秸秆还田下稻田温室气体排放及其对水分管理的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气温室气体浓度持续升高而导致全球气候变暖是当前广受关注的环境问题。稻田是大气温室气体的重要排放源,受到广大农业环境科学家的重视。本研究以我国亚热带地区稻田生态系统为研究对象,采用田间小区试验研究了不同秸秆还田量和不同水分管理方式下稻田CH4和N2O的排放特征,土壤-水稻系统呼吸特征和土壤异养呼吸特征;采用室内恒温培养试验研究了外加不同有机物料对温室气体排放的影响,初步揭示了稻草还田后温室气体产生的机理。主要研究结果如下:
     (1)高量秸秆还田(6t.hm-2)且长期淹水处理CH4的累积排放量是无秸秆还田且长期淹水处理的4.7倍,高量秸秆还田且间歇灌溉处理和低量秸秆还田(3t·hm-2)且间歇灌溉处理CH4的累积排放量分别是无秸秆还田且间歇灌溉处理的8.8和4.8倍;无秸秆还田且长期淹水处理CH4的累积排放量是无秸秆还田且间歇灌溉处理的2.7倍,高量秸秆还田且长期淹水处理CH4的累积排放量是高量秸秆还田且间歇灌溉处理的1.2倍(以下数据均为三个稻季的均值);烤田不仅减少了烤田期间CH4排放量,而且还减少烤田后复水期间CH4的排放。无秸秆还田时,在烤田期间和烤田后复水期间,烤田比不烤田减少了57.6%和86.3%的CH4排放,高量秸秆还田时则减少了14.1%和81.7%的CH4排放。无秸秆还田且长期淹水处理、无秸秆还田且间歇灌溉处理、低量秸秆还田且间歇灌溉处理、高量秸秆还田且间歇灌溉处理和高量秸秆还田且长期淹水处理在分蘖期CH4的排放量分别占全生育期排放量的34.2%、56.9%、72.2%、73.6%和62.8%;各处理在有水稻种植时CH4的排放量分别为无水稻种植时的3.1、2.4、1.4、2.2和1.9倍;CH4排放与稻田环境因子(土壤温度和水层深度)、土壤因子和生物因子关系密切。
     (2)在有水稻种植时,高量秸秆还田且长期淹水处理N20的累积排放量是无秸秆还田且长期淹水处理的36.8%,高量秸秆还田且间歇灌溉处理、低量秸秆还田且间歇灌溉处理处理N20的累积排放量分别是无秸秆还田且间歇灌溉处理的47.0%和70.5%;无秸秆还田且长期淹水处理N2O的累积排放量是无秸秆还田且间歇灌溉处理的77.0%,高量秸秆还田且长期淹水处理N20的累积排放量是高量秸秆还田且间歇灌溉处理的60.8%;无水稻种植时,高量秸秆还田且长期淹水处理N20的累积排放量是无秸秆还田且长期淹水处理的166.0%,高量秸秆还田且间歇灌溉处理和低量秸秆还田且间歇灌溉处理N2O的累积排放量分别是无秸秆还田且间歇灌溉的93.0%和74.9%;高量秸秆还田且长期淹水处理N20的累积排放量是无秸秆还田且间歇灌溉处理的12.4%,高量秸秆还田且长期淹水处理N20的累积排放量是高量秸秆还田且间歇灌溉处理的26.3%;相对于不烤田,烤田既增加了烤田期间N20的排放量,也增加了烤田后复水期间N20的排放。各稻季N20的排放主要集中在水稻生长的分蘖期、拔节期和完熟期;无水稻种植时,各处理N20排放量分别为有水稻种植时对应处理的1.2、7.4、10.2、24.2和5.0倍;N20排放与稻田环境因子(土壤温度和水层深度)和土壤因子关系密切。
     (3)高量秸秆还田且长期淹水处理土壤-水稻系统总呼吸量是无秸秆还田且长期淹水处理的1.2倍,高量秸秆还田且间歇灌溉处理和低量秸秆还田且间歇灌溉处理分别是无秸秆还田且间歇灌溉处理的1.02和0.98倍;无秸秆还田且长期淹水处理是无秸秆还田且间歇灌溉处理的0.91倍,高量秸秆还田且长期淹水处理是高量秸秆还田且间歇灌溉处理的1.05倍;高量秸秆还田且长期淹水处理土壤异养呼吸量是无秸秆还田且长期淹水处理的1.81倍,高量秸秆还田且间歇灌溉处理和低量秸秆还田且间歇灌溉处理分别是无秸秆还田且间歇灌溉处理的1.36和1.08倍;无秸秆还田且长期淹水处理是无秸秆还田且间歇灌溉处理的0.65倍,高量秸秆还田且长期淹水处理是高量秸秆还田且间歇灌溉处理的0.83倍;一般来说,烤田既增加了烤田期间土壤异养呼吸量,也增加了烤田后复水期间土壤异养呼吸量;三个稻季,各处理土壤-水稻系统总呼吸量分别为土壤异养呼吸量的6.5、4.5、4.2、3.5和4.3倍;土壤-水稻系统总呼吸速率和土壤异养呼吸速率与土壤温度、水层深度等环境因子关系密切;土壤-水稻系统总呼吸量与水稻地上部分和地下部分生物量均呈极显著正相关;土壤-水稻系统总呼吸速率和土壤异养呼吸速率均与土壤DOC含量呈显著或极显著正相关。
     (4)水分管理和秸秆还田对各稻季各处理间水稻产量的影响不显著;水分管理影响土壤异养呼吸和水稻净初级生产力,从而影响稻田生态系统与大气间CO2的净交换量的大小,是影响稻田NEE值的主导因素;秸秆还田对NGHGE和GHGI有显著或极显著的影响,是影响NGHGE和GHGI的主导因素;从年度时间尺度来看,各处理稻田均没有增加温室气体的净排放。
     (5)添加原稻草处理CH4累积排放量最高,对土壤原有有机碳转化成CH4的激发效应大;添加腐熟稻草、去除低分子有机物的稻草和低分子有机物的各处理CH4的累积排放量明显高于不添加有机物料处理,对土壤原有有机碳转化成CH4都产生激发效应;CH4排放量与土壤质地密切相关;添加原稻草处理CO2累积排放最高,稻草对土壤原有有机碳分解的激发效应大;添加低分子有机物处理CO2的累积排放量高于不添加有机物料处理,对土壤原有有机碳的分解产生·一定的激发效应;添加腐熟稻草和去除低分子有机物处理CO2的累积排放量和不添加有机物料处理无明显差异,对土壤原有有机碳分解的激发效应不明显;添加含低分子有机物的外源有机物料比添加纤维素等单一物质产生的激发效应大,土壤有机碳的分解对不同外源物料激发效应的响应不同;CO2的产生主要集中在稻草中易分解物质的快速分解阶段;在稻草中易分解物质的快速分解阶段和难分解物质的缓慢分解阶段,均有CH4产生,但以快速分解阶段产生为主。不添加有机物料处理N2O的累积排放量最高,添加各种有机物料减少了N2O的累积排放量,N2O累积排放量的减少程度与土壤质地密切相关;CH4、N2O和CO2的累积排放量与土壤因子关系密切。因土壤不同与各土壤因子的相关关系存在差异。
Global warming result from rising of atmospheric concentration of greenhouse gases is an environment issue of common concern among all people. Paddy field is a major source of greenhouse gases in the atmosphere, which are paid more attention by more agriculture environmental scientists. This study was carried out in paddy field ecosystems of subtropical regions. The characteristics of CH4emission, N2O emission, soil and rice system respiration and soil heterotrophic respiration under different rice straw incorporation rate and water regime were studied by using field plot experi-ment. We also carried out thermostatic incubation experiment and to research the effect of external source organic materials incorporation on greenhouse gases emission, and revealed the mechanism of the source of greenhouse gases after rice straw incorporation. The main results of this study are presented as follows:
     (1) CH4cumulative emission of high rice straw incorporation rate (6t·hm-2) and continuous flooding treatment is4.7times as much as that of no rice straw incorporation and continuous flooding treatment. CH4cumulative emission of high rice straw incorporation rate and intermittent flooding treatment, low rice straw incorporation rate (3t·hm-2) and intermittent flooding treatment is8.8and4.8times as much as that of no rice straw incorporation and intermittent flooding treatment, respectively. CH4cumulative emission of no rice straw incorporation and continuous flooding treatment is2.7times as much as that of no rice straw incorporation and intermittent flooding treatment. CH4cumulative emission of high rice straw incorpora-tion rate and continuous flooding treatment is1.2times as much as that of high rice straw incorporation rate and intermittent flooding treatment (average value of three rice season); Soil drying not only reduced CH4emission of soil drying period, but also reduced CH4emission of re-flooding period. Under no straw incorporation, compared with non-drying, soil drying reduced CH4emission by57.6%and86.3%, during soil drying and re-flooding period, respectively. Under high straw incorporation rate, compared with non-drying, soil drying reduced CH4emission by14.1%and81.7%, during soil drying and re-flooding period, respectively. CH4emission rate of no rice straw incorporation and continuous flooding treatment, no rice straw incorporation and intermittent flooding treatment, low rice straw incorporation rate and intermittent flooding treatment, high rice straw incorporation rate and intermittent flooding treatment and high rice straw incorporation rate and continuous flooding treatment at tillering stage was accounted for34.2%,56.9%,72.2%,73.6%and62.8%of the whole stages, respectively. CH4emission rate of each treatment in the rice planting region is3.1,2.4,1.4,2.2and1.9times as much as that of the corresponding treatment in the non-rice planting region, respectively. CH4emission was closely related to environmental factors (soil temperature and depth of the water), soil factors and biological factors.
