淀粉改性复合絮凝剂的研制及其絮凝机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在废水处理中,絮凝法是最常用、最省钱的处理工艺之一。絮凝剂是该工艺的核心部分,其性能直接影响到絮凝效果的好坏,研制开发新型高效的絮凝剂是实现絮凝过程优化的核心技术,也是广大环境科学工作者一直致力研究的课题。
     本研究以工业废渣(FeSO_4)和淀粉为基本原料,通过阳离子化,接枝共聚和复合三步反应,合成了一种淀粉改性的无机—有机复合絮凝剂PFCNS。通过正交对比实验,确定了制备复合絮凝剂PFCNS的最佳工艺条件:亚铁与浓硫酸的摩尔比为1:0.4,亚铁与双氧水摩尔比为1:0.6,合成无机高分子絮凝剂聚合硫酸铁。有机胺与卤代烷摩尔比为1:1,反应温度为45℃,反应时间为1小时,合成阳离子絮凝剂M。淀粉预胶化过程中控制淀粉投加浓度为10%,NaOH固体加量为淀粉干基的5%,预胶化温度为65℃—75℃左右,预胶化时间为2小时。阳离子絮凝剂M与改性淀粉有效质量比为1.5:1,活化时间为30秒,接枝温度恒定在50℃~60℃,接枝时间为2小时左右。聚铁与阳离子改性淀粉的投料比(质量比)为3:1,反应温度在60℃,反应时间为3小时。
     烧杯絮凝评价实验表明:根据最佳工艺条件合成的复合絮凝剂PFCNS的pH值作用范围宽,受温度的影响小,几乎不受助凝剂的影响,在啤酒废水处理中投加量少,除浊率高,沉降速度快,CODcr去除能力明显优于PFS和PAC,是一种新型高效的复合絮凝剂。
     对PFCNS的絮凝作用机理进行了研究,研究表明:PFCNS所带正电荷相对于PFS明显加强,絮凝过程中表现出吸附架桥和网捕卷扫的典型特征。其最佳絮凝pH范围为6—8.5,最佳絮凝形态是产生Fe(OH)0,·后在此基础上进一步聚合成了带正电的铁的高聚物。综合分析表明其优异的絮凝性能是由其特殊的分子结构决定的,是电性中和和吸附架桥、网捕卷扫协同作用的结果。
During the process of wastewater treatment, the flocculation is one of very common and economical techniques. The flocculant is the key of this technique. and its properties influence directly flocculation efficiency. The development of new and highly effective flocculant is the core of the technology that optimizes flocculation process, and is also a project on which researchers in environmental science concentrate.
    In this paper, solid waste(FeSO4) from industry and starch were modified by cation reaction ,grafting reaction and composite reaction to prepare a starch modified inorganic-organic composite flocculant(PFCNS). The optimal procedure was determined by orthogonal experiments. The reaction conditions were as following: the polyferric sulfate(PFS) was prepared with n(FeS04)/n(H2SO4) molar ratio 1:0.4 and n(FeSO4)/n(H2O2) molar ratio 1:0.6; the cation flocculant(M) was prepared with n(organic amine)/n(halogen alkyl) molar ratio 1:1 at 45℃ for lh;starch was preliminary gelled with 10% starch and 5% NaOH at 65℃-75℃ for 2h; grafting was carried at 50℃-60℃ for 2h after the solution with M /(starch) weight ratio 1.5:1 was activated for 30s ; PFS and M reacted with their weight ratio 3:1 at 60 - for 3h.
    The jar test showed that there was a widely pH range for the flocculant (PFCNS) that was prepared by optimal parameters, and PFCNS was hardly affected by temperature and aid flocculant .In the course of beer wastewater treatment, consumption of PFCNS was low and turbidity removal efficiency was high ; subsiding was rapid and the CODcr removal ratio was high .Its flocculation performance was superior to that of PFS and PAC.
    The flocculation mechanism experiments showed that PFCNS had more positive charges than PFS and characterized typical agglomeration and absorption-bridging. The best pH range was 6 - 8.5. The best flocculation species was the iron hydrolysis polymer after forming Fe(OFT)4~. Comprehensive analysis showed its outstanding flocculation performance depended on its special molecule structure, and was the result that electricity counteract was in cooperation with agglomeration and absorption-bridging.
