and metal accumulation in four tissuesof feral Octopus vulgaris from two coastal areas in Portugal[J]. Ecotoxicology andEnvironmental Safety,2010,73(7):1543-1547.
    [5] Guidi P, Frenzilli G, Benedetti M, et al. Antioxidant, genotoxic and lysosomal biomarkers inthe freshwater bivalve (Unio pictorum) transplanted in a metal polluted river basin[J].Aquatic Toxicology,2010,100(1):75-83.
    [6] Monroe R K, Halvorsen S W. Cadmium blocks receptor-mediated Jak/STAT signaling inneurons by oxidative stress[J]. Free Radical Biology and Medicine,2006,41(3):493-502.
    [7] Silvestre F, Dierick J F, Dumont V, et al. Differential protein expression profiles in anteriorgills of Eriocheir sinensis during acclimation to cadmium[J]. Aquatic Toxicology,2006,76(1):46-58.
    [8] Engel D W. Accumulation and cytosolic partitioning of metals in the American oysterCrassostrea virginica[J]. Marine Environmental Research,1999,47(1):89-102.
    [9]蔡友琼,乔庆林,徐捷.我国贝类卫生现状及贝类净化概况[J].渔业现代化,2002,6:7~9.
    [10] Bjerregaard P. Effect of selenium on cadmium uptake in selected benthic invertebrates[J].Marine Ecology-Progress Series,1988,48:17-28.
    [11] Hussein M A, Obuid-Allah A H, Mohammad A H, et al. Seasonal variation in heavy metalaccumulation in subtropical population of the terrestrial isopod, Porcellio laevis[J].Ecotoxicology and Environmental Safety,2006,63(1):168-174.
    [12]张超英﹒青岛市区市售食物重金属污染现况调查[J]﹒青岛大学医学院学报,2002,38(1):68-69.
    [13]宁劲松﹒青岛市场养殖贝类体内重金属含量的分析[J]﹒安徽农业科学,2010,38(21):11154-11155,1121.
    [14]中华人民共和国卫生部.中华人民共和国国家标准GB5009.15-2003食品中镉的测定,2004.
    [15]国家质量监督检验检疫总局.中华人民共和国国家标准GB18406.4-2001农产品安全质量:无公害水产品安全要求,2001.
    [16]刘桂荣.扇贝中重金属残留及食用风险分析[D].山东青岛:中国海洋大学,2005
    [17]孙继鹏.壳寡糖金属配合物对扇贝体内重金属镉的影响[D].山东青岛:中国海洋大学,2009.
    [18] Bordin G, McCourt J, Rodriguez A. Trace metals in the marine bivalve Macoma balthica inthe Westerschelde estuary (The Netherlands). Part1: Analysis of total copper, cadmium, zincand iron concentrations-locational and seasonal variations[J]. The Science of The TotalEnvironment,1992,127(3):255-280.
    [19] Wang X, Zhou Y, Yang H, et al. Investigation of heavy metals in sediments and Manila clamsRuditapes philippinarum from Jiaozhou Bay, China[J]. Environmental Monitoring andAssessment,2010,170(1):631-643.
    [20] Bendell L I, Feng C. Spatial and temporal variations in cadmium concentrations and burdensin the Pacific oyster (Crassostrea gigas) sampled from the Pacific north-west[J]. MarinePollution Bulletin,2009,58(8):1137-1143.
    [21] Nesto N, Romano S, Moschino V, et al. Bioaccumulation and biomarker responses of tracemetals and micro-organic pollutants in mussels and fish from the Lagoon of Venice, Italy[J].Marine Pollution Bulletin,2007,55(10-12):469-484.
    [22] Han B C, Hung T C. Green oysters caused by copper pollution on the Taiwan coast[J].Environmental Pollution,1990,65(4):347-362.
    [23] Lin S, Hsieh I J. Occurrences of green oyster and heavy metals contaminant levels in theSien-San Area, Taiwan[J]. Marine Pollution Bulletin,1999,38(11):960-965.
    [24] Roosenburg W. Greening and copper accumulation in the American oyster, Crassostreavirginica, in the vicinity of a steam electric generating station[J]. Chesapeake Science,1969,.10(3-4):241-252.
    [1]张春荣﹒胶州湾沉积物对海洋生物重金属富集的影响分析[J]﹒中国地质,2012,39(4):1094-1098.