     (2) In the rice planting region, N2O cumulative emission rate of high rice straw incorporation rate and continuous flooding treatment accounted for36.8%of no rice straw incorporation and continuous flooding treatment; N2O cumulative emission rate of high rice straw incorporation rate and intermittent flooding treatment and low rice straw incorporation rate and intermittent flooding treatment accounted for47.0%and70.5%of no rice straw incorporation and intermittent flooding treatment, respectively; N2O cumulative emission rate of no rice straw incorporation and continuous flooding treatment accounted for77.0%of no rice straw incorporation and intermittent flooding treatment, high rice straw incorporation rate and continuous flooding treatment accounted for60.8%of high rice straw incorporation rate and intermittent flooding treatment; In the non-rice planting region, N2O cumulative emission rate of high rice straw incorporation rate and continuous flooding treatment accounted for166.0%of no rice straw incorporation and continuous flooding treatment; N2O cumulative emission rate of high rice straw incorporation rate and intermittent flooding treatment and low rice straw incorporation rate and intermittent flooding treatment accounted for93.0%and74.9%of no rice straw incorporation and intermittent flooding treatment, respectively; N2O cumulative emission rate of no rice straw incorporation and continuous flooding treatment accounted for12.4%of no rice straw incorporation and intermittent flooding treatment, high rice straw incorporation rate and continuous flooding treatment accounted for26.3%of high rice straw incorporation rate and intermittent flooding treatment; Relative to non-drying, soil drying not only increased N2O emission of soil drying period, but also increased N2O emission of re-flooding period. N2O emission each season rice are mainly concentrated in tillering stage, jointing stage and mature stage; N2O emission rate of each treatment in the non-rice planting region is1.2,7.4,10.2,24.2and5.0times as much as that of the corresponding treatment in the rice planting region, respectively. N2O emission was closely related to environmental factors (soil temperature and depth of the water) and soil factors
     (3) Total respiration rate of soil and rice system of high rice straw incorporation rate and continuous flooding treatment is1.2times as much as that of no rice straw incorporation and continuous flooding treatment; Total respiration rate of soil and rice system of high rice straw incorporation rate and intermittent flooding treatment and low rice straw incorporation rate and intermittent flooding treatment is1.02and0.98times as much as that of no rice straw incorporation and intermittent flooding treatment, respectively; Total respiration rate of soil and rice system of no rice straw incorporation and continuous flooding treatment is0.91times as much as that of no rice straw incorporation and intermittent flooding treatment, high rice straw incorporation rate and continuous flooding treatment is1.05times as much as that of high rice straw incorporation rate and intermittent flooding treatment; Soil heterotrophic respiration rate of high rice straw incorporation rate and continuous flooding treatment is1.81times as much as that of no rice straw incorporation and continuous flooding treatment; Soil heterotrophic respiration rate of high rice straw incorporation rate and intermittent flooding treatment and low rice straw incorporation rate and intermittent flooding treatment is1.36and1.08times as much as that of no rice straw incorporation and intermittent flooding treatment, respectively; Soil heterotrophic respiration rate of no rice straw incorporation and continuous flooding treatment is0.65times as much as that of no rice straw incorporation and intermittent flooding treatment, high rice straw incorporation rate and continuous flooding treatment is0.83times as much as that of high rice straw incorporation rate and intermittent flooding treatment; In general,soil drying not only increased soil heterotrophic respiration of soil drying period, but also increased soil heterotrophic respiration of re-flooding period. Total respiration rate of soil and rice system of each treatment is6.5,4.5,4.2,3.5and4.3times as much as soil heterotrophic respiration rate of the corresponding treatment, respectively; Total respiration rate of soil and rice system and soil heterotrophic respiration rate were closely related to environmental factors, such as temperature, water depth; Total respiration rate of soil and rice system were extremely positive correlated to rice biomass above the ground and under the ground. Total respiration rate of soil and rice system and soil heterotrophic respiration rate were significantly or extremely positive correlated to soil DOC content.
     (4) Water regime and rice straw incorporation had no significant effect on the rice yield of each rice season; Water regime had effect on soil heterotrophic respiration and net primary production of rice, thus affected the net CO2exchange between paddy field ecosystem and atmosphere, which was the dominant factor of affecting the paddy NEE (Net Ecosystem CO2Exchange) value. Rice straw incorpora-tion had significantly or extremely effect on NGHGE (Net Greenhouse Gas Emission) and GHGI (Greenhouse Gas Intensity), which was the dominant factor affecting the NGHGE and GHGI. On annual time scale, the rice paddy fields did not increase net greenhouse gases emission.
     (5) CH4cumulative emission of adding original rice straw was the highest, and which had big priming effect on soil intrinsic organic carbon; CH4cumulative emissi-ons of adding decomposed straw, low molecular organic material and non-active ingre-dient straw were obviously higher that of non-adding organic materials treatment, which had priming effect on soil intrinsic organic carbon; CH4emission rate was closely related with soil texture. CO2cumulative emission of adding original rice straw was the highest, and which had big priming effect on soil intrinsic organic carbon; CO2cumulative emission of adding low molecular organic material treatment was higher that of non-adding organic materials treatment, and which had priming effect on soil intrinsic organic carbon decomposition; CO2cumulative emission of adding decomposed straw and non-active ingredient straw treatment was no significant differences as compared with non-adding organic materials treatment, and it's priming effect on soil intrinsic organic carbon decomposition was not obvious; Priming effect of adding exogenous organic materials containing low molecular organic material was stronger than that of adding single material such as cellulose, and response of soil organic carbon decomposition to different exogenous material was different;CO2produced mainly at rapid decomposition stage of the easy decomposition material in rice straw;
     CH4produced at rapid decomposition stage of the easy decomposition material and slow decomposition stage of the difficult decomposition material in rice straw, but it produced mainly at rapid decomposition stage.N2O cumulative emission rate of S treatment is the highest, N2O cumulative emission rate was reduced due to adding the various organic materials, reduction degree of N2O cumulative emission rate was closely related with soil texture; CH4, N2O and CO2cumulative emission rate were closely associated with soil factors. The relationship between CH4, N2O and CO2cumulative emission rate and soil factors existed difference due to different soil.
引文
[1]Anderson J. M. Carbon dioxide evolution from two temperate, deciduous wood land soils[J]. Journal of Applied Ecology,1973,10(2):361-378.
    [2]Arah J. R. M., Smith K. A., Crichton I. J., et al. Nitrous oxide production and denitrification in Scottish arable soils[J].Journal of soil science,1991,42(3):351-367.
    [3]Azam F., Muller C.,Weiske A., et al. Nitrification and denitrification as sources of atmosphe-ric nitrous oxide role oxidizable carbon and applied nitrogen[J].Biology and Fertility of Soils,2002,35(1):54-61.
    [4]Bachelet D., Neue H. U.Methane emissions from wetland rice areas of Asia[J].Chemosphere, 1993,26(1-4):219-237.
    [5]Ball B. C., Scot T. A., Parker J. P. Field N2O, CO2 and CH4 fluxes in relation to tillage, compaction and soil quality in Scotland[J].Soil and tillage Research,1999,53(1):29-39.
    [6]Bandibas J., Vermoesen A., De Groot C. J., et al.The effect of different moisture regimes and soil characteristics on nitrous oxide emission and consumption by different soils[J].Soil Science,1994,158(2):106-114.
    [7]Bauhus J., Pare D., Cote L. Effects of tree species, stand age, and soil type on soil microbial biomass and its activity in a southern boreal forest[J].Soil Biology and Biochemistry,1998, 30(8-9)1077-1089.
    [8]Beauchamp E.G., Trevors J.T., Paul J. W. Carbon sources for bacterial denitrification[J].Adva-nces in Soil Science.1989,10:113-142.
    [9]Bell J. M, Smith J. L, Bailey V. L, et al. Priming effect and C storage in semi-arid no-till spring crop rotations[J].Biology and Fertility of Soils.2003,37(4):237-244.
    [10]Bingeman C. W., Varner J. E, Martin W. P. The effect of the addition of organic materials on the decomposition of an organic soil[J].Soil Science Society of American Journal.1953,17(1): 34-38.
    [11]Bossio D. A., Horwath W. R., Mutters R.G., et al. Methane pool and flux dynamics in a rice field following straw incorporation[J].Soil Biology and Biochemistry,1999,31(9):1313-1322.
    [12]Bouwman A. F., Boumans L. J. M., Batjes N. H. Emissions of N2O and NO from fertilized fields:Summary of available measurement data[J].Global Biogeochemical Cycles,2002,16(4): 1058-1070.
    [13]Bremner J. M., Blackmer A. M. Nitrous oxide:Emission from soils during nitrification of fertilizer nitrogen[J],Science,1978,199(4326):295-296.
    [14]Brookes P. C., Landman A., Pruden G., et al. Chloroform fumigation and the release of soil nitrogen, a rapid direct extraction method to measure microbial biomass nitrogen in soil[J]. Soil Biology and Biochemistry,1985,17(6):837-842.
    [15]Buchmann N. Biotic and abiotic factors controlling soil respiration rates in picea abies stands [J].Soil Biology and Biochemistry,2000,32(11-12):1625-1635.
    [16]Burford J. R., Bremner J. M. Relationships between denitrification capacities of soils and total,water-soluble and readily decomposable soil organic matter[J].Soil Biology and Bioch-emistry,1975,7(6):389-394.
    [17]Cai Z. C., Xing G. X., Yan X. Y., et al. Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilizers and water management[J].Plant and soil,1997,196(1): 7-14.
    [18]Cai Z. C., Xu H., Zhang H. H., et al. Estimate of methane emission from rice paddy fields in Taihu region [J]. Pedosphere,1994,4(4):297-306.
    [19]Cambardella C. A., Elliott E. T. Methods for physical separation and characterization of soil organic matter fractions[J].Geoderma,1993,56(1-4):449-457.
    [20]Came R. E., Eiler J. M., Veizer J., et al. Coupling of surface temperatures and atmospheric CO2 concentrations during the Palaeozoic era[J].Nature,2007,449:198-201.
    [21]Carter M. S. Contribution of nitrification and denitrification to N2O emissions from urine patches [J].Soil Biology and Biochemistry,2007,39(8):2091-2102.
    [22]Chen G. X., Huang G. H., Huang B., et al. Nitrous oxide and methane emissions from soil-plant systems[J].Nutrient Cycling in Agroecosystems,1997,49(1-3):41-45.
    [23]Chidthaisong A.,Watanabe I.Methane formation and emission from flooded rice soil incorpo-rated with 13C-labeled rice straw[J].Soil Biology and Biochemistry.1997,29(8):1173-1181.
    [24]Conrad R. Control of microbial methane production in wetland rice fields[J].Nutrient Cycling in Agroecosystems,2002,64(1-2):59-69.
    [25]Conrad R., Rothfuss F. Methane oxidation in the surface layer of a flooded rice field and the effect of ammonium[J]. Biology and Fertility of Soils,1991,12(1):28-32.
    [26]Crill P.M.,Bartlett K.B.,Harriss R.C.,et al. Methane flux from Minnesota peatlands[J]. Global Biogechemical Cycles,1988,2(4):371-384.
