水稻重组自交系产量及其相关性状的QTL分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了发掘影响水稻产量及其相关性状的QTL和重要的染色体区间,本研究利用以大穗型品种川香29B(籼稻)为母本,Lemont(粳稻)为父本构建了包含184个株系的F8重组自交系群体。在2009年,对单株有效穗数、穗长、一次枝梗数、二次枝梗数、每穗实粒数、每穗总粒数、着粒密度、结实率、千粒重和单株产量10个性状进行了QTL分析。主要研究结果如下:
     (1)构建了一张水稻全基因组的遗传连锁图,该图谱包含98个SSR标记,总长为1244.8 cM,平均标记距离是17.25 cM。
     (2)相关分析表明,单株产量与单株有效穗数、一次枝梗数、二次枝梗数、每穗实粒数、每穗总粒数、着粒密度、结实率和千粒重的相关性都到达显著或极显著正相关,只与穗长无显著相关性;单株有效穗数与穗长、一次枝梗数、二次枝梗数、每穗实粒数、每穗总粒数和着粒密度呈极显著负相关;穗长与一次枝梗数、二次枝梗数、每穗实粒数和每穗总粒数呈极显著正相关;二次枝梗数与一次枝梗数、每穗实粒数、每穗总粒数和着粒密度呈正相关,与千粒重呈负相关,与结实率相关不显著;单株有效穗数、穗长和一次枝梗数与结实率和千粒重的相关性都不显著;每穗实粒数与着粒密度和结实率呈极显著正相关,而与千粒重无显著相关性;每穗总粒数与着粒密度呈极显著正相关,千粒重呈极显著负相关,与结实率的相关性不显著;着粒密度与千粒重呈极显著负相关,与结实率相关性不显著;结实率与千粒重无显著相关性。
     (3)在水稻全基因组内,共检测到28个影响产量及其相关性状的QTL。控制单株有效穗数的QTL有2个,命名为qNP-1和qNP-3,贡献率分别是7.47%和8.12%。控制穗长的QTL有5个,它们的贡献率在6.59%-15.53%之间,其中qPLT-3-3的LOD值和贡献率分别是3.06和15.53%。影响一次枝梗数的QTL有3个,单个QTL的贡献率在5.20%-32.11%之间,其中,qNPB-3的LOD值和贡献率为5.10和32.11%。控制二次枝梗数的QTL有3个,单个QTL贡献率在6.04%-10.78%之间。影响每穗实粒数的QTL有2个,命名为qNFGP-2和qNFGP-3,后者贡献率较大,为18.08%。控制每穗总粒数的QTL有3个,单个QTL贡献率在13.64%-19.86%之间,其中qTNSP-3的贡献率是19.86%。影响着粒密度的QTL有3个,贡献率在6.85%-11.84%之间。控制结实率的QTL有3个,贡献率变幅较小,在6.26%-6.96%之间。影响千粒重的QTL只有1个,命名为qTGWT-5,LOD值和贡献率分别2.96和7.02%。与单株产量有关的QTL有3个,命名为qGYD-3-1、qGYD-3-2和qGYD-5,它们的贡献率分别是14.05%、17.41%和10.62%。
     (4)本研究发现了5个QTL成簇分布区间。在第3染色体上,有2个QTL成簇分布区间,分别是区间RM514-RM1004和RM520-RM3513。在RM514-RM1004区间内,存在控制穗长、结实率和单株产量部分QTL。在区间RM514-RM3684之中,存在控制穗长、一次枝梗数、每穗实粒数和每穗总粒数的部分QTL。在第4染色体的RM5503-RM1113区间内,存在控制每穗总粒数的qTNSP-4和控制着粒密度的qSD-4。在第5染色体上,影响穗长和千粒重的部分QTL在RM164-RM3437区间内。在第6染色体的RM5371-RM7193区间之中,存在控制二次枝梗数、每穗总粒数和着粒密度的部分QTL。
To explore the major QTL and important chromosome regions of the rice yield and its related traits, a recombinant inbred line (F8) population with 184 lines, derived from a cross between Chuanxiang 29B (Oryza sativa L. subsp. indica) and Lemont (O. satva L. subsp. japonica), was developed. And in 2009 year, the QTL of ten traits including NP, PL, NPB, NSB, NFGP, TNSP, SD, SSR, TGWT and GYD were exploited. The major results were as follows:
     (1) A genetic linkage map of rice, which contained 98 SSR markers, was constructed. The map covered a total of 1244.8 cM with an average interval of 17.25 cM.
