纳米纤维宏观组装体的制备及功能化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着近二十年来纳米技术的高速发展,很多不同组分和尺寸的高质量一维纳米材料都已经通过不同的物理化学方法被成功地合成出来,其中,模板指引法已成为合成一维纳米材料最常用方法之一。相比其它方法,模板指引法具有许多明显优势,比如,合成过程简单、低成本、高产量、组分可调等等。另一方面,尽管纳米材料的性质比他们对应的块材要好,但要将具有独特性能的单个纳米颗粒组装成为功能性的宏观材料(比如二维薄膜材料和三维的整体块状材料)仍是一大挑战。
     本论文将集中阐述一维纳米材料的模板法合成、组装及其性能研究。通过一系列高质量一维纳米材料的合成,充分体现了模板指引合成法的独特优势和广泛适用性;成功将合成得到的一维纳米材料组装成为功能性的宏观二维薄膜和三维气凝胶材料;并研究了这些宏观材料在过滤分离、污水处理、抗菌过滤、电化学催化、连续流催化、磁性驱动等方面的性能。所取得的主要研究成果总结如下:
     1.发展了高活性超细纳米线模板法合成一系列贵金属和碲化物纳米线/纳米管的制备技术。研究发现,成功合成Pt纳米管的关键因素是使用具有高活性的超细Te纳米线作为模板,并使用乙二醇做溶剂来控制反应的速率。贵金属前驱物的价态对于选择性合成Pt纳米管、Pt纳米线或Pd纳米线至关重要。此外,同样使用超细Te纳米线为模板,通过一个低温水热过程成功合成了直径为12nm的均匀CdTe纳米线。该模板过程同样适用于合成其它具有高长径比和均匀尺寸的碲化物一维纳米结构,例如Ag_2Te、PbTe等等。
     2.发展了自支持纳米纤维薄膜的制备技术,该薄膜材料展现出了优异的过滤分离和污水处理的性能。使用超细Te纳米线为模板,并用葡萄糖作为碳源,通过一个模板指引的水热碳化过程制得了高度均匀的直径可控的碳纳米纤维。再经过一个简单的溶液蒸发过程,可将这些具有高长径比的碳纳米纤维组装成自支持的薄膜材料。该碳纳米纤维薄膜质地柔软,结构稳定,完全能够进行过滤操作。更为重要的是,该碳纳米纤维薄膜孔径分布范围很窄,具有优异的尺寸选择性过滤功能,并且它们的截留尺寸能够通过调节碳纳米纤维的直径进行精确控制。使用该薄膜能够实现不同尺寸纳米颗粒的选择性分离。
     此外,通过结合碳纳米纤维强吸附性能以及薄膜材料的过滤功能,利用一个简单的过滤过程就能够实现污水的快速纯化。过滤实验表明:碳纳米纤维薄膜能够在流速高达1580 L/m~2h的情况下有效过滤除去亚甲基蓝有机染料污染物,该速度是具有类似截留性质的纳滤膜或微滤膜的10-100倍。
     基于碳纳米纤维的吸附性能和易成膜特性,通过一个高温催化石墨化过程制得了具有介孔特性和高度石墨化程度的多孔石墨碳纳米纤维薄膜,该薄膜材料有望成为超级电容器的电极材料。
     3.在上述有关纳米纤维薄膜的工作基础上,系统展示了碳纳米纤维可以作为一种通用的纳米支架,用来构建宏观的多功能薄膜材料。通过不同的化学过程合成了一系列碳基复合纳米纤维,包括CNFs-Fe_3O_4、CNFs-TiO_2、CNFs-Ag和CNFs-Au等,它们都继承了碳纤维支架原有的维度(高长径比)和机械(柔软性)性能,从而能够通过一种简单的组装过程得到宏观自支持复合纳米纤维薄膜材料。这些功能性的纳米纤维膜在磁驱动、抗生物膜过滤和连续流催化等领域展现了广泛的应用潜能。
     4.设计了一个灵巧的多步模板过程,用来制备自支持的Pt纳米线薄膜,并展示了该Pt纳米线薄膜是一种性能优异的燃料电池催化剂材料。这种薄膜催化剂体系由较长的结晶性Pt纳米线组成,而这种纳米线结构能够优先暴露高活性的特定晶面,并且表面缺陷位点较少,因此具有较高的催化活性。此外,这种独特的纳米线网状结构有利于薄膜电极上电子的传递和气体的扩散。因此,这种Pt纳米线膜的氧还原催化活性比Pt/C和Pt黑分别高了2.1和1.8倍。更为重要的是,和商用催化剂相比,这种自支持的Pt纳米结构催化剂的稳定性有显著的提高,这对于质子交换膜燃料电池的应用非常关键。
     5.进一步深入发展了模板指引水热碳化技术,实现了碳纳米纤维水凝胶和气凝胶的大规模合成。与传统的硅基凝胶表现出的易碎性不同,我们制得的CNFs凝胶结构稳定,并且具有良好的可逆压缩性能。而这种优异的机械性源于该凝胶内部的特殊结构,通过扫描电镜观察发现,该凝胶由尺寸高度均匀的碳纳米纤维组成,并且它们之间有大量的“焊接点”相互联结,形成了一个连续的整体三维纳米线网络结构,因而表现出了优异的机械性能。与传统方法相比,该模板指引水热碳化法合成纳米纤维凝胶结构具有两大突出特点:一是允许放大反应的规模;二是可以对纳米纤维的直径、凝胶结构的密度、以及机械压缩性能进行精确调控。另外,通过一个多步模板过程,首次制得了新颖的Pt纳米线气凝胶结构。
With the fast development of nanotechnology during the past two decades, high-quality one-dimentional (1D) nanomaterials with various compositions and sizes have been fabricated successfully through different physical and chemical strategies, among which, template-directed synthesis has been one of the most popular strategies for the fabrication of 1D nanostructures. Compared with the templateless methods, the template-directed synthetic method has some obvious advantages, e.g., easy fabrication, low cost, high-through-put, and various compositions of materials. On the other hand, although the properties of nanomaterials are frequently superior to those of their bulk counterparts, translating the unique characteristics of individual nanoscale components into macroscopic materials, such as 2D membrane and 3D monolith, still remains a challenge.
     The present dissertation will focus on template-directed synthesis, assembly, and application of 1D nanomaterials. A series of high-quality 1D nanomaterials were synthesized through the template-directed strategy, showing the unique superiority and broad applicability of the templating process. The prepared 1D nanomaterials were then successfully assembled into macroscopic functional membrane and aerogel materials. These assembled macroscopic materials exhibited wide application potential in filtration and separation, water purification, anti-biofouling filtration, electrocatalysis, continuous-flow catalysis, and magnetic actuation. The main results can be summarized as follows:
     1. A novel synthetic route was developed for preparing a family of high-quality noble metal and telluride 1D nanomaterials by using highly active ultrathin nanowire as templates. The keys for successful synthesis of high-quality PtNTs with very high aspect ratio are to use ultrathin Te nanowires as sacrificial templates and ethylene glycol as solvent to control the reaction kinetics. The valence of chosen metal precursors plays a crucial role in selective syntheses of PtNTs, Pt NWs and PdNWs. Highly uniform CdTe nanowires with an average diameter of 12 nm were synthesized using ultrathin Te nanowires as templates via a low temperature hydrothermal process. The templating method can also be extended to synthesize other one dimensional telluride nanostructures such as Ag_2Te and PbTe nanowires with uniform diameter and high aspect ratio.
     2. A simple assembling process was developed for fabricating free-standing nanofibrous membranes, which exhibited excellent ability for size-selective separation and water purification. Highly-uniform carbon nanofibers (CNFs) with controllable diameters were fabricated through the template-directed hydrothermal carbonization (HTC) process by using ultrathin Te nanowires as templates and glucose as carbon source. These CNFs with high aspect ratio were then assembled into a new kind of free-standing fibrous membrane by a simple casting-evaporating process. The fabricated CNFs membranes are very flexible and mechanically robust enough for filtration operation under a high applied pressure without any damage. More importantly, these CNFs membranes have very narrow pore size distributions and show excellent size-selective rejection properties. The cutoff sizes of these membranes could be controlled precisely by carefully regulating the diameters of the CNFs. The CNFs membranes exhibited a strong ability for selective separation of nanoparticles with different sizes form solution.
     In addition, a simple filtration process was demonstrated to decontaminate water by employing the CNFs membranes. This process combines the excellent adsorption behavior of CNFs and the advantages of membrane filtration. The filtration experiments proved that the CNFs membranes could remove methylene blue (MB) efficiently with a very high flux of 1580 L/m~2h, which is 10–100 times higher than that of commercial nano- or ultrafiltration membranes with similar rejection properties.
     Moreover, basing on the unique adsorption and easy-assembling properties of CNFs, a novel free-standing PGCNFs membrane with high graphitization degree and mesoporous nature was fabricated through a catalytic graphitization process. The PGCNFs membranes could be of special interest as electrode materials for supercapacitors or supported materials for catalysts.
     3. The CNFs were further demonstrated as a versatile nanoscale scaffold for constructing macroscopic multifunctional membranes. A variety of CNFs-based composite nanofibers, including CNFs-Fe_3O_4, CNFs-TiO_2, CNFs-Ag, and CNFs-Au were fabricated through various chemical routes. Importantly, all of them inherit the unique dimensional (high aspect ratio) and mechanical properties (flexibility) of the original CNFs scaffolds thus can be assembled into macroscopic free-standing membranes. The wide application potentials of these multifunctional composite membranes were also demonstrated, such as magnetic actuation, anti-biofouling filtration, and continuous-flow catalysis.
     4. A smart multi-step templating route was designed for preparing free-standing Pt nanowires membranes, which could be used as an electrocatalyst for oxygen reduction reaction (ORR). This membrane catalyst system consists of long crystalline PtNWs that can improve catalytic activity owing to the preferential exposure of certain crystal facets and less surface defect sites in 1D nanostructures. In addition, the unique nanowire network structure facilitates the electron transport and gas diffusion on the PtNWs electrode. Therefore, the PtNWs membrane has 2.1 and 1.8 times higher specific activity than that of Pt/C and Pt black for ORR, respectively. More importantly, compared with the commercial catalysts, this unique free-standing Pt nanostructural catalyst exhibits remarkably high stability, which is crucial for proton exchange membrane fuel cells (PEMFCs) applications.
     5. The template-directed HTC process was further developed for fabricating CNFs hydrogels and aerogels in large-scale. Different from the fragility of traditional silica-based aerogels, the CNFs aerogels exhibited high mechanical stability and excellent compressibility. The outstanding mechanical properties of CNFs gels were resulted from their unique structures, where CNFs connected with each other to form abundant junctions and finally leading to a highly stable 3D nanowire network structures. Compared with other processes, the present template-directed HTC route for synthesis of CNFs hydrogels and aerogels possesses two significant advantages, namely, i) easily scale-up for massive synthesis and ii) allowing for controlling the CNFs size, the density and porosity of aerogels, and their mechanical properties. In addition, Pt nanowires aerogels were synthesized for the first time by a multi-step templating process.
引文
[1] Peng XG, Manna L, Yang WD, Wickham J, Scher E, Kadavanich A, Alivisatos AP. 2000. Shape control of CdSe nanocrystals[J]. Nature, 404:59-61.
    [2] Burda C, Chen XB, Narayanan R, El-Sayed MA. 2005. Chemistry and properties of nanocrystals of different shapes[J]. Chem Rev, 105:1025-1102.
    [3] Yu H, Li JB, Loomis RA, Wang LW, Buhro WE. 2003. Two- versus three-dimensional quantum confinement in indium phosphide wires and dots[J]. Nature Materials, 2:517-520.
    [4] Shabaev A, Efros AL. 2004. 1D exciton spectroscopy of semiconductor nanorods[J]. Nano Letters, 4:1821-1825.
    [5] Li Y, Qian F, Xiang J, Lieber CM. 2006. Nanowire electronic and optoelectronic devices[J]. Mater. Today, 9:18-27.
    [6] Thelander C, Agarwal P, Brongersma S, Eymery J, Feiner LF, Forchel A, Scheffler M, Riess W, Ohlsson BJ, Gosele U, Samuelson L. 2006. Nanowire-based one-dimensional electronics[J]. Mater. Today, 9:28-35.
    [7] Baca AJ, Ahn JH, Sun YG, Meitl MA, Menard E, Kim HS, Choi WM, Kim DH, Huang Y, Rogers JA. 2008. Semiconductor wires and ribbons for high-performance flexible electronics[J]. Angew Chem Int Edit, 47:5524-5542.
    [8] Iijima S. 1991. Helical microtubules of graphitic carbon[J]. Nature Materials, 354:56.
    [9] Xia YN, Yang PD, Sun YG, Wu YY, Mayers B, Gates B, Yin YD, Kim F, Yan YQ. 2003. One-dimensional nanostructures: Synthesis, characterization, and applications[J]. Advanced Materials, 15:353-389.
    [10] Hiruma K, Yazawa M, Katsuyama T, Ogawa K, Haraguchi K, Koguchi M, Kakibayashi H. 1995. GROWTH AND OPTICAL-PROPERTIES OF NANOMETER-SCALE GAAS AND INAS WHISKERS[J]. J. Appl. Phys., 77:447-462.
    [11] Morales AM, Lieber CM. 1998. A laser ablation method for the synthesis of crystalline semiconductor nanowires[J]. Science, 279:208-211.
    [12] Trentler TJ, Hickman KM, Goel SC, Viano AM, Gibbons PC, Buhro WE. 1995. SOLUTION-LIQUID-SOLID GROWTH OF CRYSTALLINE III-V SEMICONDUCTORS - AN ANALOGY TO VAPOR-LIQUID-SOLID GROWTH[J]. Science, 270:1791-1794.
    [13] Heath JR, Legoues FK. 1993. A LIQUID SOLUTION SYNTHESIS OF SINGLE-CRYSTAL GERMANIUM QUANTUM WIRES[J]. Chem. Phys. Lett., 208:263-268.
    [14] Zhan JH, Yang XG, Wang DW, Li SD, Xie Y, Xia Y, Qian YT. 2000. Polymer-controlled growth of CdS nanowires[J]. Advanced Materials, 12:1348-1351.
    [15] Tang ZY, Kotov NA, Giersig M. 2002. Spontaneous organization of single CdTe nanoparticles into luminescent nanowires[J]. Science, 297:237-240.
    [16] Martin CR. 1994. NANOMATERIALS - A MEMBRANE-BASED SYNTHETIC APPROACH[J]. Science, 266:1961-1966.
    [17] Goldberger J, He RR, Zhang YF, Lee SW, Yan HQ, Choi HJ, Yang PD. 2003. Single-crystal gallium nitride nanotubes[J]. Nature, 422:599-602.
    [18] Bae C, Yoo H, Kim S, Lee K, Kim J, Sung MA, Shin H. 2008. Template-directed synthesis of oxide nanotubes: Fabrication, characterization, and applications[J]. Chemistry of Materials, 20:756-767.