    [27]Crill P. M.,Martikainen P. J.,Nykanen H., et al. Temperature and fertilization effects on meth-ane oxidation in a drained peatland soil[J].Soil Biology and Biochemistry,1994,26(10): 1331-1339.
    [28]Dalenberg J. W., Jager G. Priming effect of some organic additions to 14C-labeled soil[J].Soil Biology and Biochemistry,1989,21(3):443-448.
    [29]Dannenberg S., Conrad R. Effect of rice plants on methane production and rhizospheric meta-bolism in paddy soil[J].Biogeochemistry,1999,45(l):53-71.
    [30]Parashar D. C., Gupta P. K., Rai J., et al. Effect of soil temperature on methane emission from paddy fields[J].Chemosphere,1993,26(1-4):247-250.
    [31]Dave B., Ronald D. J. Potential rates of methanogenesis in sawgrass marshes with peat and marl soils in the everglades[J].Soil Biology and Biochemistry,1992,24(1):21-27.
    [32]Davidson E. A., Swank W. T. Environmental parameters regulating gaseous nitrogen losses from two forested ecosystems via nitrification and denitrification[J].Applied and Environme-ntal Microbiology,1986,52(6):1287-1292.
    [33]Davidson E. A.,Verchot L. V., Cattanio J. H., et al. Effect s of soil water content on soil respi-ration in forests and cattle pastures of eastern Amazonia[J].Biochemistry,2000,48(1):53-69.
    [34]Den van der gon H. A., Breemen N. V. Diffusion-controlled transport of methane from soil to atmosphere as mediated by rice plants[J].Biogeochemistry,1993,21(3):177-190.
    [35]De Nobili M., Contin M., Mondini M., et al. Soil microbial biomass is triggered into activity by trace amounts of substrate[J].Soil Biology and Biochemistry,2001,33(9):1163-1170.
    [36]De Siqueira Pinto A., Bustamante M. M. C., Kisselle K., et al. Soil emissions of N2O, NO, and CO2 in Brazilian savannas:Effects of vegetation type.seasonality, and prescribed fires[J].Journal ofGeophysical Research:Atmospheres,2002,107(D20):LBA57-1-LBA57-9.
    [37]Dobbie K. E., Smith K. A. The effects of temperature, water-filled pore space and land use on CH4 emission from an imperfectly drained gleysol[J].European Journal of Soil Science, 2001,52(4):667-673.
    [38]Dorland S., Beauchamp E. G. Denitrification and ammonification at low soil temperatures[J]. Canadian Journal of Soil Science,1991,71(3):293-303.
    [39]Drury C. F.,Yang X. M., Reynolds W. D., et al. Influence of crop rotation and aggregate size on carbon dioxide production and denitrification[J].Soil and Tillage Research,2004,79(1):87-100.
    [40]Edwards N. T. Effects of temperature and moisture on carbon dioxide evolution in a mixed deciduous forest floor[J]. Soil Science Society of America Journal,1975,39(2):361-365.
    [41]Elmi A., Burton D., Gordon R., et al. Impacts of water table management on N2O and N2 from a sandy loam soil in southwestern Quebec,Canada[J].Nutrient Cycling in Agroecosystems, 2005,72(3):229-240.
    [42]Fontaine S., Bardoux G., Benest D., et al. Mechanisms of the priming effect in a savannah soil amended with cellulose [J].Soil Science Society of America Journal,2004,68(1):125-131.
    [43]Forster P., Ramaswamy V., Artaxo P., et al. Changes in atmospheric constituents and in radiative forcing. In:Climate Change 2007:The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Solomon S, Qin D, Manning M et al.), pp.130-234.Cambridge Univer-sity Press,Cambridge, UK.2007.
    [44]Frank A. B. Carbon dioxide fluxes over a grazed prairie and seeded pasture in the northern great plains[J].Environmental Pollution,2002,116(3):397-40
    [45]Frenzel P., Rothfuss F., Conrad R. Oxygen profiles and methane turnover in a flooded rice microcosm[J].Biology and Fertility of Soils,1992,14(2):84-89.
    [46]Glissmann K., Conrad R. Fermentation pattern of methanogenic degradation of rice straw in anoxic paddy soil[J].FEMS Microbiology Ecology,2000,31 (2):117-126.
    [47]Goodwin S., Zeikus J. G. Ecophyiological adaptions of anaerobic bacteria to low pH: analysis of anaerobic direction in acidic bog sediments[M].Applied and Environmental Microbiology,1987,53:57-64.
    [48]Granli T., Bockman O. C. Nitrous oxide from agriculture[J].Norwegian Journal of Agricultural Sciences,1994.12(94):1-128.
    [49]Gregorich E. G., Rochette P., Vanden B. A. J., et al. Greenhouse Gas Contributions Agricultural Soils and Potential Mitigation Practicesin Eastern Canada[J].Soil and Tillage Research,2005,83(1):53-72.
    [50]Guo J.. Zhou C. Greenhouse gas emissions and mitigation measures in Chinese Agroecosys-tems[J].Agricultural and Forest Meteorology,2007,142(2-4):270-277.
    [51]Gupta S. R., Singh J. S. Soil respiration in a tropical grassland[J].Soil Biology and Biochemi-stry,1981,13(4):261-268.
    [52]Hadas A., Kautsky L., Goek M., et al. Rates of decomposition of plant residues and available nitrogen in soil, related to residue composition through simulation of carbon and nitrogen turnover[J].Soil Biology and Biochemistry,2004,36(2):255-266.
    [53]Hanne B., Soren C. The effect of grass maturing and root decay on N2O production in soil[J]. Plant and Soil,1987,103(2):269-273.
    [54]Hanson P. J., Edwards N. T., Garten C. T. et al. Separating root and soil microbial contribu-tions to soil respiration:a review of methods and observations[J].Biogeochemistry,2000,48 (1):115-146.
    [55]Hanssen.S., Mehlum J. E., Bakken L. R. N2O and CH4 fluxes in soil influenced by fertiliza-tion and tract [J].Soil Biology and Biochemistry,1993,25(5):621-630.
    [56]Hibbard K. A., Law B. E., Reichstein M., et al. An analysis of soil respiration across northern hemisphere temperate ecosystems[J]. Biogeochemistry,2005,73(1):29-70.
    [57]Huang Y., Zou J., Zheng X., et al. Nitrous oxide emissions as influenced by amendment of plant residues with different C:N ratios[J].Soil Biology and Biochemistry,2004,36(6):973-981.
    [58]Hugberg P., Read D. J. Towards a more plant physiological perspective on soil ecology[J]. Trends in Ecology and Evolution,2006,21(10):548-554.
    [59]Husin Y. A., Murdiyarso D. Khalil M. A. K., et al. Methane flux from Indonesian wetland rice:The effects of water management and rice variety[J].Chemosphere,1995,31(4):3153-3180.
    [60]Hutsch B. W. Tillage and land use effects on methane oxidation rates and their vertical profiles in soil[J]. Biology and Fertility of Soils,1998,27(3):284-292.
    [61]International Rice Research Institute (IRRI). Trends in the rice economy:Rice production, area, and yield.2008.http://beta.irri.org/statistics/index. php? Option=com_content&task= iew& id=413&Itemid=352
    [62]International Rice Research Institute [IRRI]. ed.World Rice Statistics,1990.Philippines:IRRI, 1991.
    [63]Intergovernmental Panel on Climate Change(IPCC), Climate Change 1994,Radiative forcing of climate change and an evaluation of the IPCC IS92 emission scenarios[M], Cambridge University Press, New York,1994.
    [64]IPCC.Agriculture. In Climate Change 2007:Mitigation of Climate Change. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.Metz B, avidson OR, Bosch PR et al. Eds. Cambridge University Press, Cambridge,U K,IPCC,2007a.
    [65]Jacinthe P. A., Dickand W. A., Brown. L.C. Bioremediation of nitrate-contaminated shallow soils and waters via water table management techniques:Evolution and release of nitrous oxide[J].Soil Biology and Biochemistry,2000,32(3):371-382,
    [66]Jacinthe P. A., Lal R., Kimble J. M. Carbon budget and seasonal carbon dioxide emission from a central Ohio Luvisol as influenced by wheat residue amendment[J].Soil and Tillage Research,2002,67(2):147-157.
    [67]Jenkins D. Sewage treatment. In:Rainbow C and Rose AH (ed.),Biochemistry of industrial microorganisms [M]. Academic Press, New York,1963,508-536.
    [68]Jenkinson D. S. The fate of Plant and animal residues in soil [J]. In Greenland D. J., Hayes M. H. B. eds. The Chemistry of soil Processes. John Wiley & Sons Ltd,1981,505-561
    [69]Jenkinson D. S.,Adams D. E.,Wild A. Model estimates of CO2 emissions from soil in response to global warming [J].Nature,1991,351:304-306.
    [70]Jin L. X., Ogrinc N., Hamilton S. K., et al. Inorganic carbon isotope systematics in soil profiles undergoing silicate and carbonate weathering (Southern Michigan,USA)[J].Chemi-cal Geology,2009,26.4(1-4):139-153.
    [71]Johnson J. M. F., Franzluebbers A. J., Weyers S. L., et al. Agricultural opportunities to mitigate greenhouse gas emissions[J].Environmental Pollution,2007,150(1):107-124.
    [72]Jugsujinda A., Delaune R. D., Lindau C. W. Influence of nitrate on methane production and oxidation in flooded soil[J].Communications in soil science and plant analysis,1995,26: (15-16)2449-2459.
    [73]Kalbitz K., Solinger S., Park J. H., et al. Controls on the dynamics of dissolved organic matter in soils:A review[J].Soil Science,2000,165(4):277-304.
    [74]Keeling Charles D. Climate change and carbon dioxide:An introduction[J].National Academy of Science,1997,94(16):8273-8274.
    [75]Keith H., Jacobsen K. L., Raison R. J. Effects of soil phosphorus availability,temperature and moisture on soil respiration in Eucalytus pauciflora forest[J].Plant and Soil,1997,190(1): 127-141.
    [76]Kelting D. L., Burger J. A., Edwards G. S. Estimating root respiration, microbial respiration the rhizosphere,and root-free soil respiration in forest soils[J].Soil Biology and Biochem-istry,1998,30(7):961-968.
    [77]Kemmitt S. J., Lanyon C. V., Waite I. S., et al. Mineralization of native soil organic matter is not regulated by the size, activity or composition of the soil microbial biomass a new perspective[J].Soil Biology and Biochemistry,2008,40(1):61-73.
