新型有机硅酸盐缓蚀剂的合成与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界水资源短缺加剧、水污染日益严重,对工业水处理技术的要求不断提高,促进了水处理剂的迅速发展。当前,新型、高效、不含磷的环保型缓蚀剂已成为人们研究开发的热点。
     无机硅酸钠是重要的非磷缓蚀剂之一。它具有效果较好、无污染、易操作等优点,但存在容易形成硅垢的不足,使它的应用受到限制。将无机硅酸盐有机化,既能保持无机硅的缓蚀能力,又克服无机硅易结垢的缺点。
     以甲基三乙氧基硅烷、乙烯基三乙氧基硅烷、γ-胺丙基三乙氧基硅烷为主要原料,在40℃~50℃,氢氧化钠水溶液中水解2小时,分别得到甲基硅酸钠、乙烯基硅酸钠、γ-胺丙基硅酸钠。
     以γ-胺丙基三乙氧基硅烷和二氯聚醚为主要原料,在120℃,氮气保护下反应4小时,得到聚醚二硅烷。聚醚二硅烷再在温度为70~80℃,氢氧化钠水溶液中水解2小时,得到最终产物——聚醚有机二硅酸钠。
     用核磁共振方法对合成的目标化合物进行结构分析。C~(13)NMR结果表明,得到的化合物与所设计化合物的结构相符。
     用旋转挂片法对上述四种有机硅化合物的缓蚀性能进行评定。结果表明,有机硅酸盐有一定的缓蚀性能,其中,胺丙基硅酸钠和聚醚有机二硅酸钠的缓蚀效果比硅酸钠好。当50mg/L的聚醚有机二硅酸钠与4mg/L的锌盐复配,复合剂的缓蚀率可达95.5%,远远大于相同条件下无机硅酸盐的缓蚀效果。
    
     用静态阻垢实验方法对所合成的有机硅酸盐的结垢性能进行评
    价,结果表明有机硅酸盐自身形成的硅酸盐垢比无机硅酸盐自身形成
    的硅酸盐垢量小,其中聚醚有机H硅酸盐的结垢率最小,仅为4.36趴
    而相同条件下的硅酸钠为 13.4%。
     用电化学方法对所合成的有机硅化合物的缓蚀机理进行研究,极
    化曲线显示,有机硅酸盐与无机硅酸盐相同,为典型的抑制阳极型的”
    缓蚀剂。
In view of excessive exploration of world wide water resource, serious water pollution and extension of industrial apparatus operating period, cooling water treatment technology is facing a challenge to develop chemicals having high effect against scale and corrosion for cooling water treatment. Accordingly, the goal of this thesis is to synthesize new-functional water treatment chemicals without phosphorus.
    Sodium silicate, as a kind of important no-phosphorus corrosion inhibitors, has many advantages such as having no-pollution and not-nutritious for water, easy-operation and so on. But its liable to precipitating to silicon-fouling. In order to overcome this, its necessary to synthesize organ silicones as good corrosion inhibitors.
    
    First, synthesize three compounds: methyl sodium silicate, vinyl sodium silicate, v -aminopropyl sodium silicate. The conditions: soda hydroxide as catalyst; temperature:40-500C; concentration of agent is: O.70-O.8OmolIL; concentration of soda hydroxide is: 1.1O-I.2Omol L
    
    Second, synthesize polv ether-bearing organ di-silane.
    Conditions: temperature:120 0C ; proportion of y
    
    
    
    
    -aininopropyl-triethoxy silane and dichloro-polyether: 3:1; reaction time: four hours; protection with nitrogen. Under the temperature 70-800C, hydrolyzed to poly ether-bearing organ di-sodiurn silicate.
    
    All the products were characterized by C13NMR.
    
    Weight-losing corrosion test proved that the new-typed organ silicate showed good effect as corrosion inhibitors. The effect of v -arninopropyl sodium silicate and poly ether-bearing organ di-sodium silicate is better than sodium silicate. Double crossing with 4mg11 Zinc salt, the corrosion-inhibiting rate of poly ether-bearing organ di-sodium silicate in the concentration of SOmg/L is 95. 5%.
    
    By static scale inhibition test, the effect of depositing to silicon-fouling of organ silicate is lower than sodium silicate, poly ether-bearing organ di-sodium silicate is 4. 36%, while sodium silicate is 13.4%.
    
    Preliminary exploration of mechanism proved that, sodium silicate is cathode-controlling corrosion inhibitor; organ silicate is anode-controlling corrosion inhibitor.
引文
[1] 李本高 等,《石化工业水处理技术进展》,P13-14,中国石化出版社,1999
    [2] 周本省,《工业水处理技术》 ,P85-86,化学工业出版社,1997
    [3] USP 3,265,681
    [4] USP 3,328,493
    [5] USP 3,468,935
    [6] USP 3,451,939
    [7] USP 3,483,113
    [8] USP 3,483,925
    [9] UKP 1,201,334
    [10] Peter. E. Greenlimb, National Engineer, 4(3),16,1981
    [11] Asheraft R H. Scale inhibition under harsh condition by 2-phosphonobutane-1, 2, 4-tricarboxylic acid (PBTC). Corrosion 85, Paper No. 123
    [12] 汪祖模,华东化工学院学报,1986,(6):P690-705
    [13] 汪祖模,华东化工学院学报,1989,(5):P605-613
    [14] Asheraft R H. The influence of typical cooling water paraments on the corrosion inhibiting effect of 2-phosphomobutane-1,2,4-tricarboxylic acid (PBTC). Corrossion 86, paper No. 401
    [15] Amjal Z. Compositions containing phosphonoalkane carboxylic acid for scale inhibition. USP 4,7847,74,1988
    [16] Kleinst R. Process for the continuous production of(?)salts thereof. USP 4,931,586. 1990
    
    
    [17] Aralt U. Process for the preparation of alkali metal salts of 2-phosphonobutane-1,2,4-tricarboxylic acid. USP 5,233,088.1993
    [18] B. zhou, J. MA, B. wang. Corrossion Control-7th Apcc. Vol, 2
    [19] Clubley B G. Corrosion and /or scale inhibition. USP 5,294,371. 1994
    [20] 张青,《石化工业水处理技术进展》,P96-100,中国石化出版社,1999
    [21] Calgon Corporation, NACE Corrosion 86, Paper No. 18. 1986
    [22] USP3, 711, 246
    [23] The influence of pH on the inhibition of corrosion of iron and mild steel bu sodium silicate, Corrossion science, Vol. 21, No. 4, P265-271
    [24] USP 5,137,657
    [25] USP 5,589,106
    [26] USP 3,816,184
    [27] USP 5,071,582
    [28] USP 3,337,496
    [29] USP 4,344,860
    [30] EP 163,494
    [31] USP 4,362,644
    [32] CN 1,050,053
    
    
    [33] CN 1,150,181
    [34] 厉吉兴,《工业水处理》,P25-26,Vol.15,No.1,1995
    [35] Edwin P. Plueddemann, Silane Coupling Agents, P236
    [36] JP 04, 221, 085
    [37] K. IZUMI, H. TANAKA, y. UCHIDA, Hydrolysis of trifunctional alkoxysilanes and corrosion resistance of steel sheets coated with alkoxysilane-derived films, Journal of Materials science letters 12, 1993, P724-727
    [38] 周本省,《工业水处理技术》,P69-71,化学工业出版社,1997
    [39] Edwin P. Plueddemann, Silane Coupling Agents.