    [19] 2008. See a special issue on templated materials[J]. Chem. Mater. , 20:
    [20] Zhou Y, Shimizu T. 2008. Lipid nanotubes: A unique template to create diverse one-dimensional nanostructures[J]. Chemistry of Materials, 20:625-633.
    [21] Llusar M, Sanchez C. 2008. Inorganic and hybrid nanofibrous materials templated with organogelators[J]. Chemistry of Materials, 20:782-820.
    [22] Steinhart M, Wehrspohn RB, Gosele U, Wendorff JH. 2004. Nanotubes by template wetting: A modular assembly system[J]. Angew Chem Int Edit, 43:1334-1344.
    [23] Cao GZ, Liu DW. 2008. Template-based synthesis of nanorod, nanowire, and nanotube arrays[J]. Adv. Colloid Interface Sci., 136:45-64.
    [24] Lai M, Riley DJ. 2008. Templated electrosynthesis of nanomaterials and porous structures[J]. Journal of Colloid and Interface Science, 323:203-212.
    [25] Meng GW, Han FM, Zhao XL, Chen BS, Yang DC, Liu JX, Xu QL, Kong MG, Zhu XG, Jung YJ, Yang YJ, Chu ZQ, Ye M, Kar S, Vajtai R, Ajayan PM. 2009. A General Synthetic Approach to Interconnected Nanowire/Nanotube and Nanotube/Nanowire/Nanotube Heterojunctions with Branched Topology[J]. Angew Chem Int Edit, 48:7166-7170.
    [26] van Bommel KJC, Friggeri A, Shinkai S. 2003. Organic Templates for the Generation of InorganicMetallic Nanowire Arrays[J]. Nano Letters, 3:1545-1548.
    [33] Reches M, Gazit E. 2003. Casting metal nanowires within discrete self-assembled peptide nanotubes[J]. Science, 300:625-627.
    [34] Carny O, Shalev DE, Gazit E. 2006. Fabrication of coaxial metal nanocables using a self-assembled peptide nanotube scaffold[J]. Nano Letters, 6:1594-1597.
    [35] Shenton W, Douglas T, Young M, Stubbs G, Mann S. 1999. Inorganic-organic nanotube composites from template mineralization of tobacco mosaic virus[J]. Advanced Materials, 11:253-+.
    [36] Knez M, Bittner AM, Boes F, Wege C, Jeske H, Maiss E, Kern K. 2003. Biotemplate synthesis of 3-nm nickel and cobalt nanowires[J]. Nano Letters, 3:1079-1082.
    [37] Tsukamoto R, Muraoka M, Seki M, Tabata H, Yamashita I. 2007. Synthesis of CoPt and FePt3 nanowires using the central channel of tobacco mosaic virus as a biotemplate[J]. Chemistry of Materials, 19:2389-2391.
    [38] Parthasarathy RV, Phani KLN, Martin CLR. 1995. TEMPLATE SYNTHESIS OF GRAPHITIC NANOTUBULES[J]. Advanced Materials, 7:896-&.
    [39] Martin CR. 1996. Membrane-based synthesis of nanomaterials[J]. Chemistry of Materials, 8:1739-1746.
    [40] Hulteen JC, Martin CR. 1997. A general template-based method for the preparation of nanomaterials[J]. Journal of Materials Chemistry, 7:1075-1087.
    [41] Routkevitch D, Bigioni T, Moskovits M, Xu JM. 1996. Electrochemical fabrication of CdS nanowire arrays in porous anodic aluminum oxide templates[J]. J. Phys. Chem., 100:14037-14047.
    [42] Whitney TM, Jiang JS, Searson PC, Chien CL. 1993. FABRICATION AND MAGNETIC-PROPERTIES OF ARRAYS OF METALLIC NANOWIRES[J]. Science, 261:1316-1319.
    [43] Brumlik CJ, Menon VP, Martin CR. 1994. TEMPLATE SYNTHESIS OF METAL MICROTUBULE ENSEMBLES UTILIZING CHEMICAL, ELECTROCHEMICAL, AND VACUUM DEPOSITION TECHNIQUES[J]. J. Mater. Res., 9:1174-1183.
    [44] Shin HJ, Jeong DK, Lee JG, Sung MM, Kim JY. 2004. Formation of TiO2 and ZrO2 nanotubes using atomic layer deposition with ultraprecise control of the wall thickness[J]. Advanced Materials, 16:1197-+.
    [45] Hurst SJ, Payne EK, Qin LD, Mirkin CA. 2006. Multisegmented one-dimensional nanorods prepared by hard-template synthetic methods[J]. Angew Chem Int Edit, 45:2672-2692.
    [46] Yu SF, Welp U, Hua LZ, Rydh A, Kwok WK, Wang HH. 2005. Fabrication of palladium nanotubes and their application in hydrogen sensing[J]. Chemistry of Materials, 17:3445-3450.
    [47] Jirage KB, Hulteen JC, Martin CR. 1997. Nanotubule-based molecular-filtration membranes[J]. Science, 278:655-658.
    [48] Nishizawa M, Menon VP, Martin CR. 1995. METAL NANOTUBULE MEMBRANES WITH ELECTROCHEMICALLY SWITCHABLE ION-TRANSPORT SELECTIVITY[J]. Science, 268:700-702.
    [49] Miao Z, Xu DS, Ouyang JH, Guo GL, Zhao XS, Tang YQ. 2002. Electrochemically induced sol-gel preparation of single-crystalline TiO2 nanowires[J]. Nano Letters, 2:717-720.
    [50] Yang HF, Zhao DY. 2005. Synthesis of replica mesostructures by the nanocasting strategy[J]. Journal of Materials Chemistry, 15:1217-1231.
    [51] Ko CH, Ryoo R. 1996. Imaging the channels in mesoporous molecular sieves with platinum[J]. Chemical Communications, 2467-2468.
    [52] Gao F, Lu QY, Zhao DY. 2003. Synthesis of crystalline mesoporous CdS semiconductor nanoarrays through a mesoporous SBA-15 silica template technique[J]. Advanced Materials, 15:739-742.
    [53] Tian BZ, Liu XY, Yang HF, Xie SH, Yu CZ, Tu B, Zhao DY. 2003. General synthesis of ordered crystallized metal oxide nanoarrays replicated by microwave-digested mesoporous silica[J]. Advanced Materials, 15:1370-+.
    [54] Shi YF, Wan Y, Zhang RY, Zhao DY. 2008. Synthesis of self-supported ordered mesoporous cobalt and chromium nitrides[J]. Adv Funct Mater, 18:2436-2443.
    [55] Lauhon LJ, Gudiksen MS, Wang CL, Lieber CM. 2002. Epitaxial core-shell and core-multishell nanowire heterostructures[J]. Nature, 420:57-61.
    [56] He RR, Law M, Fan R, Kim F, Yang PD. 2002. Functional bimorph composite nanotapes[J]. Nano Letters, 2:1109-1112.
    [57] Yin LW, Li MS, Bando Y, Golberg D, Yuan XL, Sekiguchi T. 2007. Tailoring the optical properties of epitaxially grown biaxial ZnO/Ge, and coaxial ZnO/GeZnO and Ge/ZnOGe heterostructures[J]. Adv Funct Mater, 17:270-276.
    [58] Hu JQ, Bando Y, Liu ZW, Zhan JH, Golberg D, Sekiguchi T. 2004. Synthesis of crystalline silicon tubular nanostructures with ZnS nanowires as removable templates[J]. Angew Chem Int Edit, 43:63-66.
    [59] Liu ZQ, Zhang DH, Han S, Li C, Lei B, Lu WG, Fang JY, Zhou CW. 2005. Singlecrystalline magnetite nanotubes[J]. Journal of the American Chemical Society, 127:6-7.
    [60] Han S, Li C, Liu ZQ, Lei B, Zhang DH, Jin W, Liu XL, Tang T, Zhou CW. 2004. Transition metal oxide core-shell nanowires: Generic synthesis and transport studies[J]. Nano Letters, 4:1241-1246.
    [61] Kuang Q, Xu T, Xie Z-X, Lin S-C, Huang R-B, Zheng L-S. 2009. Versatile fabrication of aligned SnO2 nanotube arrays by using various ZnO arrays as sacrificial templates[J]. Journal of Materials Chemistry, 19:1019-1023.
    [62] Ajayan PM, Stephan O, Redlich P, Colliex C. 1995. CARBON NANOTUBES AS REMOVABLE TEMPLATES FOR METAL-OXIDE NANOCOMPOSITES AND NANOSTRUCTURES[J]. Nature, 375:564-567.
    [63] Rao CNR, Satishkumar BC, Govindaraj A. 1997. Zirconia nanotubes[J]. Chemical Communications, 1581-1582.
    [64] Satishkumar BC, Govindaraj A, Nath M, Rao CNR. 2000. Synthesis of metal oxide nanorods using carbon nanotubes as templates[J]. Journal of Materials Chemistry, 10:2115-2119.
    [65] Eder D, Kinloch IA, Windle AH. 2006. Pure rutile nanotubes[J]. Chemical Communications, 1448-1450.
    [66] Du N, Zhang H, Chen BD, Ma XY, Liu ZH, Wu JB, Yang DR. 2007. Porous indium oxide nanotubes: Layer-by-layer assembly on carbon-nanotube templates and application for room-temperature NH3 gas sensors[J]. Advanced Materials, 19:1641-+.
    [67] Du N, Zhang H, Chen B, Wu JB, Ma XY, Liu ZH, Zhang YQ, Yang D, Huang XH, Tu JP. 2007. Porous Co3O4 nanotubes derived from Co-4(CO)(12) clusters on carbon nanotube templates: A highly efficient material for Li-battery applications[J]. Advanced Materials, 19:4505-+.
    [68] Sun ZY, Yuan HQ, Liu ZM, Han BX, Zhang XR. 2005. A highly efficient chemical sensor material for H2S: alpha-Fe2O3 nanotubes fabricated using carbon nanotube templates[J]. Advanced Materials, 17:2993-+.
    [69] An GM, Zhang Y, Liu ZM, Miao ZJ, Han BX, Miao SD, Li JP. 2008. Preparation of porous chromium oxide nanotubes using carbon nanotubes as templates and their application as an ethanol sensor[J]. Nanotechnology, 19:
    [70] Yang YD, Qu LT, Dai LM, Kang TS, Durstock M. 2007. Electrophoresis coating of titanium dioxide on aligned carbon nanotubes for controlled syntheses of photoelectronic nanomaterials[J]. Advanced Materials, 19:1239-+.
    [71] Lee JS, Min B, Cho K, Kim S, Park J, Lee YT, Kim NS, Lee MS, Park SO, Moon JT.2003. Al2O3 nanotubes and nanorods fabricated by coating and filling of carbon nanotubes with atomic-layer deposition[J]. J. Cryst. Growth, 254:443-448.
    [72] Ogihara H, Takenaka S, Yamanaka I, Tanabe E, Genseki A, Otsuka K. 2006. Synthesis of SiO2 nanotubes and their application as nanoscale reactors[J]. Chemistry of Materials, 18:996-1000.
    [73] Ogihara H, Masahiro S, Nodasaka Y, Ueda W. 2009. Synthesis, characterization and formation process of transition metal oxide nanotubes using carbon nanofibers as templates[J]. J. Solid State Chem., 182:1587-1592.
    [74] Ogihara H, Masahiro S, Nodasaka Y, Ueda W. 2009. Synthesis, characterization and formation process of transition metal oxide nanotubes using carbon nanofibers as templates[J]. J. Solid State Chem., 182:1587-1592.
    [75] Zhang DS, Fu HX, Shi LY, Fang JH, Li Q. 2007. Carbon nanotube assisted synthesis of CeO2 nanotubes[J]. J. Solid State Chem., 180:654-660.
    [76] Gong JY, Guo SR, Qian HS, Xu WH, Yu SH. 2009. A general approach for synthesis of a family of functional inorganic nanotubes using highly active carbonaceous nanofibres as templates[J]. J. Mater. Chem., 19:1037-1042.
    [77] Qian HS, Yu SH, Gong JY, Luo LB, Fei LF. 2006. High-quality luminescent tellurium nanowires of several nanometers in diameter and high aspect ratio synthesized by a poly (vinyl pyrrolidone)-assisted hydrothermal process[J]. Langmuir, 22:3830-3835.
    [78] Qian HS, Antonietti M, Yu SH. 2007. Hybrid "golden fleece": Synthesis and catalytic performance of uniform carbon nanoribers and silica nanotubes embedded with a high population of noble-metal nanoparticles[J]. Adv Funct Mater, 17:637-643.
    [79] Obare SO, Jana NR, Murphy CJ. 2001. Preparation of polystyrene- and silica-coated gold nanorods and their use as templates for the synthesis of hollow nanotubes[J]. Nano Letters, 1:601-603.
    [80] Yin YD, Lu Y, Sun YG, Xia YN. 2002. Silver nanowires can be directly coated with amorphous silica to generate well-controlled coaxial nanocables of silver/silica[J]. Nano Letters, 2:427-430.
    [81] Zygmunt J, Krumeich F, Nesper R. 2003. Novel silica nanotubes with a high aspect ratio - Synthesis and structural characterization[J]. Advanced Materials, 15:1538-+.
    [82] Yu HG, Yu JG, Cheng B, Liu SW. 2007. Novel preparation and photocatalytic activity of one-dimensional TiO2 hollow structures[J]. Nanotechnology, 18:
    [83] Liu D, Yates MZ. 2007. Fabrication of size-tunable TiO2 tubes using rod-shaped calcite templates[J]. Langmuir, 23:10333-10341.
    [84] Chen YJ, Xue XY, Wang TH. 2005. Large-scale controlled synthesis of silica nanotubes using zinc oxide nanowires as templates[J]. Nanotechnology, 16:1978-1982.
    [85] Lee JH, Leu IC, Hsu MC, Chung YW, Hon MH. 2005. Fabrication of aligned TiO2 nanostructured arrays using a one-step templating solution approach[J]. J Phys Chem B, 109:13056-13059.
    [86] Qiu JJ, Yu WD, Gao XD, Li XM. 2006. Sol-gel assisted ZnO nanorod array template to synthesize TiO2 nanotube arrays[J]. Nanotechnology, 17:4695-4698.
    [87] Li Q, Wang CR. 2003. One-step fabrication of uniform Si-core/CdSe-sheath nanocables[J]. Journal of the American Chemical Society, 125:9892-9893.
    [88] Pan AL, Yao LD, Qin Y, Yang Y, Kim DS, Yu RC, Zou BS, Werner P, Zacharias M, Gosele U. 2008. Si-CdSSe Core/Shell Nanowires with Continuously Tunable Light Emission[J]. Nano Letters, 8:3413-3417.
    [89] Hwang J, Min BD, Lee JS, Keem K, Cho K, Sung MY, Lee MS, Kim S. 2004. Al2O3 nanotubes fabricated by wet etching of ZnO/Al2O3 core/shell nanofibers[J]. Advanced Materials, 16:422-+.