    [78]Khalil M. A. K. Non-CO2 greenhouse gases in the atmosphere[J].Annual Review of Enei and the Environment,1999,24:645-661.
    [79]Khalil M.A.K., Rasmussen R. A.,Wang M. X.Methane emission from rice fields in China [J]. Environmental Science and Technology,1991,25(5):979-981.
    [80]Kielland K.Amino acid absorption by arctic plants:implications for plant nutrition and nitrogen cycling [J].Ecology,1994,759(8):2373-2383.
    [81]Kimura M., Asai K., Watanabe A., et al. Suppression of methane fluxes from flooded paddy soil with rice plants by foliar spray of nitrogen fertilizers[J].Soil Science and Plant Nutri-tion,1992,38(4):735-740.
    [82]Kludze H. K., Delaune R. D., Patrick W. H. Aerenchyma formation and methane and oxygen exchange in rice[J].Soil Science Society of America Journal,1993,57(2):386-391.
    [83]Koops J. G, van Beusichem M. L., Oenema O. Nitrogen loss from grassland on peat soils through nitrous oxide production[J]. Plant and soil,1997,188(1):119-130.
    [84]Glissmann K., Conrad R. Fermentation pattern of methanogenic degradation of rice straw in anoxic paddy soil[J]. FEMS Microbiology Ecology,2000.31 (2):117-126.
    [85]Kucera C. L. Kirkham D. R. Soil respiration studies in tall grass prairie in Missourt[J]. Ecology,1971.52(5):912-915
    [86]Kuzyakov Y., Friedel J. K., Stahr K. Review of mechanisms and quantification of priming effects[J].Soil Biology and Biochemistry,2000,32(11-12):1485-1498.
    [87]Kuzyakov Y., Roland B. Sources and mechanisms of priming effect induced in two grassland soils amended with slurry and sugar [J].Soil Biology and Biochemistry,2006,38(4):747-758.
    [88]Kuzyakov Y., Siniakina S.V. A novel method for separating root-derived organic compounds from root respiration in non-sterilized soils[J].Journal of Plant Nutrition and Soil Science 2001 (5),164:511-518.
    [89]Lal R., Kimble J., Follett R. Land use and soil C pool in terrestrial ecosystems. In:Lal R, J Kimbkle, R. Follett & B A, Stewarteds.Management of carbon sequestration in soil Boca Raton:CRC Press.1998,1-10.
    [90]Landi L., Valori F., Ascher J., et al. Root exudate effects on the bacterial communities, CO2 evolution,nitrogen transformations and ATP content of rhizosphere and bulk soils[J].Soil Biology and Biochemistry.2006,38(3):509-516.
    [91]Larionova A. A.,Yermolayev A. M., Blagodatsky S. A., et al. Soil respiration and carbon balance of gray forest soils as affected by land use[J]. Biology and Fertility of soils,1998,27 (3):251-257.
    [92]Laura S. M., Vallejo A., Dick J., et al. The influence of soluble carbon and fertilizer nitrogen on nitric oxide and nitrous oxide emissions from two contrasting agricultural soils[J].Soil Biology and Biochemistry,2008,40(1):142-151.
    [93]Laverman A. M., Zoomer H. R., Verhoef H. A. The effect of oxygen, pH and organic carbon on soil-layer specific denitrifying capacity in acid coniferous forest[J].Soil Biology Biochemis -try,2001,33(4-5):683-694.
    [94]Lelieveld J.,Crutzen P.,Dentener F.. et al.Changing concentration, lifetime and climate forcing of atmospheric methane[J].Tellus B,1998,50(2):128-150.
    [95]Lesschen J. P., Velthof G. L., de Vries W., et al. Differentiation of nitrous oxide emission factors for agricultural soils[J].Environmental pollution,2011,159(11):3215-3222.
    [96]Li C.,Cao C.,Wang J.,et al. Nitrous oxide emissions from wetland rice-duck cultivation syste-ms in southern China[J].Environmental Contamination and Toxicology,2009,56(1):21-29.
    [97]Li C. S.,Salas W., Deangelo B., et al. Assessing alternative for mitigating net greenhouse gas emissions and increasing yields from rice production in China over the next twenty years[J]. Journal of Environmental Quality,2006,35(4):1554-1565.
    [98]Li C. S., Mosier A.,Wassmann, R., et al.Modeling greenhouse gas emissions from rice-based production systems:Sensitivity and upscaling[J].Global Biogeochemical Cycles,2004,18(1): 1035-1043.
    [99]Li C.S., Frolking S.,Xiao X.M.,et al.Modeling impacts of farming management alternatives on CO2, CH4and N2O emissions:a case study for water management of rice agriculture of China[J].Global Biogeochemical Cycles,2005,19(3):1688-1698.
    [100]Li C. S.Modeling trace gas emissions from agricultural ecosystems[J].Nutrient Cycling in Agroecosystems,2000,58(1-3):259-276.
    [101]Li L. H., Han X. G., Wang Q. B. Correlations between plant biomass and soil respiration in a Leymus chinensis community in the Xilin river basin of Inner Mongolia[J].Acta Botanica Sinica,2002,44(5):593-597.
    [102]Li Y., Xu M., Zou X. Heterotrophic soil respiration in relation to environmental factors and microbial biomass in two tropical forests[J].Plant and soil,2006,281(1-2):193-201.
    [103]Lin E. Agricultural techniques:Factors controlling methane emissions.In:Gao L.,Wu L. Zheng D., et al. eds. Proceedings of the International Symposium on Climate Change, Natural Disasters, and Agricultural Strategies. Beijing:Meteonalogical Press,1993,120-126.
    [104]Lindau C.W., Bollich P. K., Delaune R. D., et al. Effect of urea fertilizer and environmental factors on CH4 emission from a Louisiana,USA rice field[J].Plant and Soil,1991,136(2): 195-203.
    [105]Lindau C. W., Bollich P. K., Delaune R. D., et al. Methane mitigation in flooded Louisiana rice fields[J]. Biology and Fertility of Soils,1993,15(3):171-178.
    [106]Linn D. M., Doran J. W. Effects of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils [J].Soil Science Society of America Journal, 1984,48(6):1267-1272.
    [107]Liu C. Y, Wang K., Meng S. X., et al. Effects of irrigation, fertilization and crop straw management on nitrous oxide and nitric oxide emissions from a wheat-maize rotation field in northern China [J]. Agriculture, Ecosystems and Environment,2011,140(1-2):226-233.
    [108]Liu H., Zhao.P., Lu P., et al. Greenhouse gas fluxes from soils of different land-use types in a hilly area of south China[J].Agriculture, Ecosystems and Environment,2008,124(1-2):125-135.
    [109]Liu S., Zhang L., Liu Q., et al. Fe(III) fertilization mitigating net global warming potential and greenhouse gas intensity in paddy rice-wheat rotation systems in China[J].Environ-mental Pollution,2012,164:73-80.
    [110]Lou Y, Ren L., Li Z., et al. Effect of rice residues on carbon dioxide and nitrous oxide emissions from a paddy soil of subtropical China[J]. Water, Air, and Soil Pollution,2007,178 (1-4):57-168.
    [111]Lundegardh H.Carbon dioxide evolution and crop growth[J].Soil Science,1927,23(6):417-453.
    [112]Ma J., Li X. L., Xu H., et al. Effects of nitrogen fertilizer and wheat straw application on CH4 and N2O emissions from a paddy rice field. Australian [J].Soil Research,2007,45(5): 359-367.
    [113]Ma J., Ma E., Xu H., et al. Wheat straw management affects CH4 and N2O emissions from rice fields[J].Soil Biology and Biochemistry,2009,41(5):1022-1028.
    [114]Mahmood T., Ali R., Iqbal J., et al. Nitrous oxide emission from an irrigated cotton field under semiarid subtropical conditions[J].Biology and Fertility of Soils,2008,44(5):773-781.
    [115]Malhi S. S., Lemke R., Wang Z. H., et al. Tillage, nitrogen and crop residue effects on crop yield, nutrient uptake, soil quality, and greenhouse gas emissions[J].Soil and Tillage Research,2006,90(1-2):171-183.
    [116]Malhi S. S., Mcgill W. B., Nyborg M. Nitrate losses in soils:effect of temperature, moisture and substrate concentration[J].Soil Biology and Biochemistry,1990,22(6):733-737.
    [117]Maljanen M., Martikkala M., Koponen H. T., et al. Fluxes of nitrous oxide and nitric oxide from experimental excreta patches in boreal agricultural soil[J].Soil Biology and Biochemis-try,2007,39(4):914-920.
    [118]Masscheleyn P. H., Delaune R. D., Patrick W. H. Methane and nitrous oxide emissions from laboratory measurements of rice soil suspension:effect of soil oxidation-reduction status[J]. Chemosphere,1993,26(1-4):251-260.
    [119]Matthews E., Fung I., Lerner J. Methane emission from rice cultivation:Geographic and seasonal distribution of cultivated areas and emissions[J].Global Biogeochemistry Cycles 1991.5(1):3-24.
    [120]Meyer R. L., Allen D. E.. Schmidt S. Nitrification and denitrification as sources of sediment nitrous oxide production:A microsensor approach[J].Marine Chemistry.2008,110 (1-2):68-76.
    [121]Miller M. N., Zebarth B. J., Dandie C. E., et al. Crop residue influence on denitrification N2O emissions and denitrifier community abundance in soil[J].Soil Biology and Biochemis-try,2008,40(10):2553-2562.
    [122]Minami K., Neue H. U.Rice paddies as a methane source[J].Climatic Change.1994,27(1) 13-26.
    [123]Mishra S., Rath A. K., Adhya T. K., et al. Effect of continuous and alternate water regimes on methane efflux from rice under greenhouse conditions[J].Biology and Fertility of Soils, 1997,24(4):399-405.
    [124]Moore T. R., Roulet N. T. Methane flux-water table relations in northern wetlands[J]. Geophysical Research Letters,1993,20(7):587-590.
    [125]Morkved P. T., Dorsch P., Bakken L. R. The N2O product ratio of nitrification and its dependence on long-term changes in soil pH[J].Soil Biology and Biochemistry,2007.39(8): 2048-2057.
    [126]Mosier A. R., Halvorson A. D., Reule C. A., et al. Net global warming potential and green-house gas intensity in irrigated cropping systems in Northeastern Colorado[J].Journal of Environmental Quality,2006,35(4):1584-1598.