     (2) The analysis of correlation between ten yield and its related traits indicated that: GYD had a positive or significant positive correlation with NP, NPB, NSB, NFGP, SD, TNSP and SSR, TGWT, and had no significant correlation with PL. NP had a significant negative correlation with PL, NPB, NSB, NFGP, TNSP and SD. PL had a significant positive correlation with NPB, NSB, NFGP and TNSP. NSB had a significant positive correlation with NPB, NFGP, TNSP and SD, and a significant negative correlation with TGWT, and no significant correlation with SSR. NP, PL and NPB had no significant correlation with SSR and TGWT. NFGP had a significant positive correlation with SD and SSR, and no significant correlation with TGWT. TNSP had a significant positive correlation with SD, and a negative correlation with TGWT, and no significant correlation with SSR. SD had a significant negative correlation with TGWT, and no significant correlation with SSR. And SSR had no significant correlation with TGWT.
     (3) A total of twenty eight QTL, distributed on 1st、2nd、3rd、4th、5th、6th、7th、8th and 10th chromosome of rice, were detected. The two QTL named qNP-1 and qNP-3 were found to control NP. And their contributions were 7.47% and 8.12%, respectively. There were five QTL for PL. And their contributions were a range from 6.59% to 15.53%, in which qPLT-3-3 explained 15.53% of the total phenotypic variance. The three QTL were detected to control NPB. Their contributions were a range from 5.20% to 32.11%, in which the LOD score and contribution of qNPB-3 was 5.10 and 32.11%, respectively. There were three QTL controlling NSB. Their contributions were a range from 6.04% to 10.78%. There were two QTL named qNFGP-2 and qNFGP-3. And the contribution of qNFGP-3 was 18.08%. There were three QTL controlling TNSP. Their contributions were a range from 13.64% to 19.86%, in which qTNSP-3 explained 19.86% of the total phenotypic variance. There were three QTL controlling SD. And their contributions were a range from 6.85% to 11.84%. There were three QTL influencing SSR. Their contributions were a range from 6.26% to 6.96%. The one QTL for TGWT, named qTGWT-5, were found. Its LOD score and contribution were 2.96 and 7.02%. And three QTL controlling GYD were detected, named qGYD-3-1, qGYD-3-2 and qGYD-5, with the contribution of 14.05%, 17.41% and 10.62%, respectively.
     (4) And there were five QTL clusters. On the 3rd chromosome, there were two clusters. A QTL cluster for PL, SSR and GYD was located between RM514 and RM1004, and another QTL cluster for PL, NSB, NFGP and TNSP was located between RM520 and RM3513. On the 4th chromosome, there was a QTL cluster for TNSP and SD between RM5503 and RM1113. On the 5th chromosome, a QTL cluster for PL and TGWT was detected between RM164 and RM3437. On the 6th chromosome, there was a QTL cluster for NBP, TNSP and SD between RM5371 and RM7193.
引文
[1]刘泉君,唐佩然.我国粮食安全面临的挑战及对策[J].现代农业科技,2009,(12):278-279
    [2]曹历娟,洪伟.世界粮食危机背景下我国的粮食安全问题[J].南京农业大学学报(社会科学版),2009,9(2):32-37
    [3]朱红波.论粮食安全与耕地资源安全[J].农业现代化研究,2006,27(3):161-164