    [2] Matsumoto N, Uemoto H, Saiki H. Case study of electrochemical metal removal from actualsediment, sludge, sewage and scallop organs and subsequent pH adjustment of sediment foragricultural use[J]. Water Research,2007,41(12):2541-2550.
    [3] Chan K W, Cheung R Y H, Leung S F, et al. Depuration of metals from soft tissues of oysters(Crassostrea gigas) transplanted from a contaminated site to clean sites[J]. EnvironmentalPollution,1999,105(3):299-310.
    [4] Clara Rebou as do Amaral M, de Freitas Rebelo M, Paulo Machado Torres J, et al.Bioaccumulation and depuration of Zn and Cd in mangrove oysters (Crassostrea rhizophorae,Guilding,1828) transplanted to and from a contaminated tropical coastal lagoon[J]. MarineEnvironmental Research,2005,59(4):277-285.
    [5] Geffard A, Amiard J C, Amiard-Triquet C. Kinetics of metal elimination in oysters from acontaminated estuary[J]. Comparative Biochemistry and Physiology Part C: Toxicology&Pharmacology,2002,131(3):281-293.
    [6]孙继鹏.壳寡糖金属配合物对扇贝体内重金属镉的影响[D].山东青岛:中国海洋大学,2009.
    [7] Huang G Q, Sun J P, Wang D F, et al. Chitosan oligosaccharide-Ca complex accelerates thedepuration of cadmium from Chlamys ferrari[J]. Journal of Ocean University of China,2012,11(2):219-226.
    [8] Silvestre F, Trausch G, Devos P. Hyper-osmoregulatory capacity of the Chinese mitten crab(Eriocheir sinensis) exposed to cadmium; acclimation during chronic exposure[J].Comparative Biochemistry and Physiology Part C: Toxicology&Pharmacology,2005,140(1):29-37.
    [9] Campbell P G C, Giguère A, Bonneris E, et al. Cadmium-handling strategies in twochronically exposed indigenous freshwater organisms-the yellow perch (Perca flavescens)and the floater mollusc (Pyganodon grandis)[J]. Aquatic Toxicology,2005,72(1-2):83-97.
    [10] Giguère A, Campbell P G C, Hare L, et al. Sub-cellular partitioning of cadmium, copper,nickel and zinc in indigenous yellow perch (Perca flavescens) sampled along a polymetallicgradient[J]. Aquatic Toxicology,2006,77(2):178-189.
    [11] Das S, Jana B B. Dose-dependent uptake and Eichhornia-induced elimination of cadmium invarious organs of the freshwater mussel, Lamellidens marginalis (Linn.)[J]. EcologicalEngineering,1999,12(3-4):207-229.
    [12] George S G, Viarongo, A.1985. An integration of current knowledge of the uptake,metabolism and intracellular control of heavy metal in mussels. In: Vernberg, F.J.,Thurberg,F.P., Calabrese, A., Vernberg, W.B.(Eds.), Marine Pollution and Physiology: RecentAdvances.University of South Carolina Press, Columbia, pp.125–44.
    [13] Verbost P M, Van Rooij J, Flik G, et al. The movement of cadmium through freshwater troutbranchial epithelium and its interference with calcium transport[J]. Journal of ExperimentalBiology,1989,145(1):185-197.
    [14] Qiu J W, Xie Z C, Wang W X. Effects of calcium on the uptake and elimination of cadmiumand zinc in Asiatic clams[J]. Archives of Environmental Contamination and Toxicology,2005,48(2):278-287.
    [15] Baldisserotto B, Kamundeb C, Matsuo A, et al. Acute waterborne cadmium uptake inrainbow trout is reduced by dietary calcium carbonate[J]. Comparative Biochemistry andPhysiology, Part C,2004,137:363–372.
    [16] Zohouri M A, Pyle G G, Wood C M. Dietary Ca inhibits waterborne Cd uptake inCd-exposed rainbow trout, Oncorhynchus mykiss[J]. Comparative Biochemistry andPhysiology Part C,2001,130:347-356.
    [17] Franklin N M, Glover C N, Nicol J A, et al. Calcium/cadmium interactions at uptake surfacesin rainbow trout: Waterborne versus dietary routes of exposure[J]. Environmental Toxicologyand Chemistry,2005,24(11):2954-2964.