    [127]Moyano F. E., Kutsch W. L.,Rebmann,C. soil respiration fluxes in relation to Photosyn-thetic activity in broad-leaf and needle-leaf forest stands[J].Agricultural and Forest Meteor-ology,2008,148(1):135-143.
    [128]Mudge F., Adler W. N. Methane fluxes from artificial woodlands:A global from appraisal Environmental Manage[J].Agriculture, Ecosystems and Environment,1995,19:39-55.
    [129]Muller C. Stevens R. J., Laughlin R. J., et al.Microbial processes and the site of N2O prod -uction in a temperate grassland soil[J].Soil Biology and Biochemistry,2004,36(3):453-461.
    [130]Nesbit S. P., Breitenbeck G.. A. A laboratory study of factors influencing methane uptake by soils[J].Agriculture, Ecosystems and Environment,1992,41(1):39-54.
    [131]Neue H. U. Methane emission from rice fields[J].Bioscience,1993,43(7):466-474.
    [132]Norton U., Mosier A. R., Morgan J. A., et al. Moisture pulses, trace gas emissions and soil C and N in cheatgrass and native grass-dominated sagebrush-steppe in Wyoming,USA[J]. Soil Biology and Biochemistry,2008,40(6):1421-1431.
    [133]Nouchi I. Mechanisms of methane transport through rice plants. In:Minami K, eds.CH4 and N2O:Global Emission and Controls from Rice Fields and Other Agricultural and Industrial Sources. Tokyo, Japan:Yokendo Publishers.1994,87-105.
    [134]Nouchi I, Mariko S. Mechanisms of methane transport by rice plants In:Oremland R S, ed. Biogeochemistry of Global Change. New York:Chapman and Hall.1993,336-352.
    [135]Oconnell A.M. Litter decomposition, soil respiration and soil chemical and biochemical properties at three contrasting sites in karri forests of south-western Australia[J].Australian Journal of Ecology,1987,12(1):31-40.
    [136]Orchard V. A., Cook F. J. Relationship between soil respiration and soil moisture[J].Soil Biology and Biochemistry,1983(4),22:153-160.
    [137]Oremland R. S. Biochemistry of methanogenic bacteria. In:Zehnder J B (ed.), Biology of anaerobic microorganisms [M].John Wiley and Sonc,New York,1988,641-705.
    [138]Oremland R. S., Marsh L., Des Marais D. J. Methanogenesis in Big Soda Lake, Nevada:an alkaline, moderately hypersaline desert lake[J].Applied and Environmental Microbiology, 1982,43(2):462-468.
    [139]Pachauri R.K., Reisinger A. Climate Change 2007:Synthesis Report.Contribution of Working Groups Ⅰ, Ⅱ and Ⅲ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [R].Geneva, Switzerland,IPCC,2007b.
    [140]Parashar D. C, Gupta P. K., Rai J., et al. Effect of soil temperature on methane emission from paddy fields[J].Chemosphere,1993,26(1-4):247-250.
    [141]Paul L. E., Bodelier A. P., Hahn I. R. A., et al. Effects of ammonium-based fertilization on microbial processes involved in methane emission from soils planted with rice[J].Biogeo-chemistry,2000,51(3):225-257.
    [142]Petersen S. O., Nielsen T. H., Frostegard A. et al. O2 uptake, C metabolism and denitrificati-on associated with manure hot-spots[J].Soil Biology and Biochemistry,1996,28(3):341-349.
    [143]Post W. M., Kwon K. C. Soil carbon sequestration and land use change:processes and potential Global Change [J].Global Change Biology,2000,6(3):317-327.
    [144]Prinn R.,Cunnold D.,Rasmussen R., et al. Atmospheric emissions and trends of nitrous oxide deduced from 10 years of ALE-GAGE data[J]. Journal of Geophysical Research Atmo-spheres,1990,95(D11):18369-18385.
    [145]Qiu J.China cuts methane emissions from rice fields[J].Nature,2009.doi:10.1038/news. 2009.833.
    [146]Raich J. W, Nadelhoffer K. J. Belowground carbon allocation in forest ecosystems:Global trends [J].Ecology,1989,70(5):1346-1354.
    [147]Raich J. W, Schlesinger W. H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate [J].Tellus B,1992,44(2):81-99.
    [148]Raich J. W., Potter C. S. Global patterns of carbon dioxide emissions from soils[J].Global Biochemical Cycles,1995,9(1):23-36.
    [149]Ratering S., Conrad R. Effects of short-term drainage and aeration on the production of methane in submerged rice soil [J].Global Change Biology,1998,4(4):397-407.
    [150]Reichstein M., Freibauer R. A., Tenhunen J., et al. Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices [J].Global Biogeochemical Cycles,2003,17(4):417-426.
    [151]Reichstein M., Beer C. Soil respiration across scales:The importance of a model-data integration framework for data interpretation[J].Journal of plant nutrition and soil science, 2008,171(3):344-354.
    [152]Reicosky D. C.,Dugas W. A.,Torbert H. A.Tillage-induced soil carbon dioxide loss from different cropping systems [J].Soil and Tillage Research,1997,41 (1-2):105-118.
    [153]Robertson G. P., Paul E. A., Harwood R. R. Greenhouse gases in intensive agriculture: contributions of individual gases to the radiative forcing of the atmosphere[J].Science,2000, 289(5486):1922-1925
    [154]Rusch H, Rennenberg H. Black alder (Alnus glutinosa (L.)Gaertn) trees mediate methane and nitous oxide emission from the soil to the atmosphere[J].Plant and Soil,1998.201(1): 1-7.
    [155]Russell C. A., Voroney R. P. Carbon dioxide efflux from the floor of a boreal aspen forest. I. Relationship to environmental variables and estimates of C respired[J].Canadian Journal of Soil Science,1998,78(2):301-310.
    [156]Sahrawat K.L.,Keeney D.R.Nitrous oxide emission from soils [J].Advance in Soil Science 1986,4:103-148.
    [157]Sass R. L., Fisher F. M., Harcombe P.A., et al. Methane Production and emission in a Texas rice field[J].Global Biogeochemistry Cycles.1990,4(1):47-68.
    [158]Sass R. L., Fisher F. M., Jund M. F., et al. Methane emission from rice fields:Effect of soil properities[J]Global Biogeochemistry Cycles,1994,8(2):135-140.
    [159]Sato A., Seto M. Relationship between rate of carbon dioxide evolution, microbial biomass carbon, and amount of dissolved organic carbon as affected by temperature and water content of a forest and an arable soil[J].Communications in Soil Science and Plant Analysis,1999,30 (19-20):2593-2605.
    [160]Schutz H., Holzapfel-Pschorn A., Conrad R., et al. A 3-year continuous record on the influence of daytime, season and fertilizer treatment on methane emission rates from an Italian rice Paddy [J].Journal of Geophysical Research,1989,94(D 13):16406-16416.
    [161]Schutz H., Seiler W.,Conrad R. Influence of soil temperature on methane emission from paddy fields[J].Biogeochemistry,1990,11(2):77-95.
    [162]Scott-Denton L. E., Sparks K. L., Monson R. K. Spatial and temporal controls of soil respiration rate in a high-elevation,subalpine forest[J].Soil Biology and Biochemistry,2003, 35(4):525-534.
    [163]Sebacher D. I., Harriss R. C., Bartlett K B, el al. Atmospheric methane sources:Alaskan tundra bogs, an alpine fen, and a subarctic boreal marsh[J].Tellus B,1986,38B(1):1-10.
    [164]Shang Q. Y., Yang X. X., Gao C., et al. Net global warming potential and greenhouse gas intensity in Chinese double rice-cropping systems:a 3-year field measurement in long-term fertilizer experiments[J].Global Change Biology,2011,17(6):2196-2210.
    [165]Shen R. F., Brookes P. C., Powlson D. S. Effect of long-term straw incorporation on soil microbial biomass and C and N dynamics[J].Pedosphere,1997.7(4):297-302.
    [166]Sigren L. K.. Lewis S. T., Fisher F. M., et al. Effects of field drainage on soil parameters related to methane production and emission from rice paddies[J].Global Biogeochemical Cycles,1997,11 (2):151-162.
    [167]Singh J. S.,Gupta S. R.Plant decomposition and soil respiration in terrestrial ecosystems[J]. The Botanical Review,1977,43(4):449-528.
    [168]Singh S., Kashyap A. K., Singh J. S. Methane flux in relation to growth and phenology of a high yielding rice variety as affected by fertilization[J]. Plant and Soil,1998,201(1):157-164.
    [169]Singh J. S., Singh S.,Raghubanshi A. S.,et al. Methane flux from rice/wheat agroecosystem as affected by crop phenology, fertilization and water level [J].Plant and Soil,1996,183(2): 323-327.
    [170]Skopp J., Jawson M. D., Doran J. W. Steady-state aerobic microbial activity as a function of soil water content[J].Soil Science Society of American Journal,1990,54(6):1619-1625.
    [171]Smith P, Martino D., Cai Z, et al. Greenhouse gas mitigation in agriculture[J].Biological Sciences,2008,363(1492):789-813.
    [172]Smith P., Martino D., Cai Z., et al. Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture[J].Agriculture, Ecosystems and Environ-ment,2007,118(1-4):6-28.
    [173]Speir T. W., Kettles H. A., More R. D. Aerobic emission of N2O and N2 from soil cores: measurement procedures using 13N-labelled NO3- and NH4+[J].Soil Biology and Biochemi-stry,1995,27(10):1289-1298.
    [174]Stevens R. J., Laughlin R. J., Malone J. P. Soil pH affects the processes reducing nitrate to Nitrous oxide and di-nitrogen[J].Soil Biology and Biochemistry,1998,30(8-9):1119-1126.
    [175]Svensson B., Hand Rosswall. In situ methane production from acid peat in plant communiti-es with different moisture regimes in a subarctic mire[J].Oikos,1984,43(3):341-350.
    [176]Takakai F., Morishita T., Hashidoko Y., et al. Effeets of agricultural land-use change and forest fire on N2O emission from tropical peatlands.Central Kalimantan, Indonesia[J].Soil Science and Plant Nutrient,2006,52(5):662-674.
    [177]Tang J.W., Dennis D.B., Qi Y., et al. Assessing soil CO2 efflux using continuous measure-ments of CO2 profiles in soils with small solid-state sensors[J].Agricultural and Forest Mete-orology,2003,118(3-4):207-220.