    [90] Zhou J, Liu J, Yang RS, Lao CS, Gao PX, Tummala R, Xu NS, Wang ZL. 2006. SiC-Shell nanostructures fabricated by replicating ZnO nano-objects: A technique for producing hollow nanostructures of desired shape[J]. Small, 2:1344-1347.
    [91] Chueh YL, Chou LJ, Wang ZL. 2006. SiO2/Ta2O5 core-shell nanowires and nanotubes[J]. Angew Chem Int Edit, 45:7773-7778.
    [92] Chen ZG, Zou J, Liu G, Li F, Wang Y, Wang LZ, Yuan XL, Sekiguchi T, Cheng HM, Lu GQ. 2008. Novel Boron Nitride Hollow Nanoribbons[J]. Acs Nano, 2:2183-2191.
    [93] Wei DC, Liu YQ, Zhang HL, Huang LP, Wu B, Chen JY, Yu G. 2009. Scalable Synthesis of Few-Layer Graphene Ribbons with Controlled Morphologies by a Template Method and Their Applications in Nanoelectromechanical Switches[J]. Journal of the American Chemical Society, 131:11147-11154.
    [94] Dai HJ, Wong EW, Lu YZ, Fan SS, Lieber CM. 1995. SYNTHESIS AND CHARACTERIZATION OF CARBIDE NANORODS[J]. Nature, 375:769-772.
    [95] Han WQ, Fan SS, Li QQ, Hu YD. 1997. Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction[J]. Science, 277:1287-1289.
    [96] Li X, Westwood A, Brown A, Brydson R, Rand B. 2009. A convenient, general synthesis of carbide nanofibres via templated reactions on carbon nanotubes in molten salt media[J]. Carbon, 47:201-208.
    [97] Fan R, Wu YY, Li DY, Yue M, Majumdar A, Yang PD. 2003. Fabrication of silicananotube arrays from vertical silicon nanowire templates[J]. Journal of the American Chemical Society, 125:5254-5255.
    [98] Li Y, Meng GW, Zhang LD, Phillipp F. 2000. Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties[J]. Appl. Phys. Lett., 76:2011-2013.
    [99] Qiu YF, Yang SH. 2008. Kirkendall approach to the fabrication of ultra-thin ZnO nanotubes with high resistive sensitivity to humidity[J]. Nanotechnology, 19:
    [100] Raidongia K, Rao CNR. 2008. Study of the transformations of elemental nanowires to nanotubes of metal oxides and chalcogenides through the Kirkendall effect[J]. Journal of Physical Chemistry C, 112:13366-13371.
    [101] Chang Y, Lye ML, Zeng HC. 2005. Large-scale synthesis of high-quality ultralong copper nanowires[J]. Langmuir, 21:3746-3748.
    [102] Li L, Yang YW, Li GH, Zhang LD. 2006. Conversion of a Bi nanowire array to an array of Bi-Bi2O3 core-shell nanowires and Bi2O3 nanotubes[J]. Small, 2:548-553.
    [103] Du N, Zhang H, Chen B, Ma X, Yang D. 2008. One-pot, large-scale synthesis of SnO2 nanotubes at room temperature[J]. Chemical Communications, 3028-3030.
    [104] Li QG, Penner RM. 2005. Photoconductive cadmium sulfide hemicylindrical shell nanowire ensembles[J]. Nano Letters, 5:1720-1725.
    [105] Ng CHB, Tan H, Fan WY. 2006. Formation of Ag2Se nanotubes and dendrite-like structures from UV irradiation of a CSe2/Ag colloidal solution[J]. Langmuir, 22:9712-9717.
    [106] Wu C, Yu S-H, Chen S, Liu G, Liu B. 2006. Large scale synthesis of uniform CuS nanotubes in ethylene glycol by a sacrificial templating method under mild conditions[J]. Journal of Materials Chemistry, 16:3326-3331.
    [107] Gates B, Wu Y, Yin Y, Yang P, Xia Y. 2001. Single-Crystalline Nanowires of Ag2Se Can Be Synthesized by Templating against Nanowires of Trigonal Se[J]. Journal of the American Chemical Society, 123:11500-11501.
    [108] Jiang XC, Mayers B, Herricks T, Xia YN. 2003. Direct synthesis of Se@CdSe nanocables and CdSe nanotubes by reacting cadmium salts with Se nanowires[J]. Advanced Materials, 15:1740-+.
    [109] Jiang XC, Mayers B, Wang YL, Cattle,B., Xia YN. 2004. Template-engaged synthesis of RuSe2 and Pd17Se15 nanotubes by reacting precursor salts with selenium nanowires[J]. Chem. Phys. Lett., 385:472-476.
    [110] Zhang SY, Fang CX, Tian YP, Zhu KR, Jin BK, Shen YH, Yang JX. 2006. Synthesis and characterization of hexagonal CuSe nanotubes by templating against trigonal Se nanotubes[J]. Cryst. Growth Des., 6:2809-2813.
    [111] Zhang SY, Fang CX, Wei W, Jin BK, Tian YP, Shen YH, Yang JX, Gao HW. 2007. Synthesis and electrochemical behavior of crystalline Ag2Se nanotubes[J]. Journal of Physical Chemistry C, 111:4168-4174.
    [112] Huang T, Qi LM. 2009. Controlled synthesis of PbSe nanotubes by solvothermal transformation from selenium nanotubes[J]. Nanotechnology, 20:
    [113] Mu L, Wan JX, Ma DK, Zhang R, Yu WC, Qian YT. 2005. A room temperature self-sacrificing template route to Ag2Te fibers[J]. Chem. Lett., 34:52-53.
    [114] Fan H, Zhang YG, Zhang MF, Wang XY, Qian YT. 2008. Glucose-assisted synthesis of CoTe nanotubes in situ templated by Te nanorods[J]. Cryst. Growth Des., 8:2838-2841.
    [115] Tai G, Zhou B, Guo WL. 2008. Structural characterization and thermoelectric transport properties of uniform single-crystalline lead telluride nanowires[J]. Journal of Physical Chemistry C, 112:11314-11318.
    [116] Zhang GQ, Yu QX, Yao Z, Li XG. 2009. Large scale highly crystalline Bi2Te3 nanotubes through solution phase nanoscale Kirkendall effect fabrication[J]. Chemical Communications, 2317-2319.
    [117] Liang HW, Liu S, Wu QS, Yu SH. 2009. An Efficient Templating Approach for Synthesis of Highly Uniform CdTe and PbTe Nanowires[J]. Inorg Chem, 48:4927-4933.
    [118] Qian HS, Yu SH, Luo LB, Gong JY, Fei LF, Liu XM. 2006. Synthesis of uniform Te@Carbon-Rich composite nanocables with photoluminescence properties and Carbonaceous nanofibers by the hydrothermal carbonization of glucose[J]. Chemistry of Materials, 18:2102-2108.
    [119] Hu JQ, Bando Y, Golberg D, Liu QL. 2003. Gallium nitride nanotubes by the conversion of gallium oxide nanotubes[J]. Angew Chem Int Edit, 42:3493-3497.
    [120] Li YB, Bando Y, Golberg D. 2005. Single-crystalline alpha-Al2O3 nanotubes converted from Al4O4C nanowires[J]. Advanced Materials, 17:1401-+.
    [121] Luo SD, Yao LD, Chu WG, Shen J, Zhang ZX, Li JB, Yi JH, Yu RH, Zhou WY, Xie SH. 2007. InN/In2O3 peapod nanostructures and conformal conversion templated from InN counterparts via thermal oxidation[J]. Nanotechnology, 18:
    [122] Cui XJ, Yu SH, Li LL, Li K, Yu B. 2004. Fabrication of Ag2SiO3/SiO2 composite nanotubes using a one-step sacrificial templating solution approach[J]. Advanced Materials, 16:1109-+.
    [123] Cui XJ, Yu SH, Li LL, Biao L, Li HB, Mo MS, Liu XM. 2004. Selective synthesis and characterization of single-crystal silver molybdate/tungstate nanowires by a hydrothermal process[J]. Chem-Eur J, 10:218-223.
    [124] Wang XD, Gao PX, Li J, Summers CJ, Wang ZL. 2002. Rectangular porous ZnO-ZnS nanocables and ZnS nanotubes[J]. Advanced Materials, 14:1732-+.
    [125] Zhang H, Yang DR, Ma XY, Que DL. 2005. A versatile solution route for oxide/sulfide core-shell nanostructures and nonlayered sulfide nanotubes[J]. Nanotechnology, 16:2721-2725.
    [126] Yan CL, Xue DF. 2006. Conversion of ZnO nanorod arrays into ZnO/ZnS nanocable and ZnS nanotube arrays via an in situ chemistry strategy[J]. J Phys Chem B, 110:25850-25855.
    [127] Li YJ, You LP, Duan R, Shi PB, Qin GG. 2004. Oxidation of a ZnS nanobelt into a ZnO nanotwin belt or double single-crystalline ZnO nanobelts[J]. Solid State Commun., 129:233-238.
    [128] Shan CX, Liu Z, Zhang ZZ, Shen DZ, Hark SK. 2006. A Simple Route to Porous ZnO and ZnCdO Nanowires[J]. The Journal of Physical Chemistry B, 110:11176-11179.
    [129] Gautam UK, Bando Y, Zhan JH, Costa P, Fang XS, Golberg D. 2008. Ga-doped ZnS nanowires as precursors for ZnO/ZnGa2O4 nanotubes[J]. Advanced Materials, 20:810-+.
    [130] Li YJ, Lu MY, Wang CW, Li KM, Chen LJ. 2006. ZnGa2O4 nanotubes with sharp cathodoluminescence peak[J]. Appl. Phys. Lett., 88:
    [131] Li XM, Chu HB, Li Y. 2006. Sacrificial template growth of CdS nanotubes from Cd(OH)(2) nanowires[J]. J. Solid State Chem., 179:96-102.
    [132] Shim HS, Shinde VR, Kim JW, Gujar TP, Joo OS, Kim HJ, Kim WB. 2009. Diameter-Tunable CdSe Nanotubes from Facile Solution-Based Selenization of Cd(OH)(2) Nanowire Bundles for Photoelectrochemical Cells[J]. Chemistry of Materials, 21:1875-1883.
    [133] Ye MF, Zhong HZ, Zheng WJ, Li R, Li YF. 2007. Ultralong cadmium hydroxide nanowires: Synthesis, characterization, and transformation into CdO nanostrands[J]. Langmuir, 23:9064-9068.
    [134] Mlondo SN, Andrews EM, Thomas PJ, O'Brien P. 2008. Deposition of hierarchical Cd(OH)(2) anisotropic nanostructures at the water-toluene interface and their use as sacrificial templates for CdO or CdS nanostructures[J]. Chemical Communications, 2768-2770.
    [135] Zhou KB, Yang ZQ, Yang S. 2007. Highly reducible CeO2 nanotubes[J]. Chemistry of Materials, 19:1215-1217.
    [136] Wen XG, Xie YT, Choi CL, Wan KC, Li XY, Yang SH. 2005. Copper-based nanowire materials: Templated syntheses, characterizations, and applications[J]. Langmuir,21:4729-4737.
    [137] Miao JJ, Jiang LP, Liu C, Zhu JM, Zhu JJ. 2007. General sacrificial template method for the synthesis of cadmium chalcogenide hollow structures[J]. Inorg Chem, 46:5673-5677.
    [138] Song JH, Wu YY, Messer B, Kind H, Yang PD. 2001. Metal nanowire formation using Mo3Se3- as reducing and sacrificing templates[J]. Journal of the American Chemical Society, 123:10397-10398.
    [139] Sun YG, Mayers BT, Xia YN. 2002. Template-engaged replacement reaction: A one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors[J]. Nano Letters, 2:481-485.
    [140] Mayers B, Jiang XC, Sunderland D, Cattle B, Xia YN. 2003. Hollow nanostructures of platinum with controllable dimensions can be synthesized by templating against selenium nanowires and colloids[J]. Journal of the American Chemical Society, 125:13364-13365.
    [141] Liang HW, Liu S, Gong JY, Wang SB, Wang L, Yu SH. 2009. Ultrathin Te Nanowires: An Excellent Platform for Controlled Synthesis of Ultrathin Platinum and Palladium Nanowires/Nanotubes with Very High Aspect Ratio[J]. Advanced Materials, 21:1850-+.
    [142] Liang HP, Guo YG, Zhang HM, Hu JS, Wan LJ, Bai CL. 2004. Controllable AuPt bimetallic hollow nanostructures[J]. Chemical Communications, 1496-1497.
    [143] Zeng J, Huang JL, Lu W, Wang XP, Wang B, Zhang SY, Hou JG. 2007. Necklace-like noble-metal hollow nanoparticle chains: Synthesis and tunable optical properties[J]. Advanced Materials, 19:2172-+.
    [144] Schwartzberg AM, Olson TY, Talley CE, Zhang JZ. 2007. Gold nanotubes synthesized via magnetic alignment of cobalt nanoparticles as templates[J]. Journal of Physical Chemistry C, 111:16080-16082.
    [145] Lu Y, Zhao Y, Yu L, Dong L, Shi C, Hu MJ, Xu YJ, Wen LP, Yu SH. 2010. Hydrophilic Co@Au Yolk/Shell Nanospheres: Synthesis, Assembly, and Application to Gene Delivery[J]. Advanced Materials, 22:1407-+.
    [146] Smigelskas AD, Kirkendall ED. 1947. Trans. AIME, 171:130.
    [147] Yin Y, Rioux RM, Erdonmez CK, Hughes S, Somorjai GA, Alivisatos AP. 2004. Formation of Hollow Nanocrystals Through the Nanoscale Kirkendall Effect[J]. Science, 304:711-714.
    [148] Fan HJ, Gosele U, Zacharias M. 2007. Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: A review[J]. Small, 3:1660-1671.
    [149] Zhang G, Yu Q, Yao Z, Li X. 2009. Large scale highly crystalline Bi2Te3 nanotubes through solution phase nanoscale Kirkendall effect fabrication[J]. Chem. Commun., 2317-2319.
    [150] Fan HJ, Knez M, Scholz R, Nielsch K, Pippel E, Hesse D, Zacharias M, Gosele U. 2006. Monocrystalline spinel nanotube fabrication based on the Kirkendall effect[J]. Nature Materials, 5:627-631.
    [151] Wang L, Peng B, Guo XF, Ding WP, Chen Y. 2009. Ferric molybdate nanotubes synthesized based on the Kirkendall effect and their catalytic property for propene epoxidation by air[J]. Chemical Communications, 1565-1567.
    [152] Peng HL, Xie C, Schoen DT, McIlwrath K, Zhang XF, Cui Y. 2007. Ordered vacancy compounds and nanotube formation in CulnSe(2)-CdS core-shell nanowires[J]. Nano Letters, 7:3734-3738.