    [18] Wang W X, Fisher N S. Effects of calcium and metabolic inhibitors on trace element uptakein two marine bivalves[J]. Journal of Experimental Marine Biology and Ecology,1999,236(1):149-164.
    [19] Li L Z, Zhou D M, Peijnenburg W J G M, et al. Uptake pathways and toxicity of Cd and Znin the earthworm Eisenia fetida[J]. Soil Biology and Biochemistry,2010,42(7):1045-1050.
    [20]中华人民共和国卫生部.中华人民共和国国家标准GB5009.15-2003.食品中镉的测定,2004.
    [21] Finney D J,1971. Probit Analysis. Cambridge University Press, New York, p.337.
    [22] Engel D W, Fowler B A. Factors influencing cadmium accumulation and its toxicity tomarine organisms[J]. Environmental Health Perspectives,1979,28:81–88.
    [23] Lin H C, Dunson W. The effect of salinity on the acute toxicity of cadmium to the tropical,estuarine, hermaphroditic fish, Rivulus marmoratus: A comparison of Cd, Cu, and Zntolerance with Fundulus heteroclitus[J]. Archives of Environmental Contamination andToxicology,1993,25(1):41-47.
    [24] Niyogi S, Kent R, Wood C M. Effects of water chemistry variables on gill binding and acutetoxicity of cadmium in rainbow trout (Oncorhynchus mykiss): A biotic ligand model (BLM)approach[J]. Comparative Biochemistry and Physiology Part C: Toxicology&Pharmacology,2008,148(4):305-314.
    [25] Mantoura R F C, Dickson A, Riley J P. The complexation of metals with humic materials innatural waters[J]. Estuarine and Coastal Marine Science,1978,6(4):387-408.
    [26] Gutknecht J,1983. Cadmium and thallous ion permeabilities through lipid bilayermembranes[J]. Biochimica et Biophysica Acta,735(1):185-188.
    [27] Sunda W G, Engel D W, Thuotte R M. Effect of chemical speciation on toxicity of cadmiumto grass shrimp, Palaemonetes pugio: importance of free cadmium ion[J]. EnvironmentalScience and Technology,1978,12(4):409-413.
    [28] De Lisle P F, Roberts Jr M H.1988. The effect of salinity on cadmium toxicity to theestuarine mysid Mysidopsis bahia: role of chemical speciation[J]. Aquatic Toxicology,12(4):357-370.
    [29] Bjerregaard P, Depledge M H. Cadmium accumulation in Littorina littorea, Mytilus edulisand Carcinus maenas: the influence of salinity and calcium ion concentrations[J]. MarineBiology,1994,119(3):385-395.
    [30] Bebianno M J, Langston W J. Cadmium and metallothionein turnover in different tissues ofthe gastropod Littorina littorea[J]. Talanta,1998,46(2):301-313.
    [31] Silvestre F, Dierick J F, Dumont V, et al. Differential protein expression profiles in anteriorgills of Eriocheir sinensis during acclimation to cadmium[J]. Aquatic Toxicology,2006,76(1):46-58.
    [1] Wang W X, Fisher N S. Effects of calcium and metabolic inhibitors on trace element uptakein two marine bivalves[J]. Journal of Experimental Marine Biology and Ecology,1999,236(1):149-164.
    [2] Bjerregaard P, Depledge M H. Cadmium accumulation in Littorina littorea, Mytilus edulisand Carcinus maenas: the influence of salinity and calcium ion concentrations[J]. MarineBiology,1994,119(3):385-395.
    [3] Roesijadi G, Unger M E. Cadmium uptake in gills of the mollusc Crassostrea virginica andinhibition by calcium channel blockers[J]. Aquatic Toxicology,1993,24(3-4):195-205.
    [4] Qiu J W, Xie Z C, Wang W X. Effects of calcium on the uptake and elimination of cadmiumand zinc in asiatic clams[J]. Archives of Environmental Contamination and Toxicology,2005,48(2):278-287.
    [5]陈丽娟﹒稀土元素的化学性质与稀土应用[J]﹒科技咨询,2006,32:30.
    [6] Palasz A, Czekaj P. Toxicological and cytophysiological aspects of lanthanides action[J].Acta Biochimica Polonica,2000,47(4):1107-14.