    [178]TerryR.E.,Tate R.L.,Duxbury J. M. Nitrous oxide emissions from drained,cultivated organic soils of south florida[J].Journal of the Air Pollution Control Association 1981 31(11):1173-1176.
    [179]Trumbore S. E.,Davidson E. A.,Barbosa P., et al. Belowground cycling of carbon in forests and pastures of eastern Amazonia[J].Global Biogeochemical Cycles,1995,9(4):515-528.
    [180]Turcu V. E., Jones S. B., Or D. Continuous soil carbon dioxide and oxygen measurements and estimation of gradient-based gaseous flux[J].Vadose Zone Journal,2005,4(4):1161-1169.
    [181]Valentini R., Matteuccl G., Dolman A. J., et al. Respiration as the main determinant of carbon balance in European forests[J].Nature,2000,404:861-865.
    [182]Vanlauw B. E, Dendooven L., Erckx R., M. Residue fractionation and decomposition:the significance of the active fraction [J].Plant and Soil,1994,158(2):263-274.
    [183]Vasconcellos C. A. Temperature and glucose effects on soil organic carbon:CO2 evolved and decomposition rate[J].PesquisaAgropec. bras. Brasilia,1994,29(7):1129-1136.
    [184]Veldkamp E., Weitz A. M., Keller M. Management effects on methane fluxes in humid tropical pasture soils[J].Soil Biology and Biochemistry,2001,33(11):1493-1499.
    [185]Vermoesen A.,Ramon H.,Cleemput O.Y.,et al.Composition of the soil gas phase:permanent gases and hydrocarbons[J].Pedologie,1991,41 (2):119-132.
    [186]Vourlitis G L., Oechel W. C., Hastings S. J., et al. The effect of soil moisture and thaw depth on CH4 flux from wet coastal tundra ecosystems on the north slope of Alaska[J]. Chemosphere,1993,26(1-4):329-337.
    [187]Wang B. J., Neue H. U., Samonte H. P. Effect of cultivar difference ('IR72','1R65598'and 'Dular')on methane emission[J].Agriculture, Ecosysystems and Environment,1997a,62(1): 31-40.
    [188]Wang B. J., Neue H. U., Samonte H. P. Effect of rice plant on seasonal methane emission patterns[J]. Acta Agronomica Sinca,1997b,23(3):271-287.
    [189]Wang M. X, Dai A. G, Shen R. X, et al. CH4 emission from a Chinese rice paddy field[J]. Acta Meteorologica Sinica,1990,4(3):265-275
    [190]Wang M. X., Li J. CH4 emission and oxidation in Chinese rice paddies[J].Nutrient Cycling in Agroecosystems,2002,64(1-2):43-55.
    [191]Wang M. X., Shangguan X. J., Shen R. X., et al. Methane production emission and possible control measures in the rice agriculture[J]. Advances in Atmospheric Sciences,1993,10(3): 307-314.
    [192]Wang Y. S., Hu Y. Q., Ji B.M., et al. An investigation on the relationship between emission/uptake of greenhouse gases and environmental factors in semiarid grassland[J]. Advances in Atmospheric Sciences,2003,20(1):119-127.
    [193]Wang Z., Kludze C.R., Patrick W.H., et al. Soil characteristic affecting methane production and emission in flooded rice. In:Peng S. et al. (ed.), Climate Change and Rice[C].Springer-Verlag Berlin Heidelberg.1995,81-90.
    [194]Wang Z. P., Delaune R. D., Lindau C. W., et al. Methane production from anaerobic soil amended with rice straw and nitrogen fertilizer[J].Fertilizer Research,1992.33(2):115-121.
    [195]Wang Z. P., Delaune R. D., Patrick W. H., et al. Soil redox and pH effects on methane reduction in a flooded rice soil[J].Soil Science Society of America Journal,1993,57(2)382-385.
    [196]Watanabe T., Osada T., Yoh M., et al. N2O and NO emission from grassland soils after the application of cattle and swine excreta[J].Nutrient Cycling in Agroecosystems,1997,49(1-3): 35-39.
    [197]Wassmann R., Neue H. U., Alberto M. C. R., et al. Fluxes and pools of methane in wetland rice soils with varying organic inputs[J].Environment Monitoring and Assessment,1996,42 (1-2):163-173.
    [198]Wassmann R., Schutz H., Papen H., et al. Quantification of methane emissions from Chinese rice fileds(Zhejiang Province) as influenced by fertilizer treatment[J].Biogeochem-istry,1993.20(2):83-101.
    [199]Wassmann R., Neue H. U., Bueno C., et al. Methane production capacities of different rice soils derived from inherent and exogenous substrates[J].Plant and Soil,1998,203(2):227-237.
    [200]Watson R. T., Verardo D. J. Land-use change and forestry [M].Cambridge University Press, 2000.
    [201]West T. O., Marland G. Net carbon flux from agricultural ecosystems:Methodology for full carbon cycle analyses[J].Environmental Pollution,2002,116(3):439-444.
    [202]Whalen S. C., Reeburgh W. S., Sandbeck K. A. Rapid methane oxidation in a landfill cover soil [J].Applied and Environmental Microbiology,1990,56(11):3405-3411.
    [203]Williams E. J., Hutchinson G. L., Fehsenfeld F. C. NOx and N2O emission from soil[J]. Global Biogeochemical cycles,1992,6(4):351-388.
    [204]Williams P. H., Jarvis S. C., Dixon E. Emission of nitric oxide and nitrous from soil under field and laboratory conditions [J].Soil Biology and Biochemistry,1998,30(14):1885-1893.
    [205]Willison T. W., Webster C. P., Goulding K.W. T., et al. Methane oxidation in the temperate soil effective of land use-and the chemical form of nitrogen fertilizer[J].Chemosphere,1995, 30(3):539-546.
    [206]Wu H. B., Guo Z. T., Gao Q., et al. Distribution of soil inorganic carbon storage and its changes due to agricultural land use activity in China[J].Agriculture,Ecosystems and Envir-onment,2009,129(4):413-421.
    [207]Wu J., Joergensen R. G., Pommerening B., et al. Measurement of soil microbial biomass by fumigation-extraction-automated procedure[J].Soil Biology and Biochemistry,1990,22(8): 1167-1169.
    [208]Xu M., Qi Y. Spatial and seasonal variation of Q10 determined by soil respiration measurem-ents at a Sierra Nevadan forest[J].Global Biogeochemical Cycles,2001,15(3):687-696.
    [209]Yagi K., Minami K. Effects of organic matter application on methane emission from some Japanese paddy fields[J].Soil Science and Plant Nutrition,1990,36(4):559-610.
    [210]Yagi K., Tsuruta H., Kanda K., et al. Effect of water management on methane emission from a Japanese rice paddy field:Automated methane monitoring[J].Global Biogeochemical Cycles,1996,10(2):255-267.
    [211]Yagi K., Tsuruta H., Minami K, et al. Methane emission from Japanese and Thai paddy fields [M].In:CH4 and N2O, edited by Minami K., Mosier A., and Sass R.,1994:41-53.
    [212]Yano Y., McDowell W. H., Kinner N. E. Quantification of biodegradable dissolved organic Carbon in soil solution with flow-through bioreactors[J].Soil Science Society of America Journal,1998,62(6):1556-1564.
    [213]Yan X., Shi S., Du L. et al. Pathways of N2O emission from rice paddy soil[J].Soil Biology and Biochemistry,2000,32(3):437-440.
    [214]Yan X. Y, Akiyama H., Yagi K., et al. Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 Intergovern-mental Panel on Climate Change Guidelines[J].Global Biogeochemical Cycles,2009,23(2): GB 2002.
    [215]Yan X. Y, Cai Z. C., Ohara T, et al. Methane emission from rice fields in mainland China: Amount and seasonal and spatial distribution[J] Journal of Geophysical Rearch:Atmos-pheres,2003,108(D16):1-15.
    [216]Yan Y. P.,Sha L.Q., Cao M., et al. Fluxes of CH4 and N2O from soil under a tropical seasonal rain forest in Xishuangbanna,Southwest China[J] Journal of Environmental Sciences,2008,20(2):207-215.
    [217]Zhang T. Y, Xu X. K., Luo X. B., et al. Effects of acetylene at low concentrations on nitrifi-cation,mineralization and microbial biomass nitrogen concentrations in forest soils[J]. Chinese Science Bulletin,2008,54(2):296-303.
    [218]Zheng X. H., Xie B. H., Liu C. Y, et al. Quantifying net ecosystem carbon dioxide exchange of a short-plant cropland.with intermittent chamber measurements[J].Global Biog-eochemical Cycles,2008,22(3),GB3031.doi:10.1029/2007GB003104.
    [219]Zheng X. H., Wang M. X., Wang Y S., et al. Comparison of manual and automatic methods for measurement of methane emission from rice paddy fields[J].Advances in Atmospheric Sciences,1998,15(4):569-579
    [220]Zheng X. H.,Wang M. X., Wang Y. S.,et al. Impacts of soil moisture on nitrous oxide emission from croplands:a case study on the rice-based agro-ecosystem in Southeast China[J]. Chemosphere-Global Change Science,2000,2(2):207-224
    [221]Zheng Z. M., Yu G. R. Temperature sensitivity of soil respiration is affected by prevailing climatic conditions and soil organic carbon content:A trans-China based case study[J].Soil Biology and Biochemistry,2009,41 (7):1531-1540.
    [222]Zou J.,Huang Y.,Zheng X.,et al.Static opaque chamber-based technique for determination of net exchange of CO2 between terrestrial ecosystem and atmosphere[J].Chinese Science Bullet -in,2004,49(4):381-388.
    [223]Zou J. W., Huang Y., Lu Y. Y., et al. Direct emission factor for N2O from rice-winter wheat rotation systems in southeast China[J].Atmospheric Environment,2005,39(26):4755-4765.
    [224]Zou J. W.,Huang Y.,Zheng X. H.,et al.Quantifying direct N2O emissions in paddy fields dur-ing rice growing season in mainland China:Dependence on water regime[J].Atmospheric Environment,2007,41 (37):8030-8042.
    [225]85-913-04-05攻关课题组.我国稻田甲烷排放量发展趋势预测[J].农业环境保护,1994,13(6):256-258,278.
    [226]毕于运,王亚静,高春雨.中国主要秸秆资源数量及其区域分布[J].农机化研究,2010(3):1-7.