    [153] Wu Y, Xiang J, Yang C, Lu W, Lieber CM. 2004. Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures[J]. Nature, 430:61-65.
    [154] Fan HJ, Knez M, Scholz R, Nielsch K, Pippel E, Hesse D, Gosele U, Zacharias M. 2006. Single-crystalline MgAl2O4 spinel nanotubes using a reactive and removable MgO nanowire template[J]. Nanotechnology, 17:5157-5162.
    [155] Yang Y, Sun XW, Tay BK, Wang JX, Dong ZL, Fan HM. 2007. Twinned Zn2TiO4 spinel nanowires using ZnO nanowires as a template[J]. Advanced Materials, 19:1839-+.
    [156] Chang KW, Wu JJ. 2005. Formation of well-aligned ZnGa2O4 nanowires from Ga2O3/ZnO core-shell nanowires via a Ga2O3/ZnGa2O4 epitaxial relationship[J]. J Phys Chem B, 109:13572-13577.
    [157] Zhang DH, Ryu K, Liu XL, Polikarpov E, Ly J, Tompson ME, Zhou CW. 2006. Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes[J]. Nano Letters, 6:1880-1886.
    [158] Wu ZC, Chen ZH, Du X, Logan JM, Sippel J, Nikolou M, Kamaras K, Reynolds JR, Tanner DB, Hebard AF, Rinzler AG. 2004. Transparent, conductive carbon nanotube films[J]. Science, 305:1273-1276.
    [159] Zhang M, Fang SL, Zakhidov AA, Lee SB, Aliev AE, Williams CD, Atkinson KR, Baughman RH. 2005. Strong, transparent, multifunctional, carbon nanotube sheets[J]. Science, 309:1215-1219.
    [160] Brady-Estevez AS, Kang S, Elimelech M. 2008. A single-walled-carbon-nanotube filter for removal of viral and bacterial pathogens[J]. Small, 4:481-484.
    [161] Srivastava A, Srivastava ON, Talapatra S, Vajtai R, Ajayan PM. 2004. Carbonnanotube filters[J]. Nature Materials, 3:610-614.
    [162] Endo M, Muramatsu H, Hayashi T, Kim YA, Terrones M, Dresselhaus NS. 2005. 'Buckypaper' from coaxial nanotubes[J]. Nature, 433:476-476.
    [163] Yu M, Funke HH, Falconer JL, Noble RD. 2009. High Density, Vertically-Aligned Carbon Nanotube Membranes[J]. Nano Letters, 9:225-229.
    [164] Peng XS, Jin J, Ericsson EM, Ichinose I. 2007. General method for ultrathin free-standing films of nanofibrous composite materials[J]. Journal of the American Chemical Society, 129:8625-8633.
    [165] Dong WJ, Cogbill A, Zhang TR, Ghosh S, Tian ZR. 2006. Multifunctional, catalytic nanowire membranes and the membrane-based 3D devices[J]. J Phys Chem B, 110:16819-16822.
    [166] Zhang XW, Zhang T, Ng J, Sun DD. 2009. High-Performance Multifunctional TiO2 Nanowire Ultrafiltration Membrane with a Hierarchical Layer Structure for Water Treatment[J]. Adv Funct Mater, 19:3731-3736.
    [167] Wang YM, Du GJ, Liu H, Liu D, Qin SB, Wang N, Hu CG, Tao XT, Jiao J, Wang JY, Wang ZL. 2008. Nanostructured sheets of Ti-O nanobelts for gas sensing and antibacterial applications[J]. Adv Funct Mater, 18:1131-1137.
    [168] Peng X, Ichinose I. 2011. Green-Chemical Synthesis of Ultrathinβ-MnOOH Nanofibers for Separation Membranes[J]. Adv Funct Mater, n/a-n/a.
    [169] Zhang CY, Zhang XJ, Zhang XH, Ou XM, Zhang WF, Jie JS, Chang JC, Lee CS, Lee ST. 2009. Facile One-Step Fabrication of Ordered Organic Nanowire Films[J]. Adv Mater, 21:4172-+.
    [170] Shi HY, Hu B, Yu XC, Zhao RL, Ren XF, Liu SL, Liu JW, Feng M, Xu AW, Yu SH. 2010. Ordering of Disordered Nanowires: Spontaneous Formation of Highly Aligned, Ultralong Ag Nanowire Films at Oil-Water-Air Interface[J]. Advanced Functional Materials, 20:958-964.
    [171] Tao AR, Huang JX, Yang PD. 2008. Langmuir-Blodgettry of Nanocrystals and Nanowires[J]. Accounts Chem Res, 41:1662-1673.
    [172] Acharya S, Hill JP, Ariga K. 2009. Soft Langmuir-Blodgett Technique for Hard Nanomaterials[J]. Adv Mater, 21:2959-2981.
    [173] Cote LJ, Kim F, Huang JX. 2009. Langmuir-Blodgett Assembly of Graphite Oxide Single Layers[J]. J Am Chem Soc, 131:1043-1049.
    [174] Liu JW, Zhu JH, Zhang CL, Liang HW, Yu SH. 2010. Mesostructured Assemblies of Ultrathin Superlong Tellurium Nanowires and Their Photoconductivity[J]. Journal of theAmerican Chemical Society, 132:8945-8952.
    [175] Guo QJ, Teng XW, Rahman S, Yang H. 2003. Patterned Langmuir-Blodgett films of mondisperse nanoparticles of iron oxide using soft lithography[J]. J Am Chem Soc, 125:630-631.
    [176] Whang D, Jin S, Wu Y, Lieber CM. 2003. Large-scale hierarchical organization of nanowire arrays for integrated nanosystems[J]. Nano Lett, 3:1255-1259.
    [177] Kim F, Kwan S, Akana J, Yang PD. 2001. Langmuir-Blodgett nanorod assembly[J]. J Am Chem Soc, 123:4360-4361.
    [178] Mai LQ, Gu YH, Han CH, Hu B, Chen W, Zhang PC, Xu L, Guo WL, Dai Y. 2009. Orientated Langmuir-Blodgett Assembly of VO2 Nanowires[J]. Nano Lett, 9:826-830.
    [179] Kharlampieva E, Kozlovskaya V, Gunawidjaja R, Shevchenko VV, Vaia R, Naik RR, Kaplan DL, Tsukruk VV. 2010. Flexible Silk-Inorganic Nanocomposites: From Transparent to Highly Reflective[J]. Adv Funct Mater, 20:840-846.
    [180] Schmidt DJ, Cebeci FC, Kalcioglu ZI, Wyman SG, Ortiz C, Van Vliet KJ, Hammond PT. 2009. Electrochemically Controlled Swelling and Mechanical Properties of a Polymer Nanocomposite[J]. Acs Nano, 3:2207-2216.
    [181] Boudou T, Crouzier T, Ren KF, Blin G, Picart C. 2010. Multiple Functionalities of Polyelectrolyte Multilayer Films: New Biomedical Applications[J]. Adv Mater, 22:441-467.
    [182] Byrne MT, Gun'ko YK. 2010. Recent Advances in Research on Carbon Nanotube-Polymer Composites[J]. Adv Mater, 22:1672-1688.
    [183] Ji QM, Yoon SB, Hill JP, Vinu A, Yu JS, Ariga K. 2009. Layer-by-Layer Films of Dual-Pore Carbon Capsules with Designable Selectivity of Gas Adsorption[J]. J Am Chem Soc, 131:4220-+.
    [184] Demortiere A, Buathong S, Pichon BP, Panissod P, Guillon D, Begin-Colin S, Donnio B. 2010. Nematic-like Organization of Magnetic Mesogen-Hybridized Nanoparticles[J]. Small, 6:1341-1346.
    [185] Yao HB, Fang HY, Tan ZH, Wu LH, Yu SH. 2010. Biologically Inspired, Strong, Transparent, and Functional Layered Organic-Inorganic Hybrid Films[J]. Angewandte Chemie-International Edition, 49:2140-2145.
    [186] Yao HB, Wu LH, Cui CH, Fang HY, Yu SH. 2010. Direct fabrication of photoconductive patterns on LBL assembled graphene oxide/PDDA/titania hybrid films by photothermal and photocatalytic reduction[J]. Journal of Materials Chemistry, 20:5190-5195.
    [187] Srivastava S, Kotov NA. 2008. Composite Layer-by-Layer (LBL) Assembly withInorganic Nanoparticles and Nanowires[J]. Accounts of Chemical Research, 41:1831-1841.
    [188] Wang Y, Tang ZY, Podsiadlo P, Elkasabi Y, Lahann J, Kotov NA. 2006. Mirror-like photoconductive layer-by-layer thin films of Te nanowires: The fusion of semiconductor, metal, and insulator properties[J]. Adv Mater, 18:518-+.
    [189] Lu XF, Wang C, Wei Y. 2009. One-Dimensional Composite Nanomaterials: Synthesis by Electrospinning and Their Applications[J]. Small, 5:2349-2370.
    [190] Greiner A, Wendorff JH. 2007. Electrospinning: A fascinating method for the preparation of ultrathin fibres[J]. Angew Chem Int Edit, 46:5670-5703.
    [191] He D, Hu B, Yao QF, Wang K, Yu SH. 2009. Large-Scale Synthesis of Flexible Free-Standing SERS Substrates with High Sensitivity: Electrospun PVA Nanofibers Embedded with Controlled Alignment of Silver Nanoparticles[J]. Acs Nano, 3:3993-4002.
    [192] Gopal R, Kaur S, Feng CY, Chan C, Ramakrishna S, Tabe S, Matsuura T. 2007. Electrospun nanofibrous polysulfone membranes as pre-filters: Particulate removal[J]. J. Membr. Sci., 289:210-219.
    [193] Gopal R, Kaur S, Ma ZW, Chan C, Ramakrishna S, Matsuura T. 2006. Electrospun nanofibrous filtration membrane[J]. J. Membr. Sci., 281:581-586.
    [194] Barhate RS, Ramakrishna S. 2007. Nanofibrous filtering media: Filtration problems and solutions from tiny materials[J]. J. Membr. Sci., 296:1-8.
    [195] Barhate RS, Sundarrajan S, Pliszka D, Ramakrishna S. 2008. Fine chemical processing: The potential of nanofibres in filtration[J]. Filtration & Separation, 45:32-35.
    [196] Gu G, Schmid M, Chiu PW, Minett A, Fraysse J, Kim GT, Roth S, Kozlov M, Munoz E, Baughman RH. 2003. V2O5 nanofibre sheet actuators[J]. Nature Materials, 2:316-319.
    [197] Yuan JK, Liu XG, Akbulut O, Hu JQ, Suib SL, Kong J, Stellacci F. 2008. Superwetting nanowire membranes for selective absorption[J]. Nature Nanotechnology, 3:332-336.
    [198] Ke XB, Zhu HY, Gao XP, Liu JW, Zheng ZF. 2007. High-performance ceramic membranes with a separation layer of metal oxide nanofibers[J]. Advanced Materials, 19:785-+.
    [1] Roucoux A, Schulz J, Patin H. 2002. Reduced transition metal colloids: A novel family of reusable catalysts?[J]. Chem Rev, 102:3757-3778.
    [2] Rolison DR. 2003. 1 Catalytic nanoarchitectures - The importance of nothing and the unimportance of periodicity[J]. Science, 299:1698-1701.
    [3] Favier F, Walter EC, Zach MP, Benter T, Penner RM. 2001. Hydrogen sensors and switches from electrodeposited palladium mesowire arrays[J]. Science, 293:2227-2231.
    [4] Wang C, Daimon H, Lee Y, Kim J, Sun S. 2007. Synthesis of monodisperse Pt nanocubes and their enhanced catalysis for oxygen reduction[J]. Journal of the American Chemical Society, 129:6974-+.
    [5] Mahmoud MA, Tabor CE, El-Sayed MA, Ding Y, Wang ZL. 2008. A new catalytically active colloidal platinum nanocatalyst: The multiarmed nanostar single crystal[J]. Journal of the American Chemical Society, 130:4590-+.
    [6] Kim SW, Kim M, Lee WY, Hyeon T. 2002. Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for Suzuki coupling reactions[J]. Journal of the American Chemical Society, 124:7642-7643.
    [7] Song JH, Wu YY, Messer B, Kind H, Yang PD. 2001. Metal nanowire formation using Mo3Se3- as reducing and sacrificing templates[J]. Journal of the American Chemical Society, 123:10397-10398.
    [8] Lee H, Habas SE, Kweskin S, Butcher D, Somorjai GA, Yang PD. 2006. Morphological control of catalytically active platinum nanocrystals[J]. Angew Chem Int Edit, 45:7824-7828.
    [9] Kijima T, Yoshimura T, Uota M, Ikeda T, Fujikawa D, Mouri S, Uoyama S. 2004. Noble-metal nanotubes (Pt, Pd, Ag) from lyotropic mixed-surfactant liquid-crystal templates[J]. Angew Chem Int Edit, 43:228-232.
    [10] Chen JY, Herricks T, Xia YN. 2005. Polyol synthesis of platinum nanostructures: Control of morphology through the manipulation of reduction kinetics[J]. Angew Chem Int Edit, 44:2589-2592.
    [11] Chen JY, Herricks T, Geissler M, Xia YN. 2004. Single-crystal nanowires of platinum can be synthesized by controlling the reaction rate of a polyol process[J]. Journal of the American Chemical Society, 126:10854-10855.
    [12] Xiong YJ, Cai HG, Wiley BJ, Wang JG, Kim MJ, Xia YN. 2007. Synthesis and mechanistic study of palladium nanobars and nanorods[J]. Journal of the American Chemical Society, 129:3665-3675.
    [13] Han YJ, Kim JM, Stucky GD. 2000. Preparation of noble metal nanowires using hexagonal mesoporous silica SBA-15[J]. Chemistry of Materials, 12:2068-2069.
    [14] Lee KB, Lee SM, Cheon J. 2001. Size-controlled synthesis of Pd nanowires using a mesoporous silica template via chemical vapor infiltration[J]. Advanced Materials, 13:517-+.
    [15] Steinhart M, Jia ZH, Schaper AK, Wehrspohn RB, Gosele U, Wendorff JH. 2003. Palladium nanotubes with tailored wall morphologies[J]. Advanced Materials, 15:706-709.
    [16] Deng ZX, Mao CD. 2003. DNA-templated fabrication of 1D parallel and 2D crossed metallic nanowire arrays[J]. Nano Letters, 3:1545-1548.
    [17] Nguyen K, Monteverde M, Filoramo A, Goux-Capes L, Lyonnais S, Jegou P, Viel P, Goffman M, Bourgoin JP. 2008. Synthesis of thin and highly conductive DNA-based palladium nanowires[J]. Advanced Materials, 20:1099-+.
    [18] Song Y, Garcia RM, Dorin RM, Wang HR, Qiu Y, Coker EN, Steen WA, Miller JE, Shelnutt JA. 2007. Synthesis of platinum nanowire networks using a soft template[J]. Nano Letters, 7:3650-3655.