引文
[1][苏] Е·Д·巴宾科夫著.郭连起译.论水的混凝[M].第一版.北京:中国建筑工业出版社,1982
    [2]汤鸿霄.无机高分子絮凝剂的科学与技术进展[J].水处理信息导报,1997,77(4):36~49
    [3]张莉,李本高.水处理絮凝剂的研究进展[J].工业用水与废水,2001,32(3):5~7
    [4]仓根隆一郎.Bioindustry,1990,21(10):2~5
    [5]庄源益,戴树桂,李彤,宋文华等.生物絮凝剂对水中染料絮凝效果探讨.水处理技术,1997,23(6):349~353
    [6]姚重华.混凝剂与絮凝剂[M].第一版.北京:中国环境科学出版社,1991
    [7]汤鸿霄.无机高分子复合絮凝剂的研制趋势[J].中国给水排水,1999,15(2):1~5
    [8]汤鸿霄.无机高分子絮凝剂的基础研究[J].环境化学,1990,9(3):1~10
    [9]谢海云,刘殿军,孙力军,张文彬.钛白生产中废酸和硫酸亚铁综合利用及产品开发[J].昆明理工大学报,2000,25(4):10~14
    [10]许保玖.关于混凝技术术语规范化的建议[J].给水排水,1992,(2):36~39
    [11]范谨初.混凝技术[M].第一版.北京:中国环境科学出版社,1992
    [12]马青山.絮凝化学和絮凝剂[M].第一版。北京:中国环境科学出版社,1988
    [13]曲久辉,路光杰,汤鸿霄.电解法制备高效聚合铝的溶液化学因素[J].环境化学,1997,16(6):522~527
    [14]蒋馥华,张萍,申照全.碱法从铝土矿制备聚合氯化铝[J].环境工程,1994,12(4):50~53
    [15]王士才,李宝霞.聚合硫酸铝絮凝剂的研究及其在水处理上的应用[J].工业水处理,1997,17(2):17~19
    [16]高宝玉,何晓镇,王春省,王淑仁.PACS絮凝剂的制备及其性能研究[J].环境科学,1990,11(3):34~37
    [17]高宝玉,于慧,岳钦艳,王淑仁.PACS的结构特性及絮凝机理研究[J].环境化学,1994,13(2):113~118
    [18]郑怀礼,舒型武.含磷复合絮凝剂的制备与应用研究[J].水处理技术,待发表
    
    
    [19]张民权,莫炳禄,聂荫福,公国庆.聚合硫酸铁生产新技术[J].环境工程,1994,12(4):54~56
    [20]高宝玉,王秀芬,于慧,岳钦艳,何晓镇.聚合氯化铝铁的性能研究[J].环境化学,1994,13(5):415~420
    [21]孙建辉,夏四清,孙瑞霞.絮凝剂PFCS的制备及其性能研究[J],环境科学,1996,17(4):59~61
    [22]甘光奉,张依华,甘莉.高分子铁盐混凝剂的开发与应用进展[J].工业水处理,1997,17(5):1~2
    [23]栾兆坤,刘振儒,赵春禄.聚铝铁硅絮凝剂的合成方法及其混凝效能[J].环境化学,1997,16(6):546~551
    [24]胡翔,周定.聚硅酸系列混凝剂混凝过程的动力学和机理研究[J].水处理技术,1999,25(2):114~117
    [25]高宝玉,岳钦艳.含铝离子的聚硅酸絮凝剂研究[J].环境化学,1990,11(5):37~41
    [26]胡翔,周定.聚硅酸铁处理低温低浊水的研究[J].工业水处理,1997,17(5):13~14
    [27]栾兆坤,宋永会.聚硅酸金属盐絮凝剂的制备和絮凝性能[J].环境化学,1997,16(6):534~539
    [28]Smith R W. Nonequilibrium systems in natural water chemistry. ACS, Advance in chem..series, 1971, 106: 250
    [29]Akitt J. W, Greenwood W. N etal.27Al NMR studies of acidic solutious of aluminum salt.. Chem.soc, 1969: 803
    [30]Iler R. K. The chemistry of silica. John Wiley&sons. Inc, 1979: 312~439
    [31]汤鸿霄.无机高分子絮凝剂的几点新认识[J].工业水处理,1997,17(4):1~5
    [32]汤鸿霄,栾兆坤.聚合氯化铝与传统混凝剂凝聚—絮凝行为差异[J].环境化学,1997,16(6):497~505
    [33]Haase D et al. Polysmeric basic aluminum silicate-sulphate. U. S. Patent, PN: 4923629,1990
    [34]Hasegawa T et al. Water science and technology, 1991, 23: 1713~1722
    [35]Hasegawa T et al. Method and flocculant for water treatment. U. S. Patent, PN: 4923629, 1990
    [36]舒型武,郑怀礼.阳离子有机絮凝剂研究进展[J].现代化工,2001,21(10):13~16
    [37]Mallon R D. Cationic Water-Souble Polymers Precipitation in Salt Solution[P]. US, 6013708. 2000-01-11
    
    
    [38]肖锦,杞永亮.我国絮凝剂发展的现状与对策[J].现代化工,1997,17(2):52~55