    [227]蔡道基,毛伯清.紫云英对土壤有机质分解和积累的影响[J].土壤通报,1980(3):19-23.
    [228]蔡祖聪.中国稻田甲烷排放研究进展[A].见:中国土壤学会编.迈向21世纪的土壤科学:中国土壤学会第九次全国会员代表大会论文集(综合卷)[C],1999:139-142.
    [229]蔡祖聪,沈光裕,颜晓元,等.十壤质地、温度和Eh对稻田甲烷排放的影响[J].土壤学报,1998a,35(2):145-153.
    [230]蔡机聪,徐华,卢维盛,等.冬季水分管理方式对稻田CH4排放量的影响[J].应用生态学报,1998b,9(2):171-175.
    [231]蔡祖聪,谢德体,徐华,等.冬灌田影响水稻生长期甲烷排放量的因素分析.应用生态学报,2003,14(5):705-709.
    [232]曹云英.朱庆森,郎有忠,等.水稻品种及栽培措施对稻田甲烷排放的影响[J].江苏农业研究,2000.21(3):22-27.
    [233]曹云英,许锦彪,朱庆森,等.水稻叶片对甲烷传输速率的影响[J].山东农业科学,2004,3:22-27.
    [234]曹云英,许锦彪,朱庆森.水稻植株状况对甲烷传输速率的影响及其品种间差异[J].华北农学报,2005,20(2):105-109.
    [235]陈德章,王明星,上官行健,等.我国西南地区的稻田甲烷排放[J].地球科学进展,1993.8(5):47-54.
    [236]陈冠雄,商署晖,于克伟,等.植物释放氧化亚氮研究[J].应用生态学报,1990,1(1):94-95.
    [237]陈书涛,黄耀,郑循华,等.轮作制度对农田氧化亚氮排放的影响及驱动因子[J].中国农业科学,2005,38(10):2053-2060.
    [238]陈书涛,黄耀,郑循华,等.种植不同作物对农田甲烷和氧化亚氮排放的影响及其驱动因子[J].气候与环境研究,2007,12(2):147-155.
    [239]陈义,吴春艳,水建国,等.长期施用有机肥对水稻土CO2释放与固定的影响[J].中国农业科学,2005,38(12):2468-2473
    [240]陈宗良,邵可声,李德波,等.控制稻田甲烷排放的农业管理措施研究[J].环境科学研究,1994,7(1):1-10.
    [241]戴万宏,刘军,王益权,等.不同培肥措施下土壤CO2释放及其动力学研究[J].植物营养与肥料学报,2002,8(3):292-297.
    [242]董玉红,欧阳竹.有机肥对农田土壤二氧化碳和甲烷通量的影响[J].应用生态学报,2005,16(7):1303-1307.
    [243]杜睿.温度和水分对草甸草原土壤氧化亚氮产生速率的调控[J].应用生态学报,2006,17(11):2170-2174.
    [244]封克,殷士学.影响氧化亚氮形成和排放的土壤因素[J].土壤学进展.1995,23(6):35-41.
    [245]胡立峰,李琳,陈阜,等.不同耕作制度对南方稻田甲烷排放的影响[J].生态环境,2006,15(6):1216-1219.
    [246]韩广轩,朱波,张中杰,等.水早轮作土壤-小麦系统CO2排放及其影响因素[J].生态环境,2004,13(2):182-185.
    [247]韩士杰,董云社,蔡祖聪.中国陆地生态系统碳循环的生物地球化学过程[M].北京:科学出版社,2008.
    [248]黄承才,葛滢,常杰,等.中亚热带东部三种主要木本群落土壤呼吸的研究[J].生态学报,1999,19(3):324-328.
    [249]黄国宏,陈冠雄,韩冰,等.土壤含水量与N20产生途径研究[J].应用生态学报,1999,10(1):53-56.
    [250]黄国宏,陈冠雄,商署晖,等.菌大豆植株释放N20研究[J].植物学报,1992,34(11):835-840.
    [251]黄勤,魏朝富,谢德体,等.不同耕作制度对稻田甲烷排放通量的影响[J].西北农业大学学报,1996,18(5):436-439.
    [252]黄益宗,张福珠,刘淑琴,等.化感物质对N20释放影响的研究[J].环境科学学报,1999,19(5):479-482.
    [253]黄耀,张稳,郑循华,等.基于模型和GIS技术的中国稻田甲烷排放估计[J].生态学报,2006,26(4):980-988.
    [254]贾仲君,蔡祖聪.水稻植株对稻田甲烷排放的影响[J].应用生态学报,2003,14(11):2049-2053.
    [255]江长胜,王跃思,郑循华,等.稻田甲烷排放影响因素及其研究进展[J].土壤通报,2004,35(5):663-669.
    [256]江长胜.川中丘陵区农田生态系统主要温室气体排放研究[D]北京:中国科学院研究生院,2005.
    [257]蒋静艳,黄耀,宗良纲.稻田土壤理化特性对甲烷排放的影响[J].土壤与环境,2001,10(1):27-281.
    [258]蒋静艳,黄耀,宗良纲.水分管理与秸秆施用对稻田CH4和N20排放的影响[J].中国环境科学,2003,23(5):552-556.
    [259]江晓东,迟淑筠,宁堂原,等.少免耕模式对土壤呼吸的影响[J].水土保持学报,2009,23(2):
    253-256.
    [260]李成芳,寇志奎,张枝盛,等.秸秆还田对免耕稻田温室气体排放及土壤有机碳固定的影响[J].农业环境科学学报,2011,30(11):2362-2367.
    [261]李俊,于强,同小娟.农业活动对土壤甲烷汇的影响研究[J].中国生态农业学报,2003,11(4):27-28.
    [262]李侃.稻田土壤微生物量与温室气体排放的研究[D].成都:四川农业大学,2005.
    [263]李凌浩,陈佐忠.草地群落的土壤呼吸[J].生态学杂志,1998,17(4):45-51.
    [264]李梦雅,徐明岗,王伯仁,等.长期不同施肥下我国旱地红壤N20释放特征及其对土壤性质的响应[J].农业环境科学学报,2009a,28(12):2645-2650.
    [265]李梦雅,王伯仁,徐明岗,等.施肥对红壤有机碳矿化及微生物活性的影响[J].核农学报,2009b,23(6):1043-1049.
    [266]李香兰,徐华,曹金留,等.水分管理对水稻生长期甲烷排放的影响[J].土壤,2007,39(2): 238-242.
    [267]李香兰,徐华,蔡祖聪.水分管理影响稻田氧化亚氮排放研究进展[J].土壤,2009,41(1):1-7.
    [268]李忠,林心雄.内蒙古草原植物土壤系统中有机碳的转化[J].土壤学报,1995,32,增刊(2):7-17.
    [269]梁巍.岳进,吴劼,等.微生物生物量C、土壤呼吸的季节变化与黑土稻田甲烷排放[J].2003,14(12):2278-2280.
    [270]廖利平,高洪.汪思龙等.外加氮源对杉木叶凋落物分解及土壤养分淋失的影响[J].植物生态学报,2000,24(1):34-39.
    [271]林匡飞,项雅玲,姜达炳,等.湖北地区稻田甲烷排放量及控制措施的研究[J].农业环境保护,2000,19(5):267-270.
    [272]刘强,刘嘉麒,贺怀玉.温室气体浓度变化及其源与汇研究进展[J].地球科学进展,2000,15(4):453-460.
    [273]刘绍辉,方精云,清田信.北京山地温带森林的土壤呼吸[J].植物生态学报,1998,22(2):19-26.
    [274]刘武仁,郑金玉,罗洋,等.玉米秸秆还田对土壤呼吸速率的影响[J].玉米科学.2011,19(2):105-108,113.
    [275]吕殿青,张树兰,杨学云.外加碳、氮对黄绵土有机质矿化与激发效应的影响[J].植物营养与肥料学报,2007,13(3):423-429.
    [276]逯非,王效科,帏冰,等.稻田秸秆还田:土壤固碳与甲烷增排[J].应用生态学报,2010.21(1):99-108.
    [277]鲁如坤主编.土壤农业化学分析方法[M].北京:中国农业科技出版社2000.
    [278]卢维盛,廖宗文.张建国,等.不同水旱轮作方式对稻田烷排放影响的研究[J].农业环境保护.1999,18(5):200-202.
    [279]卢维盛,张建国,廖宗文.广州地区晚稻CH4和N2O的排放通量及其影响因素[J].应用生态学报,1997,8(3):275-278.
    [280]孟凡乔,关桂红,张庆忠,等.华北高产农田长期不同耕作方式下土壤呼吸及其季节变化规律[J].环境科学学报,2006,26(6):992-999.
    [281]孟磊,蔡祖聪,丁维新.长期施肥对华北典型潮土N分配和N2O排放的影响[J].生态学报,2008,28(12):6197-6203.
    [282]闵航,等.我国不同地区稻田甲烷排放量及控制措施研究[J].农业环境保护,1998,17(1):1-7.
    [283]潘根兴.中国土壤有机碳库及其演变与应对气候变化[J].伺候变化研究进展,2008,4(5):282-289.
    [284]潘志勇,吴文良,刘光栋.等.不同秸秆还田模式与氮肥施用量对土壤N2O排放的影响[J].土壤肥料,2004,(5):6-8.
    [285]齐志勇,王宏燕,王江丽,等.陆地生态系统土壤呼吸的研究进展[J].农业系统科学与综合研究,2003,19(2):116-119.
    [286]秦晓波,李玉娥,刘克樱,等.不同施肥处理对稻田氧化亚氮排放的影响[J].中国农业气象,2006a,27(4):273-276.
    [287]秦晓波,李玉娥,刘克樱,等.不同施肥处理稻田甲烷和氧化亚氮排放特征[J].农业工程学报,2006b,22(7):143-148.
    [288]秦晓波.减缓华中典型双季稻田温室气体排放强度措施的研究[D].北京:中国农业科学院,2011.
    [289]强学彩,袁红莉,高旺盛.秸秆还田量对土壤CO2释放和土壤微生物量的影响[J].应用生态学报,2004,15(3):469-472.
    [290]任万辉,许黎,王振会.中国稻田CH4产生和排放研究[J].气象,2004,30(6):3-7.
    [291]上官行健,王明星,陈德章,等.稻田土壤CH4的产生[J].地球科学进展,1993a,8(5):1-12.