    [19] Mayers B, Jiang XC, Sunderland D, Cattle B, Xia YN. 2003. Hollow nanostructures of platinum with controllable dimensions can be synthesized by templating against selenium nanowires and colloids[J]. Journal of the American Chemical Society, 125:13364-13365.
    [20] Sun YG, Mayers BT, Xia YN. 2002. Template-engaged replacement reaction: A one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors[J]. Nano Letters, 2:481-485.
    [21] Teng XW, Han WQ, Ku W, Hucker M. 2008. Synthesis of ultrathin palladium and platinum nanowires and a study of their magnetic properties[J]. Angew Chem Int Edit, 47:2055-2058.
    [22] Peng XG, Manna L, Yang WD, Wickham J, Scher E, Kadavanich A, Alivisatos AP. 2000. Shape control of CdSe nanocrystals[J]. Nature, 404:59-61.
    [23] Yao WT, Yu SH. 2008. 1 Synthesis of Semiconducting Functional Materials in Solution: From II-VI Semiconductor to Inorganic-Organic Hybrid Semiconductor Nanomaterials[J]. Adv Funct Mater, 18:3357-3366.
    [24] Yu H, Li JB, Loomis RA, Wang LW, Buhro WE. 2003. Two- versus three-dimensional quantum confinement in indium phosphide wires and dots[J]. Nature Materials, 2:517-520.
    [25] Yin Y, Alivisatos AP. 2005. Colloidal nanocrystal synthesis and the organic-inorganic interface[J]. Nature, 437:664-670.
    [26] Lu W, Lieber CM. 2006. Semiconductor nanowires[J]. J. Phys. D-Appl. Phys., 39:R387-R406.
    [27] Fan HJ, Werner P, Zacharias M. 2006. Semiconductor nanowires: From self-organization to patterned growth[J]. Small, 2:700-717.
    [28] Kumar S, Nann T. 2006. 2 Shape control of II-VI semiconductor nanomateriats[J]. Small, 2:316-329.
    [29] Law M, Goldberger J, Yang PD. 2004. Semiconductor nanowires and nanotubes[J]. Ann. Rev. Mater. Res., 34:83-122.
    [30] Wang ZL. 2008. Splendid One-Dimensional Nanostructures of Zinc Oxide: A New Nanomaterial Family for Nanotechnology[J]. Acs Nano, 2:1987-1992.
    [31] Kuno M. 2008. An overview of solution-based semiconductor nanowires: synthesis and optical studies[J]. Phys Chem Chem Phys, 10:620-639.
    [32] Cademartiri L, Ozin GA. 2009. Ultrathin Nanowires - A Materials Chemistry Perspective[J]. Advanced Materials, 21:1013-1020.
    [33] Kumar S, Nann T. 2004. First solar cells based on CdTe nanoparticle/MEH-PPV composites[J]. J. Mater. Res., 19:1990-1994.
    [34] Kang YM, Park NG, Kim D. 2005. Hybrid solar cells with vertically aligned CdTe nanorods and a conjugated polymer[J]. Appl. Phys. Lett., 86:
    [35] Gaponik NP, Talapin DV, Rogach AL, Eychmuller A. 2000. Electrochemical synthesis of CdTe nanocrystal/polypyrrole composites for optoelectronic applications[J]. Journal of Materials Chemistry, 10:2163-2166.
    [36] Wang SP, Mamedova N, Kotov NA, Chen W, Studer J. 2002. Antigen/antibody immunocomplex from CdTe nanoparticle bioconjugates[J]. Nano Letters, 2:817-822.
    [37] Trudeau PE, Sheldon M, Altoe V, Alivisatos AP. 2008. Electrical contacts to individual colloidal semiconductor nanorods[J]. Nano Letters, 8:1936-1939.
    [38] Kuno M, Ahmad O, Protasenko V, Bacinello D, Kosel TH. 2006. Solution-based straight and branched CdTe nanowires[J]. Chemistry of Materials, 18:5722-5732.
    [39] Trentler TJ, Hickman KM, Goel SC, Viano AM, Gibbons PC, Buhro WE. 1995. SOLUTION-LIQUID-SOLID GROWTH OF CRYSTALLINE III-V SEMICONDUCTORS - AN ANALOGY TO VAPOR-LIQUID-SOLID GROWTH[J]. Science, 270:1791-1794.
    [40] Sun J, Wang LW, Buhro WE. 2008. Synthesis of cadmium telluride quantum wires and the similarity of their effective band gaps to those of equidiameter cadmium telluride quantum dots[J]. Journal of the American Chemical Society, 130:7997-8005.
    [41] Tang ZY, Kotov NA, Zhou M. 2002. Spontaneous organization of single CdTe nanoparticles into luminescent nanowires[J]. Science, 297:237-240.
    [42] Zhang H, Wang DY, Mohwald H. 2006. Ligand-selective aqueous synthesis ofone-dimensional CdTe nanostructures[J]. Angew Chem Int Edit, 45:748-751.
    [43] Zhang H, Wang DY, Yang B, Mohwald H. 2006. Manipulation of aqueous growth of CdTe nanocrystals to fabricate colloidally stable one-dimensional nanostructures[J]. Journal of the American Chemical Society, 128:10171-10180.
    [44] Li J, Hong X, Li D, Zhao K, Wang L, Wang HZ, Du ZL, Li JH, Bai YB, Li TJ. 2004. Mixed ligand system of cysteine and thioglycolic acid assisting in the synthesis of highly luminescent water-soluble CdTe nanorods[J]. Chemical Communications, 1740-1741.
    [45] Klein JD, Herrick RD, Palmer D, Sailor MJ, Brumlik CJ, Martin CR. 1993. ELECTROCHEMICAL FABRICATION OF CADMIUM CHALCOGENIDE MICRODIODE ARRAYS[J]. Chemistry of Materials, 5:902-904.
    [46] Martin CR. 1994. NANOMATERIALS - A MEMBRANE-BASED SYNTHETIC APPROACH[J]. Science, 266:1961-1966.
    [47] Li YD, Liao HW, Ding Y, Qian YT, Yang L, Zhou GE. 1998. Nonaqueous synthesis of CdS nanorod semiconductor[J]. Chemistry of Materials, 10:2301-+.
    [48] Yang Q, Tang KB, Wang CR, Qian YT, Zhang SY. 2002. PVA-assisted synthesis,and characterization of CdSe and CdTe nanowires[J]. J Phys Chem B, 106:9227-9230.
    [49] Yu SH, Wu YS, Yang J, Han ZH, Xie Y, Qian YT, Liu XM. 1998. A novel solventothermal synthetic route to nanocrystalline CdE (E = S, Se, Te) and morphological control[J]. Chemistry of Materials, 10:2309-+.
    [50] Gong H, Hao XP, Gao C, Wu YZ, Du J, Xu XG, Jiang MH. 2008. Facile aqueous synthesis and growth mechanism of CdTe nanorods[J]. Nanotechnology, 19:
    [51] Il Park W, Kim HS, Jang SY, Park J, Bae SY, Jung M, Lee H, Kim J. 2008. Transformation of ZnTe nanowires to CdTe nanowires through the formation of ZnCdTe-CdTecore - shell structure by vapor transport[J]. Journal of Materials Chemistry, 18:875-880.
    [52] Neretina S, Hughes RA, Britten JF, Sochinskii NV, Preston JS, Mascher P. 2007. Vertically aligned wurtzite CdTe nanowires derived from a catalytically driven growth mode[J]. Nanotechnology, 18:
    [53] Qian HS, Yu SH, Gong JY, Luo LB, Fei LF. 2006. High-quality luminescent tellurium nanowires of several nanometers in diameter and high aspect ratio synthesized by a poly (vinyl pyrrolidone)-assisted hydrothermal process[J]. Langmuir, 22:3830-3835.
    [54] Qian HS, Yu SH, Luo LB, Gong JY, Fei LF, Liu XM. 2006. Synthesis of uniform Te@Carbon-Rich composite nanocables with photoluminescence properties and Carbonaceous nanofibers by the hydrothermal carbonization of glucose[J]. Chemistry of Materials,18:2102-2108.
    [55] Eustis S, Hsu HY, El-Sayed MA. 2005. Gold nanoparticle formation from photochemical reduction of Au3+ by continuous excitation in colloidal solutions. A proposed molecular mechanism[J]. J Phys Chem B, 109:4811-4815.
    [56] Teranishi T, Hosoe M, Miyake M. 1997. Formation of monodispersed ultrafine platinum particles and their electrophoretic deposition on electrodes[J]. Advanced Materials, 9:65-&.
    [57] Yin YD, Rioux RM, Erdonmez CK, Hughes S, Somorjai GA, Alivisatos AP. 2004. Formation of hollow nanocrystals through the nanoscale Kirkendall Effect[J]. Science, 304:711-714.
    [58] Fan HJ, Knez M, Scholz R, Nielsch K, Pippel E, Hesse D, Zacharias M, Gosele U. 2006. Monocrystalline spinel nanotube fabrication based on the Kirkendall effect[J]. Nature Materials, 5:627-631.
    [59] Cabot A, Puntes VF, Shevchenko E, Yin Y, Balcells L, Marcus MA, Hughes SM, Alivisatos AP. 2007. Vacancy coalescence during oxidation of iron nanoparticles[J]. Journal of the American Chemical Society, 129:10358-+.
    [60] Wang Y, Tang ZY, Podsiadlo P, Elkasabi Y, Lahann J, Kotov NA. 2006. Mirror-like photoconductive layer-by-layer thin films of Te nanowires: The fusion of semiconductor, metal, and insulator properties[J]. Advanced Materials, 18:518-+.
    [61] Lin ZH, Chang HT. 2008. Preparation of gold-tellurium hybrid nanomaterials for surface-enhanced Raman spectroscopy[J]. Langmuir, 24:365-367.
    [62] Martin CR. 1994. Nanomaterials: A Membrane-Based Synthetic Approach[J]. Science, 266:1961-1966.
    [63] Goldberger J, He R, Zhang Y, Lee S, Yan H, Choi H-J, Yang P. 2003. Single-crystal gallium nitride nanotubes[J]. Nature, 422:599-602.
    [64] Mu L, Wan JX, Ma DK, Zhang R, Yu WC, Qian YT. 2005. A room temperature self-sacrificing template route to Ag2Te fibers[J]. Chem. Lett., 34:52-53.
    [65] Jiang XC, Mayers B, Herricks T, Xia YN. 2003. Direct synthesis of Se@CdSe nanocables and CdSe nanotubes by reacting cadmium salts with Se nanowires[J]. Advanced Materials, 15:1740-+.
    [66] Mayers B, Jiang XC, Sunderland D, Cattle B, Xia YN. 2003. Hollow nanostructures of platinum with controllable dimensions can be synthesized by templating against selenium nanowires and colloids[J]. Journal of the American Chemical Society, 125:13364-13365.
    [67] Tai G, Zhou B, Guo WL. 2008. Structural characterization and thermoelectric transportproperties of uniform single-crystalline lead telluride nanowires[J]. Journal of Physical Chemistry C, 112:11314-11318.
    [68] Ding Y, Wang ZL. 2004. Structure analysis of nanowires and nanobelts by transmission electron microscopy[J]. J Phys Chem B, 108:12280-12291.
    [69] Manna L, Milliron DJ, Meisel A, Scher EC, Alivisatos AP. 2003. Controlled growth of tetrapod-branched inorganic nanocrystals[J]. Nature Materials, 2:382-385.
    [70] Gur I, Fromer NA, Geier ML, Alivisatos AP. 2005. Air-stable all-inorganic nanocrystal solar cells processed from solution[J]. Science, 310:462-465.
    [71] Sun BQ, Marx E, Greenham NC. 2003. Photovoltaic devices using blends of branched CdSe nanoparticles and conjugated polymers[J]. Nano Letters, 3:961-963.
    [72] Xi GC, Wang C, Wang X, Qian YT, Xiao HQ. 2008. Te/carbon and Se/carbon nanocables: Size-controlled in situ hydrothermal synthesis and applications in preparing metal M/carbon nanocables (M = tellurides and selenides)[J]. Journal of Physical Chemistry C, 112:965-971.
    [73] Xi G, Wang C, Wang X, Qian Y, Xiao H. 2008. Te/Carbon and Se/Carbon Nanocables: Size-Controlled in Situ Hydrothermal Synthesis and Applications in Preparing Metal M/Carbon Nanocables (M = Tellurides and Selenides)[J]. The Journal of Physical Chemistry C, 112:965-971.
    [74] Cao MH, Hu CW, Peng G, Qi YJ, Wang EB. 2003. Selected-control synthesis of PbO2 and Pb3O4 single-crystalline nanorods[J]. Journal of the American Chemical Society, 125:4982-4983.
    [1] Endo M, Muramatsu H, Hayashi T, Kim YA, Terrones M, Dresselhaus NS. 2005. 'Buckypaper' from coaxial nanotubes[J]. Nature, 433:476-476.
    [2] Zhang M, Fang SL, Zakhidov AA, Lee SB, Aliev AE, Williams CD, Atkinson KR, Baughman RH. 2005. Strong, transparent, multifunctional, carbon nanotube sheets[J]. Science, 309:1215-1219.
    [3] Wu ZC, Chen ZH, Du X, Logan JM, Sippel J, Nikolou M, Kamaras K, Reynolds JR, Tanner DB, Hebard AF, Rinzler AG. 2004. Transparent, conductive carbon nanotube films[J]. Science, 305:1273-1276.
    [4] Dong WJ, Cogbill A, Zhang TR, Ghosh S, Tian ZR. 2006. Multifunctional, catalytic nanowire membranes and the membrane-based 3D devices[J]. J. Phys. Chem. B, 110:16819-16822.
    [5] Gu G, Schmid M, Chiu PW, Minett A, Fraysse J, Kim GT, Roth S, Kozlov M, Munoz E, Baughman RH. 2003. V2O5 nanofibre sheet actuators[J]. Nat. Mater., 2:316-319.
    [6] Zhang DH, Ryu K, Liu XL, Polikarpov E, Ly J, Tompson ME, Zhou CW. 2006. Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes[J]. Nano Lett., 6:1880-1886.
    [7] Yuan JK, Liu XG, Akbulut O, Hu JQ, Suib SL, Kong J, Stellacci F. 2008. Superwetting nanowire membranes for selective absorption[J]. Nature Nanotechnology, 3:332-336.
    [8] Xu YJ, Weinberg G, Liu X, Timpe O, Schlogl R, Su DS. 2008. Nanoarchitecturing of Activated Carbon: Facile Strategy for Chemical Functionalization of the Surface of ActivatedCarbon[J]. Adv. Funct. Mater., 18:3613-3619.
    [9] Yoon K, Hsiao BS, Chu B. 2008. Functional nanofibers for environmental applications[J]. J. Mater. Chem., 18:5326-5334.
