硫酸盐还原细菌(SRB)对碳钢腐蚀行为影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
将实地取来的四种环境介质富集培养,置于生化培养箱中(29±1)℃下培养21天,获得硫酸盐还原细菌菌种,并利用最大可能计数法(MPN法)进行计数。利用固体培养基进行菌种提纯,使用干燥器厌氧条件下富集培养,并用冰箱冷藏保存菌种。利用简单染色法和革兰氏染色法进行细菌形貌鉴定,证明得到的细菌属于革兰氏阴性菌。
     将实验菌种接种于无菌培养基中,利用失重法、动电位极化法和交流阻抗图谱测量等电化学技术及金相显微镜、扫描电子显微镜等物理检测手段,研究了硫酸盐还原菌的数量与A3钢孔蚀诱发的关系、溶液中Fe~(2+)浓度和溶解氧的存在对细菌生长的影响以及这些环境因素与硫酸盐还原细菌对碳钢腐蚀行为的协同影响。研究结果表明,硫酸盐还原细菌的代谢产物中含有酸性物质。在含细菌的培养基中,试样的自腐蚀电位都产生了负移,细菌含量越高,负移的程度越大。接种细菌的培养基中测得的阴极极化曲线比空白的斜率小些,硫酸盐还原细菌有促进阴极去极化过程的作用,而阳极极化曲线的变化相反,极化曲线的斜率比空白的大,硫酸盐还原细菌的存在使阳极过程受阻。接种细菌后A3钢的阳极极化曲线都有一段变化较慢的区域,可能是由于试样表面存在生物膜的缘故,生物膜的存在一定程度上阻碍了腐蚀的进一步的发展。硫酸盐还原菌含量不同,测得的容抗弧的直径不同。细菌含量高的介质中C_d小,R_p大,试样表面形成的生物膜较厚,增大了反应阻力;相反在SRB含量较低的介质中C_d大,R_p小。
Testing for Sulphate-Reducing Bacteria (SRB) from four kinds of media was discussed. The numbers of each kind of SRB were counted by Most Probable Number estimate method. By using solid culture medium, SRB was purified and conserved at low temperature. The musculomyces of the Sulphate-Reducing Bacteria was identified with simple staining method and Gram's staining method. It was showed that the bacteria belong to G".
    By measuring the polarization curves and electrochemical impedance spectrum as well as the aid of microscope and scanning electron microscope, the correlation between bacterial numbers and corrosion behavior of carbon steel was studied. The influences of the ion of Fe2+ and oxygen on the growth of SRB were also investigated. The results showed that there're acidic substances during the process of metabolism of Sulphate-Reducing Bacteria. The corrosion potential decreased in the medium inoculated with bacteria. It is detected that the more the concentration of the bacteria, the more negative the corrosion potential. The slope of cathodic polarization curves measured in the medium inoculated with SRB is lower than the one obtained in the medium without bacteria, while the slope of anodic polarization curves is higher than it. It is concluded that the process of anodic polarization was repressed at the presence of Sulphate-Reducing Bacteria. There's some part of anodic polarization curves changed slowly in the medium of SRB. The results showed that the biofilm could restrain the development of the corrosion when the biofilm was compact on the surfaces of specimens. The diameters of Electrochemical Impedance Spectrum vary with the amount of SRB. When the double-electronic layer capacitance Cd decreased, the polarization resistance Rp increased, which indicated that the biofilm on the surfaces of carbon steel raised the reactive resistance in the medium with higher concentration of bacteria. On the contrary, in the medium inoculated with lower amount of SRB, the Cd is higher and the Rp is lower.
引文
[1]. Wagner, P., Little, B. Impact of Alloying on Microbiologically Influenced Corrosion-A Review[J]. Materials Performance, 1993, Sep.: 65-68.
    [2]. Hadley R.F.Microbiological anaerobic corrosion of steel pipeline. Oil and Gas Jour., 1939, 38(19): 92~96
    [3]. Minchin L. T. Anaerobic corrosion, Coke and Gas, 1956, 18(12):495~504
    [4]. Butlin K.R. Vemon W.H.J. and Whiskin L.C.Investigation on underground corrosion, Wat, Sanit. Engr., 1952, 2:468~472
    [5]. Kulman F.E.Microbiological corrosion of buried steel pipe, Corrosion, 1953, 9(1):11~18
    [6]. Iverson W.P.Advance in Corrosion Science and Technology,1972(2):1~42
    [7]. Puekorius. Recommemded Practice for Biological Analysis of Water Flood Injection Waters.API.1959.