    [7] Hirano S, Suzuki K T, Exposure, metabolism, and toxicity of rare earths and relatedcompounds[J]. Environental Health Perspective,1996,104(Suppl1):85-95.
    [8] Rengel Z. Effects of Al, rare earth elements, and other metals on net45Ca2+uptake byamaranthus protoplasts[J]. Journal of Plant Physiology,1994,143(1):47-51.
    [9] Cui L, Xu W, Ai Q, et al. Effects of dietary chitosan oligosaccharide complex with rare earthon growth performance and innate immune response of turbot, Scophthalmus maximus L.[J].Aquaculture Research, doi:10.1111/j.1365-2109.2011.03072.x.
    [10]范洪琼﹒稀土元素在农业生产中的应用[J]﹒科学咨询,2008,(19):43.
    [11]代邦元﹒稀土在林业上的应用[J]﹒湖南林业,2010,(7):31.
    [12]汪水平,王文娟﹒稀土元素在畜牧业上的研究与应用[J]﹒四川稀土,2009,(1):24-26.
    [13]龚全,赵刚﹒稀土饲料在池塘养殖中的应用[J]﹒科学养鱼,2009,(9):64-65.
    [14]郭孝﹒硝酸稀土在多年生牧草优质生产中的应用研究[J]﹒家畜生态,2002,23(1):33-35.
    [15]项楠,张雪梅,田莉瑛,等﹒稀土及其配合物在生物医药上的研究进展[J]﹒生物学杂志,2009,26(4):65-68.
    [16]齐宏涛,汪东风,杜德红,等﹒稀土在水产养殖业中的应用研究进展[J]﹒水产学杂志,2003,16(2):77-82.
    [17]包玉敏,张宇生,郭同伟,等﹒稀土稚鲍合成饵料的研制[J]﹒饲料研究,2002,(3):30-34.
    [18]王树茂,郑伟﹒迎接稀土农用技术发展新时期[J]﹒稀土信息,2001,(5):9-12.
    [19]曲克明,辛福言,刘立波﹒稀土元素在海水养殖中的研究进展[J]﹒海洋水产研究,2002,23(3):62-66
    [20]中华人民共和国卫生部.中华人民共和国国家标准GB5009.15-2003.食品中镉的测定,2004.
    [21] Piper D Z. Rare earth elements in the sedimentary cycle: A summary[J]. Chemical Geology,1974,14(4):285-304.
    [22] Wu S M, Shih M J, Ho Y C. Toxicological stress response and cadmium distribution inhybrid tilapia (Oreochromis sp.) upon cadmium exposure[J]. Comparative Biochemistry andPhysiology Part C: Toxicology&Pharmacology,2007,145(2):218-226.
    [23] Javanshir A, Shapoori M, Azarbad H, et al. Influence of calcium presence on the absorptionof cadmium by the rock oyster Saccostrea cucullata from Persian Gulf (Ostreidae; Bivalvia)in laboratory conditions[J]. Journal of Ecology and The Natural Environment,2009,1(8):178-183.
    [24] Viarengo A. Heavy metals in marine invertebrates: Mechanisms of regulation and toxicity atthe cellular level[J]. Aquatic Science,1989,1(2):295-317.
    [25] Pedersen T V, Bjerregaard P. Calcium and cadmium fluxes across the gills of the shore crab,Carcinus maenas[J]. Marine Pollution Bulletin,1995,31(1-3):73-77.
    [26] Verbost P M, Van Rooij J, Flik G, et al. The movement of cadmium through freshwater troutbranchial epithelium and its interference with calcium transport[J]. Journal of ExperimentalBiology,1989,145(1):185-197.
    [27] Wang C, Luo X, Tian Y, et al. Biphasic effects of lanthanum on Vicia faba L. seedlings undercadmium stress, implicating finite antioxidation and potential ecological risk[J].Chemosphere,2012,86(5):530-537.
    [28] Luxama J D, Carroll M A, Catapane E J. Effects of potential therapeutic agents on copperaccumulations in gill of Crassostrea virginica[J]. In Vivo,2011,31(2):34-42.
    [1]范洪琼.稀土元素在农业生产中的应用[J].科学咨询,2008,(19):43-43.
    [2]代邦元.稀土在林业上的应用[J].湖南林业,2010,(7):31-31.