    [292]上官行健,王明星,陈德章,等.稻田CH4的传输[J].地球科学进展,1993b,8(5):13-22.
    [293]上官行健,王明星.稻田CH4排放的控制措施[J].地球科学进展,1993c,8(5):55-62
    [294]上官行健,王明星,沈任兴.稻田CH4的排放规律[J].地球科学进展,1993d,8(5):23-36.
    [295]上官行健,王明星.稻田CH4排放影响因子的研究进展[J].中国农业气象,1993e,14(4):48-53.
    [296]邵可声,李震.水稻品种以及施肥措施对稻田甲烷排放的影响[J].北京大学学报(自然科学版),1996,32(4):505-513.
    [297]沈宏,曹志洪,胡正义.土壤活性有机碳的表征及其生态效应[J].生态学杂志,1999,18(3):32-38.
    [298]石生伟.减少稻田甲烷和氧化亚氮排放措施的研究[D].北京:中国农业科学院,2010.
    [299]石英尧,石扬娟,申广勒,等.氮肥施用量和节水灌溉对稻田甲烷排放量的影响[J].安徽农业科学,2007,35(2):471-472.
    [300]宋文质,王少彬,苏维瀚等.我国农田土壤的主要温室气体CO2、CH4和N20排放研究[J].环境科学,1996,17(1):85-88.
    [301]苏永红,冯起,朱高峰,等.土壤呼吸与测定方法研究进展[J].中国沙漠,2008,27(1):58-65.
    [302]孙志高,刘景双,杨继松,等.三江平原典型小叶章湿地土壤硝化-反硝化作用于氧化亚氮排放[J].应用生态学报,2007,18(1):185-192.
    [303]孙文娟,黄耀,陈书涛,等.作物生长和氮含量对土壤-作物系统CO2排放的影响[J].2004,25(3):1-6.
    [304]田慎重,宁堂原,李增嘉,等.不同耕作措施对华北地区麦田CH4吸收通量的影响[J].生态学报,2010,30(2):541-548.
    [305]汤亿,严俊霞,孙明,等.灌溉和翻耕对土壤呼吸速率的影响[J].安徽农业科学,2009,(6):2625-2627.
    [306]王改玲,郝明德,陈德立.秸秆还田对灌溉玉米田土壤反硝化及N2O排放的影响[J].植物营养与肥料学报,2006,12(6):840-844.
    [307]汪海波,秦元萍,余康.我国农作物秸秆资源的分布、利用与开发策略[J].国土与自然资源研究,2008(2):92-93.
    [308]王敬国.农业生态系统和大气间的温室效应气体交换[J].环境科学,1993,14(2):49-53.
    [309]王立刚,邱建军,李维炯.黄淮海平原地区夏玉米农田土壤呼吸的动态研究[J].土壤肥料,2002(6):13-17.
    [310]王丽媛,孙洁梅,徐荣.植物残体施用对土壤排放N20的影响[J].新疆农业大学学报,2006,29(3):26-30.
    [311]王明星.中国稻田甲烷排放.北京:科学出版社,2001.16,108,124,134,138,182,211.
    [312]王明星,戴爱国,黄俊,等.中国甲烷排放量的估算[J].大气科学,1993,17(1):52-64.
    [313]王明星,李晶,郑循华.稻田甲烷排放及产生、转化、输送机理[J].大气科学,1998,22(4):600-612.
    [314]王少彬.冬小麦田氧化亚氮的排放[J].农业环境保护,1994,13(5):210-212.
    [315]王卫东,谢小立,上官行健,等.我国南方红壤丘岗区稻田甲烷产生规律[J].农村生态环境,1995,11(3):11-14.
    [316]王小国,朱波,王艳强,等.不同土地利用方式下土壤呼吸及其温度敏感性[J].生态学报2007,27(5):1960-1968.
    [317]王艳芬,陈佐忠,周涌.内蒙古典型草原甲烷研究刍议[J].气候与环境研究,1997.2(3):280-285.
    [318]王增远,徐雨昌,李震,等.水稻品种对稻田甲烷排放的影响[J].作物学报,1999,25(4):441-446.
    [319]王志明,朱培立,黄东迈.14C标记秸秆碳素在淹水土壤中的转化与平衡[J].江苏农业学报,1998,14(2):112-117.
    [320]吴晓晨,李忠佩,张桃林.长期不同施肥措施对红壤水稻士有机碳和养分含量的影响[J].生态环境,2008,17(5):2019-2023.
    [321]项虹艳,朱波,王玉英,等.氮肥对紫色土夏玉米N2O排放和反硝化损失的影响[J].浙江大学学报(农业与生命科学版),2007a,33(5):574-583.
    [322]项虹艳,朱波,况福虹,等.氮肥施用对紫色土-玉米根系系统N2O排放的影响[J].环境科学学报,2007b,27(3):413-420
    [323]肖嫩群,张杨珠,谭周进,等.稻草还田翻耕对水稻土微生物及酶的影响研究[J].世界科技研究与发展,2008,30(2):192-194.
    [324]谢军飞,李玉娥.农田土壤温室气体排放机理与影响因素研究进展[J].中国农业气象,2002,23(4):47-52.
    [325]谢军飞,李玉娥.土壤温度对北京早地农田N2O排放的影响[J].中国农业气象,2005,26(”7-10.
    [326]熊效振,沈壬兴,王明星,等.太湖流域单季稻的甲烷排放研究[J].大气科学,1999,23(1):9-18.
    [327]熊正琴,邢光熹,鹤田治雄,等.冬季耕作制度对农田氧化亚氮排放的贡献[J].南京农业大学学报,2002,25(4):49-52.
    [328]熊正琴,邢光熹,施书莲,等,轮作制度对水稻生长季节稻田氧化亚氮排放的影响[J].应用生态学报,2003a,14(10):1761-1764.
    [329]熊正琴,邢光熹,鹤田治雄,等.豆科绿肥和化肥氮对双季稻稻田氧化亚氮排放贡献的研究[J].土壤学报,2003b,40(5):704-710.
    [330]许炳雄,卢巨祥,傅桂芬,等.广州地区稻田甲烷排放通量研究[J].环境科学研究,1997,104:10-14.
    [331]徐华,蔡福聪,李小平.土壤Eh和温度对稻田甲烷排放季节变化的影响[J].农业环境保护,1999,18(4):145-149.
    [332]徐华,邢光熹,蔡机聪,等.土壤水分状况和质地对稻田N20排放的影响[J].土壤学报,2000,37(3):499-505.
    [333]徐琪,杨林章,董元华.中国稻田生态系统[M].北京:中国农业出版社,1996:50-95.
    [334]徐文彬,洪业汤,陈旭辉,等.贵州省旱田土壤N20释放及其环境影响因素[J].环境科学,2000,21(1):7-11.
    [335]徐文彬,刘维屏,刘广深.温度对早田土壤N20排放的影响研究[J].土壤学报,2002,39(1):1-8.
    [336]徐雨昌,王增远,李震,等.不同水稻品种对稻田甲烷排放量的影响[J].植物营养与肥料学报,1999,5(1):93-96.
    [337]严俊霞,李洪建,尤龙凤.玉米农田土壤呼吸与环境因子的关系研究[J].干早区资源与环境,2010,24(3):183-189.
    [338]颜晓元,施书莲,杜丽娟,等.水分状况对水田土壤N2O排放的影响[J].土壤学报,2000,37(4):482-489.
    [339]杨兰芳,蔡祖聪.玉米生长中的土壤呼吸及其受氮肥施用的影响[J].土壤学报,2005,42(1):9-15.
    [340]叶欣,李俊,王迎红,等.华北平原典型农田土壤氧化亚氮的排放特征[J].农业环境科学学报,2005,24(6):1186-1191.
    [341]于克伟,黄斌,陈冠雄,等.田间大豆植株N2O通量的测定及光照的影响[J].应用生态学报,1997,8(2):171-174.
    [342]张广斌,马静,徐华,等.稻田甲烷产生途径研究进展[J].土壤,2011,43(1):6-11.
    [343]张剑波,邵可声,李智.北京地区春季稻稻田甲烷排放的研究[J].环境科学,1994,15(5):23-26.
    [344]张军科.不同耕作方式下紫色水稻土农田生态系统CO2和N2O的排放研究[D].重庆:西南大学,2011
    [345]张丽华,陈亚宁,赵锐锋,等.温带荒漠中温度和土壤水分对土壤呼吸的影响[J].植物生态学报,2009,33(5):936-949.
    [346]张庆忠,吴文良,王明新,等.秸秆还田和施氮对农田土壤呼吸的影响[J].生态学报,2005,25(11):2883-2887.
    [347]张容娟.土地利用方式对土壤有机碳和土壤呼吸的影响[D].上海:复旦大学,2009.
    [348]张素玲.pH变化对土壤中N2O释放的影响[D].扬州:扬州大学,2001.
    [343]张晓艳,马二登,张广斌,等.麦季稻秆施用对后续稻季CH4产生氧化及排放的影响[J].农业环境科学学报,2010,29(9):1827-1833.
    [349]郑聚锋,程琨,潘根兴,等.关于中国土壤碳库及固碳潜力研究的若干问题[J].科学通报,2011,56(26):2162-2173.
    [350]郑循华,王明星,王跃思,等.稻麦轮作生态系统中土壤湿度对N2O产生与排放的影响[J].应用生态学报,1996,7(3):273-279.
    [351]郑循华,王明星,王跃思,等.华东稻田CH4和N2O排放[J].大气科学,1997,21(2):231-237.
    [352]郑循华,王明星,王跃思,等·温度对农田N2O产生与排放的影响[J].环境科学,1997b,18(5):1-5.
    [353]朱霞,韩晓增,乔云发,等.外加可溶性碳氮对不同热量带土壤N2O排放的影响[J].农业环境科学学报,2009,28(12):2637-2644.
    [354]朱祖祥主编,土壤学,北京农业出版社,1983
    [355]邹建文,黄耀,宗良纲,等.稻田CO2、CH4和N2O排放及其影响因素[J].环境科学学报,2003a,23(6):758-764.
    [356]邹建文,黄耀,宗良纲,等.不同种类有机肥施用对稻田CH4和N2O排放的综合影响[J].环境科学,2003b,24(4):7-12.
    [357]邹建文,黄耀,郑循华,等.基于静态暗箱法的陆地生态系统-大气CO2净交换估算[J].科学通报,2004,49(3):258-264.