    [10] Kaur S, Gopal R, Ng WJ, Ramakrishna S, Matsuura T. 2008. Next-generation fibrous media for water treatment[J]. MRS Bull., 33:21-26.
    [11] Srivastava A, Srivastava ON, Talapatra S, Vajtai R, Ajayan PM. 2004. Carbon nanotube filters[J]. Nature Materials, 3:610-614.
    [12] Yang SY, Ryu I, Kim HY, Kim JK, Jang SK, Russell TP. 2006. Nanoporous membranes with ultrahigh selectivity and flux for the filtration of viruses[J]. Adv. Mater., 18:709-+.
    [13] Zhang S, Shim WS, Kim J. 2009. Design of ultra-fine nonwovens via electrospinning of Nylon 6: Spinning parameters and filtration efficiency[J]. Materials & Design, 30:3659-3666.
    [14] Li XS, Zhu GY, Dordick JS, Ajayan PM. 2007. Compression-modulated tunable-pore carbon-nanotube membrane filters[J]. Small, 3:595-599.
    [15] Brady-Estevez AS, Kang S, Elimelech M. 2008. A single-walled-carbon-nanotube filter for removal of viral and bacterial pathogens[J]. Small, 4:481-484.
    [16] Peng XS, Karan S, Ichinose I. 2009. Ultrathin Nanofibrous Films Prepared from Cadmium Hydroxide Nanostrands and Anionic Surfactants[J]. Langmuir, 25:8514-8518.
    [17] Ke XB, Zhu HY, Gao XP, Liu JW, Zheng ZF. 2007. High-performance ceramic membranes with a separation layer of metal oxide nanofibers[J]. Adv. Mater., 19:785-+.
    [18] Kaur S, Ma Z, Gopal R, Singh G, Ramakrishna S, Matsuura T. 2007. Plasma-induced graft copolymerization of poly(methacrylic acid) on electrospun poly(vinylidene fluoride) nanofiber membrane[J]. Langmuir, 23:13085-13092.
    [19] Link S, El-Sayed MA. 1999. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods[J]. J Phys Chem B, 103:8410-8426.
    [20] Eustis S, El-Sayed MA. 2006. Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes[J]. Chem Soc Rev, 35:209-217.
    [21] Wilcoxon JP, Martin JE, Provencio P. 2000. Size distributions of gold nanoclusters studied by liquid chromatography[J]. Langmuir, 16:9912-9920.
    [22] Templeton AC, Cliffel DE, Murray RW. 1999. Redox and fluorophore functionalization of water-soluble, tiopronin-protected gold clusters[J]. Journal of the American Chemical Society, 121:7081-7089.
    [23] Akthakul A, Hochbaum AI, Stellacci F, Mayes AM. 2005. Size fractionation of metal nanoparticles by membrane filtration[J]. Advanced Materials, 17:532-+.
    [24] Sweeney SF, Woehrle GH, Hutchison JE. 2006. Rapid purification and size separation of gold nanoparticles via diafiltration[J]. Journal of the American Chemical Society, 128:3190-3197.
    [25] Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Marinas BJ, Mayes AM. 2008. Science and technology for water purification in the coming decades[J]. Nature, 452:301-310.
    [26] Montgomery MA, Elimelech M. 2007. Water And Sanitation in Developing Countries: Including Health in the Equation[J]. Environmental Science & Technology, 41:17-24.
    [27] Kim SJ, Ko SH, Kang KH, Han J. 2010. Direct seawater desalination by ionconcentration polarization[J]. Nat. Nanotechnol., 5:297-301.
    [28] Zimmerman JB, Mihelcic JR, Smith, James. 2008. Global Stressors on Water Quality and Quantity[J]. Environmental Science & Technology, 42:4247-4254.
    [29] Williams PT Water Treatment: Principles and Design, 2nd Edition; John Wiley & Sons, Ltd, 2005.
    [30] Vandezande P, Gevers LEM, Vankelecom IFJ. 2008. Solvent resistant nanofiltration: separating on a molecular level[J]. Chem. Soc. Rev., 37:365-405.
    [31] Van der Bruggen B, Vandecasteele C, Van Gestel T, Doyen W, Leysen R. 2003. A review of pressure-driven membrane processes in wastewater treatment and drinking water production[J]. Environ Prog, 22:46-56.
    [32] Kim J, Van der Bruggen B. 2010. The use of nanoparticles in polymeric and ceramic membrane structures: Review of manufacturing procedures and performance improvement for water treatment[J]. Environ. Pollut., 158:2335-2349.
    [33] Dotzauer DM, Dai JH, Sun L, Bruening ML. 2006. Catalytic membranes prepared using layer-by-layer adsorption of polyelectrolyte/metal nanoparticle films in porous supports[J]. Nano Letters, 6:2268-2272.
    [34] Lebrun L, Vallee F, Alexandre B, Nguyen QT. 2007. Preparation of chelating membranes to remove metal cations from aqueous solutions[J]. Desalination, 207:9-23.
    [35] Zheng LL, Su YL, Wang LJ, Jiang ZY. 2009. Adsorption and recovery of methylene blue from aqueous solution through ultrafiltration technique[J]. Sep Purif Technol, 68:244-249.
    [36] Lin RY, Chen BS, Chen GL, Wu JY, Chiu HC, Suen SY. 2009. Preparation of porous PMMA/Na+-montmorillonite cation-exchange membranes for cationic dye adsorption[J]. Journal of Membrane Science, 326:117-129.
    [37] Cheng ZF, Wu YH, Wang N, Yang WH, Xu TW. 2010. Development of a Novel Hollow Fiber Cation-Exchange Membrane from Bromomethylated Poly(2,6-dimethyl-1,4-phenylene oxide) for Removal of Heavy-Metal Ions[J]. Ind Eng Chem Res, 49:3079-3087.
    [38] Ki CS, Gang EH, Um NC, Park YH. 2007. Nanotibrous membrane of wool keratose/silk fibroin blend for heavy metal ion adsorption[J]. Journal of Membrane Science, 302:20-26.
    [39] Sang YM, Li FS, Gu QB, Liang CZ, Chen JQ. 2008. Heavy metal-contaminated groundwater treatment by a novel nanofiber membrane[J]. Desalination, 223:349-360.
    [40] Bae S-D, Sagehashi M, Sakoda A. 2003. Activated carbon membrane with filamentous carbon for water treatment[J]. Carbon, 41:2973-2979.
    [41] Mauter MS, Elimelech M. 2008. Environmental applications of carbon-based nanomaterials[J]. Environ. Sci. Technol., 42:5843-5859.
    [42] Savage N, Diallo MS. 2005. Nanomaterials and water purification: Opportunities and challenges[J]. J Nanopart Res, 7:331-342.
    [43] Upadhyayula VKK, Deng SG, Mitchell MC, Smith GB. 2009. Application of carbon nanotube technology for removal of contaminants in drinking water: A review[J]. Sci. Total Environ., 408:1-13.
    [44] Demir-Cakan R, Baccile N, Antonietti M, Titirici M-M. 2009. Carboxylate-Rich Carbonaceous Materials via One-Step Hydrothermal Carbonization of Glucose in the Presence of Acrylic Acid[J]. Chemistry of Materials, 21:484-490.
    [45] Zhong LS, Hu JS, Liang HP, Cao AM, Song WG, Wan LJ. 2006. Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment[J]. Adv. Mater., 18:2426-+.
    [46] Yang DJ, Zheng ZF, Zhu HY, Liu HW, Gao XP. 2008. Titanate nanofibers as intelligent absorbents for the removal of radioactive ions from water[J]. Advanced Materials, 20:2777-+.
    [47] Pan JH, Zhang XW, Du AJ, Sun DD, Leckie JO. 2008. Self-etching reconstruction of hierarchically mesoporous F-TiO2 hollow microspherical photocatalyst for concurrent membrane water Purifications[J]. J. Am. Chem. Soc., 130:11256-+.
    [48] Alvarez-Ayuso E, Garcia-Sanchez A, Querol X. 2003. Purification of metal electroplating waste waters using zeolites[J]. Water Research, 37:4855-4862.
    [49] Peng XS, Jin J, Nakamura Y, Ohno T, Ichinose I. 2009. Ultrafast permeation of water through protein-based membranes[J]. Nat. Nanotechnol., 4:353-357.
    [50] Krogman KC, Lowery JL, Zacharia NS, Rutledge GC, Hammond PT. 2009. Spraying asymmetry into functional membranes layer-by-layer[J]. Nature Materials, 8:512-518.
    [51] Liang H-W, Wang L, Chen P-Y, Lin H-T, Chen L-F, He D, Yu S-H. 2010. Carbonaceous Nanofiber Membranes for Selective Filtration and Separation of Nanoparticles[J]. Advanced Materials, 22:4691-4695.
    [52] Jana NR, Gearheart L, Murphy CJ. 2001. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods[J]. J Phys Chem B, 105:4065-4067.
    [53] Frens G. 1973. Nat. Phys. Sci. , 241:20-23.
    [54] Hu B, Wang SB, Wang K, Zhang M, Yu SH. 2008. Microwave-assisted rapid facile "Green" synthesis of uniform silver nanoparticles: Self-assembly into multilayered films and their optical properties[J]. Journal of Physical Chemistry C, 112:11169-11174.
    [55] He D, Hu B, Yao QF, Wang K, Yu SH. 2009. Large-Scale Synthesis of Flexible Free-Standing SERS Substrates with High Sensitivity: Electrospun PVA Nanofibers Embedded with Controlled Alignment of Silver Nanoparticles[J]. Acs Nano, 3:3993-4002.
    [56] St?ber W, Fink A, Bohn E. 1968. J. Colloid Interface Sci., 26:62.
    [57] Gopal R, Kaur S, Feng CY, Chan C, Ramakrishna S, Tabe S, Matsuura T. 2007. Electrospun nanofibrous polysulfone membranes as pre-filters: Particulate removal[J]. J. Membr. Sci., 289:210-219.
    [58] Gopal R, Kaur S, Ma ZW, Chan C, Ramakrishna S, Matsuura T. 2006. Electrospun nanofibrous filtration membrane[J]. Journal of Membrane Science, 281:581-586.
    [59] Barhate RS, Sundarrajan S, Pliszka D, Ramakrishna S. 2008. Fine chemical processing: The potential of nanofibres in filtration[J]. Filtration & Separation, 45:32-35.
    [60] Banholzer MJ, Millstone JE, Qin LD, Mirkin CA. 2008. Rationally designed nanostructures for surface-enhanced Raman spectroscopy[J]. Chem Soc Rev, 37:885-897.
    [61] Qian HS, Yu SH, Luo LB, Gong JY, Fei LF, Liu XM. 2006. Synthesis of uniform Te@Carbon-Rich composite nanocables with photoluminescence properties and Carbonaceous nanofibers by the hydrothermal carbonization of glucose[J]. Chem. Mater., 18:2102-2108.
    [62] Hu J, Chen C, Zhu X, Wang X. 2009. Removal of chromium from aqueous solution by using oxidized multiwalled carbon nanotubes[J]. Journal of Hazardous materials, 162:1542-1550.
    [63] Braeken L, Van der Bruggen B, Vandecasteele C. 2006. Flux Decline in NanofiltrationDue to Adsorption of Dissolved Organic Compounds: Model Prediction of Time Dependency[J]. J. Phys. Chem. B, 110:2957-2962.
    [64] Arico AS, Bruce P, Scrosati B, Tarascon J-M, van Schalkwijk W. 2005. Nanostructured materials for advanced energy conversion and storage devices[J]. Nat Mater, 4:366-377.
    [65] Simon P, Gogotsi Y. 2008. Materials for electrochemical capacitors [J]. Nat Mater, 7:845-854.
    [66] Zhang LL, Zhao XS. 2009. Carbon-based materials as supercapacitor electrodes[J]. Chem. Soc. Rev., 38:2520-2531.
    [67] Su DS, Schlogl R. 2010. Nanostructured Carbon and Carbon Nanocomposites for Electrochemical Energy Storage Applications [J]. ChemSusChem, 3:136-168.
    [68] Pandolfo AG, Hollenkamp AF. 2006. Carbon properties and their role in supercapacitors[J]. J. Power Sources, 157:11-27.
    [69] Sheng ZM, Wang JN. 2008. Thin-walled carbon nanocages: Direct growth, characterization, and applications [J]. Advanced Materials, 20:1071-+.
    [70] Huang C-W, Li Y-Y. 2006. In Situ Synthesis of Platelet Graphite Nanofibers from Thermal Decomposition of Poly(ethylene glycol)[J]. The Journal of Physical Chemistry B, 110:23242-23246.
    [71] Maldonado-Hodar FJ, Moreno-Castilla C, Rivera-Utrilla J, Hanzawa Y, Yamada Y. 2000. Catalytic Graphitization of Carbon Aerogels by Transition Metals[J]. Langmuir, 16:4367-4373.
    [72] Ghosh R. 2002. Protein separation using membrane chromatography: opportunities and challenges[J]. J. Chromatogr. A, 952:13-27.
    [73] Ghosh R. 2003. Purification of lysozyme by microporous PVDF membrane-based chromatographic process[J]. Biochem. Eng. J., 14:109-116.
    [74] Teeters MA, Conrardy SE, Thomas BL, Root TW, Lightfoot EN. 2003. Adsorptive membrane chromatography for purification of plasmidDNA[J]. J. Chromatogr. A, 989:165-173.
    [75] Fang JK, Chiu HC, Wu JY, Suen SY. 2004. Preparation of polysulfone-based cation-exchange membranes and their application in protein separation with a plate-and-frame module[J]. Reactive & Functional Polymers, 59:171-183.
    [76] Jain P, Baker GL, Bruening ML. 2009. Applications of Polymer Brushes in Protein Analysis and Purification. Annual Review of Analytical Chemistry, 2:387-408.
    [77] Jain P, Sun L, Dai JH, Baker GL, Bruening ML. 2007. High-capacity purification of his-tagged proteins by affinity membranes containing functionalized polymer brushes[J]. Biomacromolecules, 8:3102-3107.
    [78] Jain P, Vyas MK, Geiger JH, Baker GL, Bruening ML. 2010. Protein Purification with Polymeric Affinity Membranes Containing Functionalized Poly (acid) Brushes [J]. Biomacromolecules, 11:1019-1026.
    [79] Arica MY, Yilmaz M, Yalcin E, Bayramoglu G. 2004. Affinity membrane chromatography: relationship of dye-ligand type to surface polarity and their effect on lysozyme separation and purification^]. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 805:315-323.
    [80] Ma ZW, Kotaki M, Ramakrishna S. 2005. Electrospun cellulose nanofiber as affinity membrane[J]. J. Membr. Sci., 265:115-123.
    [81] Yu A, Liang Z, Caruso F. 2004. Enzyme Multilayer-Modified Porous Membranes as Biocatalysts[J]. Chem. Mater., 17:171-175.
    [82] Fu WS, Yamaguchi A, Kanedaa H, Teramae N. 2008. Enzyme catalytic membrane based on a hybrid mesoporous membrane[J]. Chem. Commun., 853-855.