    [3]汪水平,王文娟.稀土元素在畜牧业上的研究与应用[J].四川稀土,2009,(1):24-26.
    [4]龚全,沈丹舟,赵刚.稀土饲料在池塘养殖中的应用[J].科学养鱼,2009,(9):64-65.
    [5]郭孝.硝酸稀土在多年生牧草优质生产中的应用研究[J].家畜生态,2002,23(1):33-35.
    [6]项楠,张雪梅,田莉瑛,等.稀土及其配合物在生物医药上的研究进展[J].生物学杂志,2009,26(4):65-68.
    [7] Cui J, Zhang Z, Bai W, et al. Effects of rare earth elements La and Yb on the morphologicaland functional development of zebrafish embryos[J]. Journal of Environmental Sciences,2012,24(2):209-213.
    [8] Palasz A, Czekaj P. Toxicological and cytophysiological aspects of lanthanides action[J].Acta Biochimica Polonica,2000,47(4):1107-1114.
    [9] Zhang H, Feng J, Zhu W, et al. Chronic toxicity of rare-earth elements on human beings[J].Biological Trace Element Research,2000,73(1):1-17.
    [10]中华人民共和国卫生部.中华人民共和国国家标准GB2762-2005:食品中污染物限量,2005.
    [11]中华人民共和国卫生部.《食品中污染物限量》(GB2762-2012)问答.http://www.moh.gov.cn/mohwsjdj/s3594/201301/58113f0b463e4e1d89769e47b9555c03.shtml.
    [12] Liang T, Ding S, Song W, et al. A review of fractionations of rare earth elements in plants[J].Journal of Rare Earths,2008,26(1):7-15.
    [13]江振莹,李志明.稀土元素在鲤鱼体内的蓄积和分布[J].吉林农业大学学报,2008,30(1):52-55.
    [14]郭战勇.外源稀土进入动物体内的途径、分布、代谢及毒性[J].稀土,1997,18(1):61-64.
    [15] Hirano S, Suzuki K T. Exposure, metabolism, and toxicity of rare earths and relatedcompounds[J]. Environmental Health Perspectives,1996,104(Suppl1):85-95.
    [16]习海波,安森亚.稀土元素在反刍动物饲料中的应用[J].动物科学与动物医学,2004,21(4):51-53.
    [17] Wallace W G, Luoma S N. Subcellular compartmentalization of Cd and Zn in two bivalves. II.Significance of trophically available metal (TAM)[J]. Marine Ecology,2003,257:125-137.
    [18]中华人民共和国卫生部.中华人民共和国国家标准GB5009.15-2003:食品中镉的测定,2004.
    [19] Pan K, Wang W X. The subcellular fate of cadmium and zinc in the scallop Chlamys nobilisduring waterborne and dietary metal exposure[J]. Aquatic Toxicology,2008,90(4):253-260.
    [20] Huang P, Li J, Zhang S, et al. Effects of lanthanum, cerium, and neodymium on the nucleiand mitochondria of hepatocytes: Accumulation and oxidative damage[J]. EnvironmentalToxicology and Pharmacology,2011,31(1):25-32.
    [21] Hu X, Ding Z, Chen Y, et al. Bioaccumulation of lanthanum and cerium and their effects onthe growth of wheat (Triticum aestivum L.) seedlings[J]. Chemosphere,2002,48(6):621-629.
    [22] Zhou Y B, Jin S J, Cai Y, et al. Lanthanum acetate inhibits vascular calcification induced byvitamin D3plus nicotine in rats[J]. Experimental Biology and Medicine (Maywood),2009,234(8):908-17.
    [23]王晓蓉,涂强,田笠卿,等.稀土元素在鱼体中的生物富集作用[J].环境化学,1991,10(4):37-43.
    [24] Wallace W G, Lopez G R. Bioavailability of biologically sequestered cadmium and theimplications of metal detoxification[J]. Marine Ecology Progress Series,1997,147(27):149-157.
    [25] Rengel Z. Effects of Al, rare earth elements, and other metals on net45Ca2+uptake byAmaranthus protoplasts[J]. Journal of Plant Physiology,1994,143(1):47-51.
    [26] Li L, Liu X, You L, et al. Uptake pathways and subcellular fractionation of Cd in thepolychaete Nereis diversicolor[J]. Ecotoxicology,2012,21(1):104-110.