    [4]黄耀祥.水稻生态育种科学体系的构建和新进展——两源并举“超优势稻”的选育[J].世界科技与发展,2003,25(2):1-8
    [5]申宗坦,吕子同,李壬生.选育早熟矮稈水稻类型中一些性状的遗传分析[J].作物学报,1965,4(4):391-402
    [6]广东省农作物杂种优势利用研究协作组.水稻化学杀雄利用杂种优势的研究[J].中国农业科学,1977,(2):41-57
    [7]江西省农业科学研究所.水稻杂种优势利用[J].农业科技,1975,(10):1-4
    [8]钟国瑞.两系法杂交水稻育种的进展[J].中国农学通报,1988,2:10-12
    [9]程式华,廖西元,闵绍楷.中国超级稻研究:背景、目标和有关问题的思考[J].中国稻米,1998,(1):3-5
    [10]邵元健.质量性状和数量性状含义的辨析[J].生物学杂志,2006,23(4):55-57
    [11]陆燕鹏,万邦惠,陈雄辉等.短光低温不育水稻宜DS叶缘与稃尖颜色遗传的关系研究[J].华南农业大学学报,2000,21(4):1-3
    [12]黄远樟.作物数量遗传学基础-数量性状的遗传方式与分析[J].遗传,1979,(3):42-45
    [13]莫惠栋.质量-数量性状的遗传分析Ⅰ.遗传组成和主基因基因型鉴别[J].作物学报,1993,19(1):1-6
    [14]李何,刘学洪,陈文丽.数量遗传学的发展历程与展望[J].当代畜牧,2007,(10):38-41
    [15]陈四清,王金勇,范首君等.对数量遗传学的几点思考[J].畜禽业,2003,(10):20-21
    [16]刘长国,罗军,杨公社.DNA标记技术研究进展[J].黄牛杂志,2001,27(6):41-45
    [17]张传军,刘亦肖,肖娅萍.遗传多样性与植物的遗传标记[J].陕西师范大学学报(自然科学版),2006,34(B03):277-278
    [18]关强,张月学,徐香玲等.DNA分子标记的研究进展及几种新型分子标记技术[J].黑龙江农业科学,2008,(1):102-104
    [19]郝炯,渠云芳.DNA分子标记在作物育种中的应用[J].山西农业科学,2009,37(3):81-85
    [20]王军,谢皓,郭二虎.DNA分子标记及其在谷子遗传育种中的应用[J].北京农学院学报,2005,20(1):76-80
    [21]H.-X. Lin, H.-R. Qian, J.-Y. Zhuang, et.al. RFLP mapping of QTLs for yield and related characters in rice (Oryza sativa L.) [J]. Theor Appl Genet,1996,92(8):920-927
    [22]郑学项,冯素萍,李维国.DNA分子标记研究进展[J].安徽农业科学,2009,37(26): 12420-12422
    [23]John Welsh, Michael McClelland. Fingerprinting genomes using PCR with arbitrary primers [J]. Nucleic Acids Research,1990,18(24):7213-7218
    [24]郑康乐,沈波,于飞等.水稻DNA限制性片段长度多态性的初步研究[J].中国水稻科学,1990,4(4):145-149
    [25]杨留启,杨文鹏.SSR标记技术在玉米遗传育种中的应用[J].贵州农业科学,2008,36(2):5-7
    [26]陆丹,牛楠,李玥莹.SSR标记技术在植物基因组研究上的应用[J].沈阳师范大学学报(自然科学版),2010,28(1):83-85
    [27]郑学项,冯素萍,李维国.DNA分子标记研究进展[J].安徽农业科学,2009,37(26):12420-12422
    [28]B.Moury, S.Pflieger, A.Blattes, et.al. A CAPS marker to assist selection of tomato spotted wilt virus (TSWV) resistance in pepper [J]. Genome,2000,43:137-142
    [29]Jtlrg Berger, Takashi Suzuki, Kirsten-Andre Senti, et.al. Genetic mapping with SNP markers in Drosophila [J]. nature genetics,2001,29(4):475-481
    [30]李余生.水稻产量构成及产量相关性状遗传分析和一个穗发育相关基因的克隆[D].南京:南京农业大学,2005:
    [31]贾海燕,姚国旗,张政值等.一个一粒小麦抗白粉病主效QTL的定位[J].分子植物育种,2009,7(4):646-652
    [32]李余生,汤国辉,管荣展等.不同环境下水稻产量相关性状的QTL分析[J].江苏农业学报,2007,23(6):509-515
    [33]阮成江,何祯祥,钦佩.我国农作物QTL定位研究的现状和进展[J].植物学通报,2003,20(1):10-22
    [34]林谦,毛孝强,杨德等.QTL作图主要统计方法及主要作图群体[J].云南农业大学学报,2004,19(2):121-127
    [35]蒋洪蔚,刘春燕,高运来等.作物QTL定位常用作图群体[J].生物技术通报,2008,(z1):12-17
    [36]张志勇,黄育民,张凯等.水稻株高QTL定位及精确性分析[J].厦门大学学报(自然科学版),2008,47(1):116-121
    [37]席章营,吴建宇.作物次级作图群体的研究进展[J].农业生物技术学报,2006,14(1):128-134
    [38]刘贤德,张国范.运用拟测交策略构建遗传图谱的理论依据及研究进展[J].海洋科学,2008,32(10):81-85
    [39]何祯祥,林国忠,施季森.遗传作图软件应用及辅助软件的研制[J].南京林业大学学报,1999,23(3):1-5
    [40]LI Yu-ling, DONG Yong-bin, NIU Su-zhen, et.al. Identification of QTL for Popping Characteristics Using a BC2F2 Populationand Comparison with Its F2:3 Population in Popcorn [J]. Agricultural Sciences in China,2009,8(2):137-143
    [41]Jinping Hua, Yongzhong Xing, Weiren Wu, et.al. Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid [J]. PNAS,2003,100(5):2574-2579