    [83] Yu AM, Liang ZJ, Caruso F. 2005. Enzyme multilayer-modified porous membranes as biocatalysts[J]. Chem. Mater., 17:171-175.
    [1] Davis VA, Parra-Vasquez ANG, Green MJ, Rai PK, Behabtu N, Prieto V, Booker RD, Schmidt J, Kesselman E, Zhou W, Fan H, Adams WW, Hauge RH, Fischer JE, Cohen Y, Talmon Y, Smalley RE, Pasquali M. 2009. True solutions of single-walled carbon nanotubes for assembly into macroscopic materials[J]. Nat. Nanotechnol., 4:830-834.
    [2] Capadona JR, Van Den Berg O, Capadona LA, Schroeter M, Rowan SJ, Tyler DJ, Weder C. 2007. A versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templates[J]. Nat. Nanotechnol., 2:765-769.
    [3] Wu ZC, Chen ZH, Du X, Logan JM, Sippel J, Nikolou M, Kamaras K, Reynolds JR, Tanner DB, Hebard AF, Rinzler AG. 2004. Transparent, conductive carbon nanotube films[J]. Science, 305:1273-1276.
    [4] Zhang M, Fang SL, Zakhidov AA, Lee SB, Aliev AE, Williams CD, Atkinson KR, Baughman RH. 2005. Strong, transparent, multifunctional, carbon nanotube sheets[J]. Science, 309:1215-1219.
    [5] Endo M, Muramatsu H, Hayashi T, Kim YA, Terrones M, Dresselhaus NS. 2005. 'Buckypaper' from coaxial nanotubes[J]. Nature, 433:476-476.
    [6] Srivastava A, Srivastava ON, Talapatra S, Vajtai R, Ajayan PM. 2004. Carbon nanotube filters[J]. Nat. Mater., 3:610-614.
    [7] Yu M, Funke HH, Falconer JL, Noble RD. 2009. High Density, Vertically-Aligned Carbon Nanotube Membranes[J]. Nano Lett., 9:225-229.
    [8] Bryning MB, Milkie DE, Islam MF, Hough LA, Kikkawa JM, Yodh AG. 2007. Carbon nanotube aerogels[J]. Adv. Mater., 19:661-+.
    [9] Cao AY, Dickrell PL, Sawyer WG, Ghasemi-Nejhad MN, Ajayan PM. 2005. Super-compressible foamlike carbon nanotube films[J]. Science, 310:1307-1310.
    [10] Gui X, Wei J, Wang K, Cao A, Zhu H, Jia Y, Shu Q, Wu D. 2010. Carbon Nanotube Sponges[J]. Adv. Mater., 22:617-621.
    [11] Gutierrez MC, Hortiguela MJ, Amarilla JM, Jimenez R, Ferrer ML, del Monte F. 2007. Macroporous 3D architectures of self-assembled MWCNT surface decorated with Pt nanoparticles as anodes for a direct methanol fuel cell[J]. J. Phys. Chem. C, 111:5557-5560.
    [12] Hortiguela MJ, Gutierrez MC, Aranaz I, Jobbagy M, Abarrategi A, Moreno-Vicente C, Civantos A, Ramos V, Lopez-Lacomba JL, Ferrer ML, del Monte F. 2008. Urea assisted hydroxyapatite mineralization on MWCNT/CHI scaffolds[J]. J. Mater. Chem., 18:5933-5940.
    [13] Halonen N, Rautio A, Leino AR, Kyllonen T, Toth G, Lappalainen J, Kordas K, Huuhtanen M, Keiski RL, Sapi A, Szabo M, Kukovecz A, Konya Z, Kiricsi I, Ajayan PM, Vajtai R. 2010. Three-Dimensional Carbon Nanotube Scaffolds as Particulate Filters and Catalyst Support Membranes[J]. Acs Nano, 4:2003-2008.
    [14] Worsley MA, Kucheyev SO, Kuntz JD, Hamza AV, Satcher JH, Baumann TF. 2009. Stiff and electrically conductive composites of carbon nanotube aerogels and polymers[J]. J. Mater. Chem., 19:3370-3372.
    [15] Abarrategi A, Gutierrez MC, Moreno-Vicente C, Hortiguela MJ, Ramos V, Lopez-Lacomba JL, Ferrer ML, del Monte F. 2008. Multiwall carbon nanotube scaffolds for tissue engineering purposes[J]. Biomaterials, 29:94-102.
    [16] Yuan JK, Liu XG, Akbulut O, Hu JQ, Suib SL, Kong J, Stellacci F. 2008. Superwetting nanowire membranes for selective absorption[J]. Nat. Nanotechnol., 3:332-336.
    [17] Gu G, Schmid M, Chiu PW, Minett A, Fraysse J, Kim GT, Roth S, Kozlov M, Munoz E, Baughman RH. 2003. V2O5 nanofibre sheet actuators[J]. Nat. Mater., 2:316-319.
    [18] Dong WJ, Cogbill A, Zhang TR, Ghosh S, Tian ZR. 2006. Multifunctional, catalytic nanowire membranes and the membrane-based 3D devices[J]. J. Phys. Chem. B, 110:16819-16822.
    [19] Ke XB, Zhu HY, Gao XP, Liu JW, Zheng ZF. 2007. High-performance ceramic membranes with a separation layer of metal oxide nanofibers[J]. Adv. Mater., 19:785-+.
    [20] Peng XS, Jin J, Ericsson EM, Ichinose I. 2007. General method for ultrathin free-standing films of nanofibrous composite materials[J]. J. Am. Chem. Soc., 129:8625-8633.
    [21] Krogman KC, Lowery JL, Zacharia NS, Rutledge GC, Hammond PT. 2009. Spraying asymmetry into functional membranes layer-by-layer[J]. Nat. Mater., 8:512-518.
    [22] Teo WE, Ramakrishna S. 2009. Electrospun nanofibers as a platform for multifunctional, hierarchically organized nanocomposite[J]. Compos. Sci. Technol., 69:1804-1817.
    [23] Olsson RT, Samir MASA, Salazar-Alvarez G, Belova L, Strom V, Berglund LA, Ikkala O, Nogues J, Gedde UW. 2010. Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates[J]. Nat. Nanotechnol., 5:584-588.
    [24] Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ,Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T. 2010. Review: current international research into cellulose nanofibres and nanocomposites[J]. J. Mater. Sci., 45:1-33.
    [25] Liang HW, Wang L, Chen PY, Lin HT, Chen LF, He DA, Yu SH. 2010. Carbonaceous Nanofiber Membranes for Selective Filtration and Separation of Nanoparticles[J]. Adv. Mater., 22:4691-+.
    [26] Qian HS, Yu SH, Luo LB, Gong JY, Fei LF, Liu XM. 2006. Synthesis of uniform Te@Carbon-Rich composite nanocables with photoluminescence properties and Carbonaceous nanofibers by the hydrothermal carbonization of glucose[J]. Chem. Mater., 18:2102-2108.
    [27] Qian HS, Antonietti M, Yu SH. 2007. Hybrid "golden fleece": Synthesis and catalytic performance of uniform carbon nanoribers and silica nanotubes embedded with a high population of noble-metal nanoparticles[J]. Adv. Funct. Mater., 17:637-643.
    [28] Aulin C, Netrval J, Wagberg L, Lindstrom T. 2010. Aerogels from nanofibrillated cellulose with tunable oleophobicity[J]. Soft Matter, 6:3298-3305.
    [29] Qian HS, Yu SH, Gong JY, Luo LB, Fei LF. 2006. 10 High-quality luminescent tellurium nanowires of several nanometers in diameter and high aspect ratio synthesized by a poly (vinyl pyrrolidone)-assisted hydrothermal process[J]. Langmuir, 22:3830-3835.
    [30] Sun SH, Murray CB, Weller D, Folks L, Moser A. 2000. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices[J]. Science, 287:1989-1992.
    [31] Pu HT, Jiang FJ. 2005. Towards high sedimentation stability: magnetorheological fluids based on CNT/Fe3O4 nanocomposites[J]. Nanotechnology, 16:1486-1489.
    [32] Tang J, Wang K-Y, Zhou W. 2001. Magnetic properties of nanocrystalline Fe[sub 3]O[sub 4] films[J]. J. Appl. Phys., 89:7690-7692.
    [33] Wan J, Cai W, Feng J, Meng X, Liu E. 2007. In situ decoration of carbon nanotubes with nearly monodisperse magnetite nanoparticles in liquid polyols[J]. J. Mater. Chem., 17:1188.
    [34] Cong H-P, He J-J, Lu Y, Yu S-H. 2010. Water-Soluble Magnetic-Functionalized Reduced Graphene Oxide Sheets: In situ Synthesis and Magnetic Resonance Imaging Applications[J]. Small, 6:169-173.
    [35] Khan SUM, Al-Shahry M, Ingler WB. 2002. Efficient photochemical water splitting by a chemically modified n-TiO2 2[J]. Science, 297:2243-2245.
    [36] Wang YM, Du GJ, Liu H, Liu D, Qin SB, Wang N, Hu CG, Tao XT, Jiao J, Wang JY, Wang ZL. 2008. Nanostructured sheets of Ti-O nanobelts for gas sensing and antibacterial applications[J]. Adv. Funct. Mater., 18:1131-1137.
    [37] Zhao L, Chen X, Wang X, Zhang Y, Wei W, Sun Y, Antonietti M, Titirici M-M. 2010. One-Step Solvothermal Synthesis of a Carbon@TiO2 Dyade Structure Effectively Promoting Visible-Light Photocatalysis[J]. Adv. Mater., 22:3317-3321.
    [38] Zhong J, Chen F, Zhang JL. 2010. Carbon-Deposited TiO2: Synthesis, Characterization, and Visible Photocatalytic Performance[J]. J. Phys. Chem. C, 114:933-939.
    [39] Zhang XW, Du AJ, Lee PF, Sun DD, Leckie JO. 2008. TiO2 nanowire membrane for concurrent filtration and photocatalytic oxidation of humic acid in water[J]. J. Membr. Sci., 313:44-51.
    [40] Pan JH, Zhang XW, Du AJ, Sun DD, Leckie JO. 2008. Self-etching reconstruction of hierarchically mesoporous F-TiO2 hollow microspherical photocatalyst for concurrentmembrane water Purifications[J]. J. Am. Chem. Soc., 130:11256-+.
    [41] Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Marinas BJ, Mayes AM. 2008. Science and technology for water purification in the coming decades[J]. Nature, 452:301-310.
    [42] Van der Bruggen B, Vandecasteele C, Van Gestel T, Doyen W, Leysen R. 2003. A review of pressure-driven membrane processes in wastewater treatment and drinking water production[J]. Environ. Prog., 22:46-56.
    [43] Costerton JW, Stewart PS, Greenberg EP. 1999. Bacterial biofilms: A common cause of persistent infections[J]. Science, 284:1318-1322.
    [44] Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappinscott HM. 1995. MICROBIAL BIOFILMS[J]. Annu. Rev. Microbiol., 49:711-745.
    [45] Malaisamy R, Berry D, Holder D, Raskin L, Lepak L, Jones KL. 2010. Development of reactive thin film polymer brush membranes to prevent biofouling[J]. J. Membr. Sci., 350:361-370.
    [46] Yao C, Li XS, Neoh KG, Shi ZL, Kang ET. 2008. Surface modification and antibacterial activity of electrospun polyurethane fibrous membranes with quaternary ammonium moieties[J]. J. Membr. Sci., 320:259-267.
    [47] Kidambi S. Investigation of metal nanoparticles encapsulated in polyelectrolyte multilayers for catalytic and antibacterial applications. PhD Thesis, Michigan State University, 2007. Investigation of metal nanoparticles encapsulated in polyelectrolyte multilayers for catalytic and antibacterial applications [J].
    [48] Sharma VK, Yngard RA, Lin Y. 2009. Silver nanoparticles: Green synthesis and their antimicrobial activities[J]. Adv. Colloid Interface Sci., 145:83-96.
    [49] Liang H-W, Cao X, Zhou F, Cui C-H, Zhang W-J, Yu S-H. 2011. A Free-Standing Pt-Nanowire Membrane as a Highly Stable Electrocatalyst for the Oxygen Reduction Reaction[J]. Adv. Mater., in press, DOI: 10.1002/adma.201004377.
    [50] Zodrow K, Brunet L, Mahendra S, Li D, Zhang A, Li QL, Alvarez PJJ. 2009. Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal[J]. Water Res., 43:715-723.
    [51] Gupta A, Maynes M, Silver S. 1998. Effects of halides on plasmid-mediated silver resistance in Escherichia coli[J]. Appl. Environ. Microbiol., 64:5042-5045.
    [52] Sondi I, Salopek-Sondi B. 2004. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria[J]. J. Colloid Interface Sci., 275:177-182.
    [53] Julbe A, Farrusseng D, Guizard C. 2001. Porous ceramic membranes for catalytic reactors -- overview and new ideas[J]. J. Membr. Sci., 181:3-20.
    [54] Dotzauer DM, Dai JH, Sun L, Bruening ML. 2006. Catalytic membranes prepared using layer-by-layer adsorption of polyelectrolyte/metal nanoparticle films in porous supports[J]. Nano Lett., 6:2268-2272.
    [55] Hayakawa K, Yoshimura T, Esumi K. 2003. Preparation of Gold?Dendrimer Nanocomposites by Laser Irradiation and Their Catalytic Reduction of 4-Nitrophenol[J]. Langmuir, 19:5517-5521.
    [56] Yu A, Liang Z, Caruso F. 2004. Enzyme Multilayer-Modified Porous Membranes as Biocatalysts[J]. Chem. Mater., 17:171-175.
    [57] Ma ZW, Kotaki M, Ramakrishna S. 2005. Electrospun cellulose nanofiber as affinity membrane[J]. J. Membr. Sci., 265:115-123.
    [58] Jain P, Sun L, Dai J, Baker GL, Bruening ML. 2007. High-Capacity Purification of His-tagged Proteins by Affinity Membranes Containing Functionalized Polymer Brushes[J]. Biomacromolecules, 8:3102-3107.
    [59] Saxena A, Tripathi BP, Kumar M, Shahi VK. 2009. Membrane-based techniques for the separation and purification of proteins: An overview[J]. Adv. Colloid Interface Sci., 145:1-22.
    [1] Borup R, Meyers J, Pivovar B, Kim YS, Mukundan R, Garland N, Myers D, Wilson M, Garzon F, Wood D, Zelenay P, More K, Stroh K, Zawodzinski T, Boncella J, McGrath JE, Inaba M, Miyatake K, Hori M, Ota K, Ogumi Z, Miyata S, Nishikata A, Siroma Z, Uchimoto Y, Yasuda K, Kimijima KI, Iwashita N. 2007. Scientific aspects of polymer electrolyte fuel cell durability and degradation[J]. Chem Rev, 107:3904-3951.