    [8]. Cormbie D.J.Moody G.J.and Thomas J.D.R.Corrosion of iron by sulfate-reducing bacteria,Chem.And Industry,1980, 21(6):520~524
    [9].张学元,王凤平,杜元龙等.石油工业中的细菌腐蚀和预防(J).石油和天然气化工,1999,28(1):53-56.
    [10]. Kluyver and Van Niel. Zentr. Bakteriol. Parasitenk., Abt. Ⅱ,94,1930:369
    [11].下平三郎.细菌对金属的腐蚀[J].应用微生物,1973,6:27-33 (原文刊载在“防食技 N”,1973,22(1):2~9).
    [12].吕人豪.材料保护,1990,23(1~2):26~29
    [13]. Whonchee Lee Zbigniew Lewandowski, et al. Role of sulfate-reducing bacteria in corrosion of mild steel, a review. Biofouling, 1995, 8: 165~194
    [14].张小里,陈志昕等.环境因素对硫酸盐还原菌生长的影响[J].中国腐蚀与防护学报,2000,Vol.20,No.4,Aug.;224-229.
    [15]. Von Wolzogen K(?)hr, C. A. H., Van der Vlugt, L. S.铸铁的石墨化是在缺氧土壤中的一种电化学过程[J].Water,1934,Vol.18:147.
    [16]. Booth, G. H., Tiller, A. K. Cathodic Characteristics of Mild Steel in Suspensions
    
    of Sulphate-Reducing Bacteria[J]. Corrosion Science, 1968, Vol. 8:583-600.
    [17] .Starkey, R. L. The general physiology of the sulfate-reducing bacteria in relation to corrosion[J]. Producers Monthly, 1958, Vol. 22: 12-16.
    [18] .Ringas-G., Robinson, F. P. A. Corrosion of Stainless Steel by Sulfate-Reducing Bacteria-Total Immersion Test Results[J]. Corrosion, 1988, Vol. 44, No. 9:671-678.
    [19] .马振瀛.航空器材及燃料系统的微生物腐蚀[J].工业微生物,1997,Vol.27,No.2: 37-40.
    [20] .Pope, D. H. , Alan Morris III, E. Some Experiments with Microbiologically Influenced Corrosion of Pipelines[J]. Materials Performance, 1995, No. 5:23-28.
    [21] .Postgate. J. R. The Sulphate-Reducing Bacteria, Cambridge University Press, Cambridge, England, 1979
    [22] .唐和清.微生物腐蚀中游离氧的作用[J].材料保护,1992,Vol.25,No.4,April:23-26.
    [23] .Hardy, J. A., Bown, J. L. The Corrosion of Mild Steel by Biogenic Sulfide Films Exposed to Air[J]. Corrosion, 1984, Vol. 40, No. 12, Dec. : 650-654.
    [24] .Von Rege, H. , Sand, W. Simulation of Metal-MIC for Evaluation of Counter-measures[J]. Werkstoffe und Korrosion, 1996, Vol. 47, No. 9, Sep. : 486-494.
    [25] .Smith, J. S. , Miller, J. D. A. Nature of sulphides and their corrosive effect on ferrous metals: A review[J]. Br. Corros. J, 1975, Vol. 10:136.
    [26] . King, R. A., Dittmer, C. K. , and Miller, J. D. A. Effect of Ferrous Ion Concentration on the Corrosion of Iron in Semicontinuous Cultures of Sulphate-Reducing Bacteria[J]. Br. Corros. J, 1976, Vol. 11, No. 2:105-107.
    [27] .Lee, W. , Characklis, W. G. Corrosion of Mild Steel Under Anaerobic Biofilm[J]. Corrosion, 1993, Vol. 49, No. 3: 186-198.
    [28] .Salvarezza, R. C., Vidella, H. A., and Arvia, A. J. The Electrochemical Behaviour of Mild Steel in Phosphate-Borate-Sulphide Solutions[J]. Corrosion Science, 1983, Vol. 23:717-732.
    [29] .Salvarezza, R. C. , Vidella, H. A. Passivity Breakdown of Mild Steel in Sea Water in the Presence of Sulfate Reducing Bacteria[J]. Corrosion, 1980, Vol. 36:550-554.