    [39]Cai J Y, Axelos M Method for Manufacturing Grafted Polyacrylamide Flocculant of Cationic/Ampholytic[P]. US, 5990216. 1999-11-23
    [40]甘光奉,甘莉.我国改性淀粉絮凝剂的开发与应用[J].工业水处理,1996,16(6):1~2
    [41]赵彦生,李万捷,沈敬之,温亚龙.淀粉——丙烯酰胺接枝共聚物的合成及其性能[J].水处理技术,1994,20(6):370~374
    [42]郭玲香,胡明显,郭世全.新型阳离子聚合物治理煤泥废水的应用研究[J].上海环境科学,1999,18(3):127~132
    [43]尹华,彭辉,刘慧璇,张娜.淀粉改性阳高子絮凝凝剂的制备及其絮凝性能研究[J].环境科学与技术,2000,(1):13~15
    [44]严瑞碹,胡宇,桤永亮,鲍其鼎.我国水处理剂的现状及发展战略[J].现代化工,1999,19(2):3~7
    [45]Ractor. Ludufg. Lignin Cosiposttion Process for its Preparation[P].US 3912706, 1975-12-14
    [46]Qu Rongjun, Liu Qingjian. Preparation and Adsorption Properties for Metal Ions of Chitosan Crosslinked by PEG Bisglycidyl Ethers[J]. Environmenal Chemistry, 1996, 15(1): 41
    [47]Chai Ponghai, Zhang Wenqing, Jin Xinrong. The New Exploiting and Researching Theds of Chitin/Chitosan[J]. Chemistry, 1999(7):8
    [48]李琳,冯易君,谢家理,单书香.橡宛单宁去除水中有毒重金属离子的研究[J].环境工程,1997,15(5):14
    [49]赵立志,杨旭.阳离子丹宁絮凝剂的制备及其性能评价[J].重庆环境科学,1993,15(6):33
    [50]曹炳明.CS—1型絮凝剂的制备及其在污水处理方面的应用[J].工业水处理,1987,7(6):27~29
    [51]吴冰艳.新型脱色絮凝剂木质素季胺盐的研制及其絮凝性能与机理的研究[J].化工环保,1997,17(5):268
    [52]Wong Shing. Hydrophilic Dispersion Polymers of Diallyldimethyl Ammonium chloride and Acrylamide for the Clarification of Drinking Process Waters[P]. US, 6019904. 2000-02-01
    [53]陆兴章,高华星,孙蕴美,程树军.HC型阳离子高分子絮凝剂的絮凝性能及其应用研究[J].环境污染与防治,1994,16(6):6~10
    [54]高华星,陆兴章,赵德仁.阳离子高分子絮凝剂用于印刷油墨废水处理[J].环境污染与防治,1995,17(3):9~12
    
    
    [55]肖遥,邓皓,陈尚冰.有机高分子絮凝剂的合成及应用[J].工业水处理,1994,14(3):17~19
    [56]严瑞碹.水处理剂应用手册[M].第一版.北京:化学工业出版社,2000
    [57]黎钢,张松梅.高密度电荷阳离子聚电解质的制备及应用[J].中国环境科学,1999,9(2):145~148
    [58]杨通在,刘亦农,杨君.阳离子改性高分子絮凝剂对轻工废水的处理[J].工业水处理,1998,18(3):27~29
    [59]朱红,施秀屏,欧泽松.新星阳离子有机絮凝剂的研究[J].工业水处理,1996,16(1):24~27
    [60]董银卯,于馄,梁瀛洲.新型阳离子有机絮凝剂的研制[J].工业水处理,1996,16(2):20~22
    [61]郑怀礼.舒型武.利用钛白生产中的副产物制备聚合硫酸铁[J].化工环保,待发表
    [62]邵维仁,朱传俊.聚合硫酸铁产品的质量检验[J].工业水处理,1994,14(1):30~32
    [63]黄文彬,周英钰,廖义兵.聚合硫酸铁中碱化度的测定[J].工业水处理,1992,12(1):32~35
    [64]谢飞.二乙胺制得的聚季铵型浮选剂及其性能[J].石油化工环境保护,1995,(1):12-15
    [65]Georg H,Dietmar B.Production of cationic starch ethers using an improved dry process[J]. Starch/Starke, 1992,44(2):69~74
    [66]夏晓明,侯文华,肖锦,周定.天然高分子改性阳离子絮凝剂SFC的制备及其絮凝性能研究[J].环境化学,1990,9(5):1~5
    [67]田宝珍,汤鸿霄.聚合铁的红外光谱和电导特征[J].环境化学,1990,9(6):70~76
    [68]郑怀礼,龙腾锐,舒型武.聚合硫酸铁絮凝剂絮凝机理分析[J].重庆环境科学,2000,22(5):51~54
    [69]涂方祥,蒋展鹏.无机混凝剂的形态对混凝的影响[J].中国给水排水,1996,12(4):4~6
    [70]常青.絮凝科学的研究进展[J].环境科学,1994,15(1):69~72
    [71]Flynn C. M. Hydrolysis of Inorganic Iron(Ⅲ)Salfs[J]. Chemical Review, (84), 1984
    [72]潘碌亭,肖锦.天然高分子改性药剂FIQ-C的絮凝性能及作用机理研究[J].水处理技术,2001,27(2):84~86