    [2] Bing YH, Liu HS, Zhang L, Ghosh D, Zhang JJ. Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction[J]. Chem Soc Rev, 39:2184-2202.
    [3] Lim B, Jiang MJ, Camargo PHC, Cho EC, Tao J, Lu XM, Zhu YM, Xia YA. 2009. Pd-Pt Bimetallic Nanodendrites with High Activity for Oxygen Reduction[J]. Science, 324:1302-1305.
    [4] Sasaki K, Naohara H, Cai Y, Choi YM, Liu P, Vukmirovic MB, Wang JX, Adzic RR. 2010. Core-Protected Platinum Monolayer Shell High-Stability Electrocatalysts for Fuel-Cell Cathodes[J]. Angewandte Chemie International Edition, n/a-n/a.
    [5] Wang C, Daimon H, Onodera T, Koda T, Sun SH. 2008. A general approach to the size- and shape-controlled synthesis of platinum nanoparticles and their catalytic reduction of oxygen[J]. Angew Chem Int Edit, 47:3588-3591.
    [6] Yu XW, Ye SY. 2007. Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC - Part I. Physico-chemical and electronic interaction between Pt and carbon support, and activity enhancement of Pt/C catalyst[J]. J Power Sources, 172:133-144.
    [7] Lee EP, Peng ZM, Chen W, Chen SW, Yang H, Xia YN. 2008. Electrocatalytic Properties of Pt Nanowires Supported on Pt and W Gauzes[J]. Acs Nano, 2:2167-2173.
    [8] Sun SH, Jaouen F, Dodelet JP. 2008. Controlled Growth of Pt Nanowires on Carbon Nanospheres and Their Enhanced Performance as Electrocatalysts in PEM Fuel Cells[J]. Advanced Materials, 20:3900-3904.
    [9] Zhou HJ, Zhou WP, Adzic RR, Wong SS. 2009. Enhanced Electrocatalytic Performance of One-Dimensional Metal Nanowires and Arrays Generated via an Ambient, Surfactantless Synthesis[J]. Journal of Physical Chemistry C, 113:5460-5466.
    [10] Chen ZW, Waje M, Li WZ, Yan YS. 2007. Supportless Pt and PtPd nanotubes as electrocatalysts for oxygen-reduction reactions[J]. Angew Chem Int Edit, 46:4060-4063.
    [11] Koenigsmann C, Zhou WP, Adzic RR, Sutter E, Wong SS. 2010. Nano Letters,
    [12] Endo M, Muramatsu H, Hayashi T, Kim YA, Terrones M, Dresselhaus NS. 2005. 'Buckypaper' from coaxial nanotubes[J]. Nature, 433:476-476.
    [13] Yuan JK, Liu XG, Akbulut O, Hu JQ, Suib SL, Kong J, Stellacci F. 2008. Superwetting nanowire membranes for selective absorption[J]. Nature Nanotechnology, 3:332-336.
    [14] Kaur S, Gopal R, Ng WJ, Ramakrishna S, Matsuura T. 2008. Next-generation fibrousmedia for water treatment[J]. Mrs Bulletin, 33:21-26.
    [15] Shui JL, Li JCM. 2009. Platinum Nanowires Produced by Electrospinning[J]. Nano Letters, 9:1307-1314.
    [16] Liang H-W, Wang L, Chen P-Y, Lin H-T, Chen L-F, He D, Yu S-H. 2010. Carbonaceous Nanofiber Membranes for Selective Filtration and Separation of Nanoparticles[J]. Advanced Materials, 22:4691-4695.
    [17] Qian HS, Yu SH, Gong JY, Luo LB, Fei LF. 2006. 10 High-quality luminescent tellurium nanowires of several nanometers in diameter and high aspect ratio synthesized by a poly (vinyl pyrrolidone)-assisted hydrothermal process[J]. Langmuir, 22:3830-3835.
    [18] Liang HW, Liu S, Wu QS, Yu SH. 2009. An Efficient Templating Approach for Synthesis of Highly Uniform CdTe and PbTe Nanowires[J]. Inorg Chem, 48:4927-4933.
    [19] Liang HW, Liu S, Gong JY, Wang SB, Wang L, Yu SH. 2009. Ultrathin Te Nanowires: An Excellent Platform for Controlled Synthesis of Ultrathin Platinum and Palladium Nanowires/Nanotubes with Very High Aspect Ratio[J]. Advanced Materials, 21:1850-+.
    [20] Xu WH, Yu SH. 2009. Conducting Performance of Individual Ag@C Coaxial Nanocables: Ideal Building Blocks for Interconnects in Nanoscale Devices[J]. Small, 5:460-465.
    [21] Gao MR, Xu WH, Luo LB, Zhan YJ, Yu SH. 2010. Coaxial Metal Nano-/Microcables with Isolating Sheath: Synthetic Methodology and Their Application as Interconnects[J]. Advanced Materials, 22:1977-1981.
    [22] Sun SH, Zhang GX, Geng DS, Chen YG, Banis MN, Li RY, Cai M, Sun XL. 2010. Direct Growth of Single-Crystal Pt Nanowires on Sn@CNT Nanocable: 3D Electrodes for Highly Active Electrocatalysts[J]. Chem-Eur J, 16:829-835.
    [23] Pozio A, De Francesco M, Cemmi A, Cardellini F, Giorgi L. 2002. Comparison of high surface Pt/C catalysts by cyclic voltammetry[J]. J Power Sources, 105:13-19.
    [24] Ferreira PJ, la O GJ, Shao-Horn Y, Morgan D, Makharia R, Kocha S, Gasteiger HA. 2005. Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells - A mechanistic investigation[J]. Journal of the Electrochemical Society, 152:A2256-A2271.
    [25] Peng ZM, Yang H. 2009. Synthesis and Oxygen Reduction Electrocatalytic Property of Pt-on-Pd Bimetallic Heteronanostructures[J]. Journal of the American Chemical Society, 131:7542-+.
    [26] Wang JJ, Yin GP, Shao YY, Zhang S, Wang ZB, Gao YZ. 2007. Effect of carbon black support corrosion on the durability of Pt/C catalyst[J]. J Power Sources, 171:331-339.
    [27] Zhang J, Sasaki K, Sutter E, Adzic RR. 2007. Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters[J]. Science, 315:220-222.
    [1] Viswanathan G, Kane DB, Lipowicz PJ. 2004. High efficiency fine particulate filtration using carbon nanotube coatings[J]. Adv. Mater., 16:2045-+.
    [2] Zhang DH, Ryu K, Liu XL, Polikarpov E, Ly J, Tompson ME, Zhou CW. 2006. Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes[J]. Nano Lett., 6:1880-1886.
    [3] Endo M, Muramatsu H, Hayashi T, Kim YA, Terrones M, Dresselhaus NS. 2005. 'Buckypaper' from coaxial nanotubes[J]. Nature, 433:476-476.
    [4] Srivastava A, Srivastava ON, Talapatra S, Vajtai R, Ajayan PM. 2004. Carbon nanotube filters[J]. Nat. Mater., 3:610-614.
    [5] Wu ZC, Chen ZH, Du X, Logan JM, Sippel J, Nikolou M, Kamaras K, Reynolds JR, Tanner DB, Hebard AF, Rinzler AG. 2004. Transparent, conductive carbon nanotube films[J]. Science, 305:1273-1276.
    [6] Yuan JK, Liu XG, Akbulut O, Hu JQ, Suib SL, Kong J, Stellacci F. 2008. Superwetting nanowire membranes for selective absorption[J]. Nat. Nanotechnol., 3:332-336.
    [7] Gu G, Schmid M, Chiu PW, Minett A, Fraysse J, Kim GT, Roth S, Kozlov M, Munoz E, Baughman RH. 2003. V2O5 nanofibre sheet actuators[J]. Nat. Mater., 2:316-319.
    [8] Formo E, Lee E, Campbell D, Xia YN. 2008. Functionalization of electrospun TiO2 nanofibers with Pt nanoparticles and nanowires for catalytic applications[J]. Nano Lett., 8:668-672.
    [9] Peng XS, Jin J, Ericsson EM, Ichinose I. 2007. General method for ultrathin free-standing films of nanofibrous composite materials[J]. J. Am. Chem. Soc., 129:8625-8633.
    [10] Dong WJ, Cogbill A, Zhang TR, Ghosh S, Tian ZR. 2006. Multifunctional, catalytic nanowire membranes and the membrane-based 3D devices[J]. J. Phys. Chem. B, 110:16819-16822.
    [11] Li XY, Liu GJ. 2009. Layer-by-Layer Deposition of Block Copolymer Nanofibers and Porous Nanofiber Multilayer Films[J]. Langmuir, 25:10811-10819.
    [12] Krogman KC, Lowery JL, Zacharia NS, Rutledge GC, Hammond PT. 2009. Spraying asymmetry into functional membranes layer-by-layer[J]. Nat. Mater., 8:512-518.
    [13] Kaur S, Gopal R, Ng WJ, Ramakrishna S, Matsuura T. 2008. Next-generation fibrous media for water treatment[J]. MRS Bull., 33:21-26.
    [14] Yoon K, Hsiao BS, Chu B. 2008. Functional nanofibers for environmental applications[J]. J. Mater. Chem., 18:5326-5334.
    [15] Olsson RT, Samir MASA, Salazar-Alvarez G, Belova L, Strom V, Berglund LA, Ikkala O, Nogues J, Gedde UW. 2010. Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates[J]. Nat. Nanotechnol., 5:584-588.
    [16] Nogi M, Iwamoto S, Nakagaito AN, Yano H. 2009. Optically Transparent Nanofiber Paper[J]. Adv. Mater., 21:1595-+.
    [17] Husing N, Schubert U. 1998. Aerogels airy materials: Chemistry, structure, and properties[J]. Angewandte Chemie-International Edition, 37:23-45.
    [18] Pierre AC, Pajonk GM. 2002. Chemistry of aerogels and their applications[J]. Chem. Rev., 102:4243-4265.
    [19] Kistler SS. 1931. Coherent expanded aerogels and jellies[J]. Nature, 127:741.
    [20] Kistler SS. 1932. Coherent Expanded-Aerogels[J]. The Journal of Physical Chemistry, 36:52-64.
    [21] Leventis N, Sotiriou-Leventis C, Zhang GH, Rawashdeh AMM. 2002. Nanoengineering strong silica aerogels[J]. Nano Lett., 2:957-960.
    [22] Kanamori K, Aizawa M, Nakanishi K, Hanada T. 2007. New transparent methylsilsesquioxane aerogels and xerogels with improved mechanical properties[J]. Adv. Mater., 19:1589-+.
    [23] Swider KE, Merzbacher CI, Hagans PL, Rolison DR. 1997. Synthesis of ruthenium dioxide titanium dioxide aerogels: Redistribution of electrical properties on the nanoscale[J]. Chem. Mater., 9:1248-1255.
    [24] Baumann TF, Kucheyev SO, Gash AE, Satcher JH. 2005. Facile synthesis of a crystalline, high-surface-area SnO2 aerogel[J]. Adv. Mater., 17:1546-1548.
    [25] Daniel C, Giudice S, Guerra G. 2009. Syndiotatic Polystyrene Aerogels with beta, gamma, and epsilon Crystalline Phases[J]. Chem. Mater., 21:1028-1034.
    [26] Zhang XT, Chang DW, Liu JR, Luo YJ. 2010. Conducting polymer aerogels from supercritical CO2 drying PEDOT-PSS hydrogels[J]. J. Mater. Chem., 20:5080-5085.
    [27] Wu DC, Fu RW, Zhang ST, Dresselhaus MS, Dresselhaus G. 2004. Preparation of low-density carbon aerogels by ambient pressure drying[J]. Carbon, 42:2033-2039.
    [28] Li WC, Lu AH, Schuth F. 2005. Preparation of monolithic carbon aerogels and investigation of their pore interconnectivity by a nanocasting pathway[J]. Chem. Mater., 17:3620-3626.
    [29] Bryning MB, Milkie DE, Islam MF, Hough LA, Kikkawa JM, Yodh AG. 2007. Carbon nanotube aerogels[J]. Adv. Mater., 19:661-+.
    [30] Worsley MA, Kucheyev SO, Satcher JH, Hamza AV, Baumann TF. 2009. Mechanically robust and electrically conductive carbon nanotube foams[J]. Appl. Phys. Lett., 94:-.
    [31] Gui X, Wei J, Wang K, Cao A, Zhu H, Jia Y, Shu Q, Wu D. 2010. Carbon Nanotube Sponges[J]. Adv. Mater., 22:617-621.
    [32] Fischer F, Rigacci A, Pirard R, Berthon-Fabry S, Achard P. 2006. Cellulose-based aerogels[J]. Polymer, 47:7636-7645.
    [33] Paakko M, Vapaavuori J, Silvennoinen R, Kosonen H, Ankerfors M, Lindstrom T, Berglund LA, Ikkala O. 2008. Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities[J]. Soft Matter, 4:2492-2499.
    [34] Qian HS, Yu SH, Gong JY, Luo LB, Fei LF. 2006. 10 High-quality luminescent tellurium nanowires of several nanometers in diameter and high aspect ratio synthesized by a poly (vinyl pyrrolidone)-assisted hydrothermal process[J]. Langmuir, 22:3830-3835.
    [35] Titirici MM, Antonietti M. 2010. Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization[J]. Chemical Society Reviews, 39:103-116.
    [36] Hu B, Yu SH, Wang K, Liu L, Xu XW. 2008. Functional carbonaceous materials from hydrothermal carbonization of biomass: an effective chemical process[J]. Dalton Transactions, 5414-5423.
    [37] Hu B, Wang K, Wu LH, Yu SH, Antonietti M, Titirici MM. 2010. Engineering Carbon Materials from the Hydrothermal Carbonization Process of Biomass[J]. Advanced Materials, 22:813-828.
    [38] Qian HS, Yu SH, Luo LB, Gong JY, Fei LF, Liu XM. 2006. Synthesis of uniform Te@Carbon-Rich composite nanocables with photoluminescence properties and Carbonaceous nanofibers by the hydrothermal carbonization of glucose[J]. Chem. Mater., 18:2102-2108.
    [39] Liang HW, Wang L, Chen PY, Lin HT, Chen LF, He DA, Yu SH. 2010. Carbonaceous Nanofiber Membranes for Selective Filtration and Separation of Nanoparticles[J]. Adv. Mater., 22:4691-+.
    [40] Zou JH, Liu JH, Karakoti AS, Kumar A, Joung D, Li QA, Khondaker SI, Seal S, Zhai L. 2010. Ultralight Multiwalled Carbon Nanotube Aerogel[J]. Acs Nano, 4:7293-7302.
    [41] Liang H-W, Cao X, Zhou F, Cui C-H, Zhang W-J, Yu S-H. 2011. A Free-Standing Pt-Nanowire Membrane as a Highly Stable Electrocatalyst for the Oxygen Reduction Reaction[J]. Adv. Mater., 23:1467-1471.