    [27] Roesijadi G, Unger M E. Cadmium uptake in gills of the mollusc Crassostrea virginica andinhibition by calcium channel blockers[J]. Aquatic Toxicology,1993,24(3-4):195-205.
    [28] Qiu J W, Xie Z C, Wang W X. Effects of calcium on the uptake and elimination of cadmiumand zinc in Asiatic clams[J]. Archives of Environmental Contamination and Toxicology,2005,48(2):278-287.
    [29] Haase H, Watjen W, Beyersmann D. Zinc induces apoptosis that can be suppressed bylanthanum in C6rat glioma cells[J]. Journal of Biological Chemistry,2001,382(8):1227-34.
    [30] Luxama J D, Carroll M A, Catapane E J. Effects of potential therapeutic agents on copperaccumulations in gill of Crassostrea virginica[J]. In Vivo,2011,31(2):34-42.
    [31]乔庆林.我国贝类净化产业发展战略探讨[J].现代渔业信息,2010,25(10):3-4.
    [32]何明渊,张建文,张苏琼,等.饲喂稀土复合添加剂的育肥猪肉仔鸡体内稀土残留分析[J].甘肃畜牧兽医,1998,28(2):13-15.
    [33] He X, Zhang H, Ma Y, et al. Lung deposition and extrapulmonary translocation of nano-ceriaafter intratracheal instillation[J]. Nanotechnology,2010,21(28):285103.
    [1]徐镇,江锦坡﹒稀土元素铈对大黄鱼胚胎发育的影响[J]﹒水产科学,2004,23(12):24-26.
    [2] Mei H F, Zhi L, Li Yan C, et al. Effects of rare earth elements lanthanum on growth andantioxidation system of the greengrocery under salt stress. in Biomedical Engineering andBiotechnology (iCBEB),2012International Conference on,2012.
    [3] Chen D, Liu Y, Chen A J, et al. Experimental study of subchronic toxicity of lanthanumnitrate on liver in rats[J]. Nonlinearity in Biology, Toxicology, Medicine,2003,1(4):469-480.
    [4] Huang P, Li J, Zhang S, et al. Effects of lanthanum, cerium, and neodymium on the nucleiand mitochondria of hepatocytes: Accumulation and oxidative damage[J]. EnvironmentalToxicology and Pharmacology,2011,31(1):25-32.
    [5] Chassard-Bouchaud C, Hallégot P. Bioaccumulation of lanthanum by the mussels Mytilusedulis collected from French coasts. Microanalysis by X-ray spectrography and secondaryion emission][J]. Comptes Rendus de l'Académie des Sciences. Serie III,1984,298(20):567-72.
    [6] Yang Z, Schryvers D, Roels F, et al. Demonstration of lanthanum in liver cells byenergy-dispersive X-ray spectroscopy, electron energy loss spectroscopy and high-resolutiontransmission electron microscopy[J]. Journal of Microscopy,2006,223(Pt2):133-139.
    [7] Berry J P. The role of lysosomes in the selective concentration of mineral elements. Amicroanalytical study[J]. Cellular and Molecular Biology (Noisy-le-Grand, France),1996,42(3):395-411.
    [8] Chassard-Bouchaud C, Escaig F, Boumati P, et al. Microanalysis and image processing ofstable and radioactive elements in ecotoxicology. Current developments using SIMSmicroscope and electron microprobe[J]. Biology of the Cell,1992,74(1):59-74.
    [9]付海防﹒稀土元素对双壳类金属硫蛋白的诱导效应研究[D]﹒山东青岛:中国海洋大学,2010.
    [10] Achard M, Baudrimont M, Boudou A, et al. Induction of a multixenobiotic resistance protein(MXR) in the Asiatic clam Corbicula fluminea after heavy metals exposure[J]. AquaticToxicology,2004,67(4):347-357.
    [11] Ivanina A V, Sokolova I M. Effects of cadmium exposure on expression and activity ofP-glycoprotein in eastern oysters, Crassostrea virginica Gmelin[J]. Aquatic Toxicology,2008,88(1):19-28.
    [12] Farcy é, Voiseux C, Lebel J M, et al. Transcriptional expression levels of cell stress markergenes in the Pacific oyster Crassostrea gigas exposed to acute thermal stress[J]. Cell Stressand Chaperones,2009,14(4):371-380.