    [30] .Ringas, C. , Robinson, F. P. A. Corrosion of Stainless Steel by SULFATE-Reducing Bacteria-Electrochemical Techniques[J]. Corrosion, 1988, Vol. 44, No. 9:386-396.
    
    
    [31]. Starosvetsky, D., Khaselev, O., and Starosvetsky, J. Effect of iron exposure in SRB media on pitting initiation[J]. Corrosion Science, 2000, Vol. 42: 345-359.
    [32]. Pinto, C. V., Pereira, R. Carrondo, M. J. T., and Reis, M. A. M. Influence of Micronutrient Concentration on Growth and Activity of Sulfate Reducing Bacteria[J]. International Biodeterioration & Biodegradation, 1996, Vol. 37, No. 1-2.
    [33]. Fonseca, In(?)s T. E., Jos(?) Feio, M., Ana Rosa Lino. The influence of the media on the corrosion of mild steel by Desulfovibrio desulfuricans bacteria: an electrochemical study[J]. Electrochemical Acta, 1998, Vol. 43, No. 1-2: 213-222.
    [34]. Angell, P., Urbanic, K. Sulphate-reducing Bacterial activity as a parameter to predict localized corrosion of stainless alloys[J]. Corrosion Science, 2000, Vol. 42: 897-912.
    [35]. McNeil, M. B., Odom, A. L. "Prediction of Sulphiding Corrosion of Alloys Induced by Consortia Containing Sulfate Reducing Bacteria(SRB)," Intl. Symposium on Microbiologically Influenced Corrosion Testing(Miami,FL:ASTM,1992)
    [36]. Gouda, V., Banat, I., Riad, W., Mansour, S. Corrosion, 1993, Vol. 49:63
    [37].俞敦义等.环境对硫酸盐还原菌生长的影响[J].材料保护,1996,Vol.29,No.2:1-2
    [38].朱日彰等.金属腐蚀学[M].北京:冶金出版社,1989.212-215.
    [39].刘鹤霞,赵景茂等.CT10-1新型杀菌剂的研究与应用[J].腐蚀与防护,1990,6:315-317
    [40].魏宝明等.金属腐蚀理论及应用[M].北京:化学工业出版社,1984.170-175.
    [41]. Kajiyarna, F., Okamura, K. Evaluating Cathodic Protection Reliability on Steel Pipe in Microbially Active Soils[J]. Corrosion, 1999, Vol. 55, No. 1:74-80.
    [42]. Farquhar, G. B. Review and update of technology related to formation souring[J]. Corrosion Prevention & Control, 1998, April. : 51-56.
    [43]. Sperl, G. T. Enhanced oil recovery using denitrifying microorganisms[P]. US Pat: 5,044,435, 1991.
    [44]. Hitzman, D. O., Sperl, G.T et al. A new technology for enhanced oil recovery and sulphide prevention and reduction[D]. Texas: SPE/DOE Recovery Symposium, SPE paper, No. 27752, 1994.
    [45].郑淳之.水处理剂和工业循环冷却水系统分析方法,北京:化学工业出版社,2000
    [46].刘建华等.A3钢在厌氧环境中的微生物腐蚀心化学特性研究,材料保护,2000,33(11):32~33
    
    
    [47].穆军、张肇铭.一种分离纯化厌氧细菌的新方法——平皿夹层厌氧法,山西大学学报(自然科学版),1998,21(4):363~367
    [48].祖若夫等.微生物学实验教程,上海:复旦大学出版社,1993
    [49].钱存柔等.微生物学实验教程,北京:北京大学出版社,1992
    [50].吴荫顺等.腐蚀实验方法与防腐蚀检测技术,北京:化学工业出版社,1996
    [51].张学元等.油气工业中细菌的腐蚀和预防,石油与天然气化工,1999,28(1):53~56
    [52]. S.E.Werner, C.A.Johnson, N.J.Laycock, P.T.Wilson and B.J.Webster, Pitting of Type 304 Stainless in the Presence of a Biofilm Containing Sulphate Reducing Bacteria,Corrosion Science, 1998, 40(2/3):465~480
    [53].刘宏芳等.SRB生物膜与碳钢腐蚀的关系,中国腐蚀与防护学报,2000,20(1):41~46
    [54]. S.E.Werner, C.A.Johnson, N.J.Laycock, P.T. Wilson et al. Corrosion Science, 1998, 40(2/3):465
    [55].曹楚南.腐蚀电化学原理,北京:化学工业出版社,1985