    [13] Sanni B, Williams K, Sokolov E P, et al. Effects of acclimation temperature and cadmiumexposure on mitochondrial aconitase and LON protease from a model marine ectotherm,Crassostrea virginica[J]. Comparative Biochemistry and Physiology Part C: Toxicology&Pharmacology,2008,147(1):101-112.
    [14]项楠,张雪梅,田莉瑛,等﹒稀土及其配合物在生物医药上的研究进展[J]﹒生物学杂志,2009,26(4):65-68.
    [15] Haley T J, Toxicity, in Handbook on the Physics and Chemistry of Rare Earths., Jr. S and EK.A., L., Editors.1979, North-Holland: Amsterdam. p.553-585.
    [16]胡泅才,罗贯一﹒峭酸稀土对鱼类的急性致毒试验[J]﹒稀有金属,1980,(2):60-62.
    [17] Ercal N, Gurer-Orhan H, Aykin-Burns N. Toxic metals and oxidative stress part I:mechanisms involved in metal-induced oxidative damage[J]. Current Topics in MedicinalChemistry,2001,1(6):529-39.
    [18] Wang X, Shi G X, Xu Q S, et al. Lanthanum-and cerium-induced oxidative stress insubmerged Hydrilla verticillata plants[J]. Russian Journal of Plant Physiology,2007,54(5):693-697.
    [19] Géret F, Jouan A, Turpin V, et al. Influence of metal exposure on metallothionein synthesisand lipid peroxidation in two bivalve mollusks: the oyster (Crassostrea gigas) and the mussel(Mytilus edulis)[J]. Aquatic Living Resources,2002,15(1):61-66.
    [20] Wei Z, Liu X. Alleviate effects of lanthanum on stress induced by cadmium on Carassiusauratus. in Bioinformatics and Biomedical Engineering,2009. ICBBE2009.3rdInternational Conference on.2009.
    [21] Jo P G, Choi Y K, Choi C Y. Cloning and mRNA expression of antioxidant enzymes in thePacific oyster, Crassostrea gigas in response to cadmium exposure[J]. ComparativeBiochemistry and Physiology Part C: Toxicology&Pharmacology,2008,147(4):460-469.
    [22]张贵生﹒稀土元素对鲤鱼肝胰脏多种酶及MDA含量的影响[J]﹒生物技术,2008,18(2):36-38.
    [23] Davies K J A. Oxidative Stress, antioxidant defenses, and damage removal, repair, andreplacement systems[J]. IUBMB Life,2000,50(4-5):279-289.
    [24] Kohen R, Nyska A. Invited review: oxidation of biological systems: oxidative stressphenomena, antioxidants, redox reactions, and methods for their quantification[J].Toxicologic Pathology,2002,30(6):620-650.
    [25] Cooper G M. The Cell: A Molecular Approach.2nd edition. Sunderland (MA): SinauerAssociates;2000. Lysosomes. Available from:http://www.ncbi.nlm.nih.gov/books/NBK9953/
    [26] Blasco J, Puppo J, Sarasquete M C. Acid and alkaline phosphatase activities in the clamRuditapes philippinarum[J]. Marine Biology,1993,115(1):113-118.
    [27] Giambérini L, Cajaraville M P. Lysosomal responses in the digestive gland of the freshwatermussel, Dreissena polymorpha, experimentally exposed to cadmium[J]. EnvironmentalResearch,2005,98(2):210-214.
    [28] Bard S M. Multixenobiotic resistance as a cellular defense mechanism in aquaticorganisms[J]. Aquatic Toxicology,2000,48(4):357-389.
    [29] Klaassen C D, Liu J, Choudhuri S. Metallothionein: an intracellular protein to protect againstcadmium toxicity[J]. Annual Review of Pharmacology and Toxicology,1999,39(1):267-294.
    [30] Cornwall R, Toomey B H, Bard S, et al. Characterization of multixenobiotic/multidrugtransport in the gills of the mussel Mytilus californianus and identification of environmentalsubstrates[J]. Aquatic Toxicology,1995,31(4):277-296.
    [31] Wang W X, Rainbow P S. Significance of metallothioneins in metal accumulation kinetics inmarine animals[J]. Comparative Biochemistry and Physiology Part C: Toxicology&Pharmacology,2010,152(1):1-8.
    [32] Jakupec M A, Arion V, Berger W, et al. Novel antineoplastic complexes of bismuth(III),cerium(III) and lanthanum(III)[J]. European Journal of Cancer,2002,38(Suppl.7):125-126.
    [33] Heffeter P, Jakupec M A, K rner W, et al. Multidrug-resistant cancer cells are preferentialtargets of the new antineoplastic lanthanum compound KP772(FFC24)[J]. BiochemicalPharmacology,2007,73(12):1873-1886.
    [34] Kawagoe M, Hirasawa F, Cun Wang S, et al. Orally administrated rare earth element ceriuminduces metallothionein synthesis and increases glutathione in the mouse liver[J]. LifeSciences,2005,77(8):922-937.
    [1] Villalejo-Fuerte M, Federico García-Domínguez F G-D. Variación de los índices gonádico, derendimiento muscular y de la glándula digestiva de Spondylus princeps (Gray,1825)(Mollusca: Bivalvia) en Isla Cedros y Punta Eugenia, México[J]. Revista de Biología Marinay Oceanografía,2005,40(1):87-90.
    [2] Olsson G B, Olsen R L, Ofstad R. Post-mortem structural characteristics and water-holdingcapacity in Atlantic halibut muscle[J]. LWT-Food Science and Technology,2003,36(1):125-133.
    [3] Huff-Lonergan E, Lonergan S M. Mechanisms of water-holding capacity of meat: The role ofpostmortem biochemical and structural changes[J]. Meat Science,2005,71(1):194-204.
    [4] Cheng C S, Hamann O O, Webb N B, et al. Effects of species and storage time on mincedfish gel texture[J]. Journal of Food Science,1979,44(4):1087-1092.
    [5]中华人民共和国卫生部.中华人民共和国国家标准GB5009.3-201:食品安全国家标准:食品中水分的测定,2010.
    [6]中华人民共和国卫生部.中华人民共和国国家标准GB5009.5-2010食品安全国家标准:食品中蛋白质的测定,2010.
    [7]中华人民共和国卫生部.中华人民共和国国家标准GB5009.4-2010食品安全国家标准:食品中灰分的测定,2010.
    [8]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.中华人民共和国国家标准GB/T14772-2008:食品中粗脂肪的测定,2008.
    [9] Beltrán-Lugo A I, Maeda-Martínez A N, Pacheco-Aguilar R, et al. Seasonal variations inchemical, physical, textural, and microstructural properties of adductor muscles of Pacificlions-paw scallop (Nodipecten subnodosus)[J]. Aquaculture,2006,258(1-4):619-632.
    [10]中华人民共和国卫生部.中华人民共和国国家标准GB5009.15-2003.食品中镉的测定,2004.
    [11] He M L, Yang W Z, Hidari H, et al. Effect of rare earth elements on proliferation and fattyacids accumulation of3T3-L1cells[J]. Asian-Australasian journal of animal sciences,2006,19(1):119-125.
    [12]刘翠格.稀土元素在生物体内的生理生化作用[J].河北师范学院学报(自然科学版),1994,(3):76-86.
    [13] Ma L, Zhao J, Wu H, et al. Effects of rare earth elements on callus growth, soluble proteincontent, peroxidase activity and shoot differentiation of Echinacea angustifolia cultures invitro[J]. African Journal of Biotechnology,2010,9(16):2333-2341.
    [14]凤志慧,王玺,张孙曦,等.稀土元素La、Gd和Ce对培养大鼠细胞生物学效应的研究[J].中华核医学杂志,2001,(2):111-114.
    [15] Gierus M, Rocha J B. Forage substitution in a grain-based diet affects pH and glycogencontent of semimembranosus and semitendinosus rabbit muscles[J]. Journal of AnimalScience,1997,75(11):2920-3.
    [16] Wagner C E. Influence of selection for improved growth rate on pork quality[D]. Iowa StateUniversity: Iowa,2007.
    [17]王俏仪,董强,卢水仙,等.冷冻贮藏对罗非鱼肌肉质构特性的影响[J].广东海洋大学学报,2011,31(4):86-90.
    [18]陈惠芳,甘长涛.稀土在饲料工业中的应用前景[J].饲料工业,1996,17(3):38-40.