    [42]汤继华,马西青,滕文涛等.利用“永久F2”群体定位玉米株高的QTL与杂种优势位点[J].科学通报,2006,51(24):2865-2869
    [43]高用明,朱军.植物QTL定位方法的研究进展[J].遗传,2000,22(3):175-179
    [44]Eric S. Lander, David Botstein. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps [J]. Genetics,1989,121(1):185-199
    [45]蒋锋,刘鹏飞,杜世州等.作物QTL定位方法研究进展[J].安徽农业科学,2009,37(26):12496-12497
    [46]C. S. Haley, S. A. Knott. A simple Regression method for mapping quantitative trait loci in line crosses using flanking marker [J]. Heredity,1992,69(4):315-324
    [47]Zhao-Bang Zeng. Precision mapping of quantitative trait loci [J]. Genetics,1994,136(4): 1457-1468
    [48]Zhao-Bang Zeng. Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci [J]. Genetics,1993,90(23):10972-10976
    [49]朱军.运用混合线性模型定位复杂数量性状基因的方法[J].浙江大学学报(自然科学版),1999,33(3):327-335
    [50]李杰勤,张启军,叶少平等.四种不同QTL作图方法的比较研究[J].作物学报,2005,31(11):1473-1477
    [51]ZHU Jun. MIXED LINEAR MODEL APPROACHES FOR ANALYZING GENETIC MODELS OF COMPLEX QUANTITATIVE TRAITS [J]. Journal of Zhejiang University (SCIENCE),2000, 1(1):78-90
    [52]Chen-Hung Kao, Zhao-Bang Zeng, Robert D. Teasdale. Multiple interval mapping for quantitative trait loci [J]. Genetics,1999,152(3):1203-1216
    [53]Chen-Hung Kao, Zhao-Bang Zeng. Modeling Epistasis of Quantitative Trait Loci Using Cockerham's Model [J]. Genetics,2002,160(3):1243-1261
    [54]李仕贵,马玉清,何平等.不同环境条件下水稻生育期和株高的QTL分析[J].作物学报,2002,28(4):546-550
    [55]沈波,庄杰云,李克勤等.水稻叶片性状和根系活力的QTL定位[J].遗传学报,2003,30(12):1133-1139
    [56]邢永忠,徐才国,华金平等.水稻穗部性状的QTL与环境互作分析[J].遗传学报,2001,28(5):439-446
    [57]邢永忠,谈移芳,徐才国等.利用水稻重组自交系群体定位谷粒外观性状的数量性状基因[J].植物学报,2001,43(8):840-845
    [58]梅捍卫,罗利军,郭龙彪等.水稻加工品质数量性状基因座(QTLs)分子定位研究[J].遗传学报,2002,29(9):791-797
    [59]刘志霞,李晓方,谢新华等.稻米蒸煮食味品质性状遗传及QTLs研究进展[J].广东农业科学,2006,(9):91-95
    [60]辛业芸.水稻产量性状QTL定位研究进展[J].湖南农业大学学报(自然科学版),2007,33(4):396-402
    [61]徐云碧,申宗坦,陈英等.利用最大似然法进行水稻产量性状基因的分子作图[J].遗传学报,1995,22(1):46-52
    [62]H.-X. Lin, H.-R. Qian, J.-Y. Zhuang, et.al. RFLP mapping of QTLs for yield and related characters in rice (Oryza sativa L.) [J]. Theor Appl Genet,1996,92(8):920-927
    [63]Tadashi Yagi, Kenji Nagata, Yoshimichi Fukuta, et.al. QTL mapping of spikelet number in rice {Oryza sativa L.) [J]. Breeding Science,2001,51(1):53-56
    [64]徐建龙,薛庆中,罗利军等.水稻粒重及其相关性状的遗传解析[J].中国水稻科学,2002,16(1):6-10
    [65]杜景红,樊叶杨,吴季荣等.水稻第6染色体短臂产量性状QTL簇的分解[J].中国农业科学,2008,41(4):939-945
    [66]李建雄,余四斌,徐才国.“汕优63”的产量及其构成因子的数量性状基因位点分析[J].作物学报,2000,26(6):892-898
    [67]J.-Y. Zhuang, Y.-Y. Fan, Z.-M. Rao, et.al. Analysis on additive effects and additive by additive epistatic effects [J]. Theor Appl Genet,2002,105(8):1137-1145
    [68]J. X. Li, S. B. Yu, C. G. Xu, et.al. Analyzing quantitative trait loci for yield using a vegetatively replicated F2 population from a cross between the parents of an elite rice hybrid [J]. Theor Appl Genet,2000,101(1):248-254
    [69]Shailaja Hittalmani, N. Huang, B. Courtois, et.al. Identification of QTL for growth-and grain yield-related traits in rice across nine locations of Asia [J]. Theor Appl Genet,2003,107(4): 679-690
    [70]程桂平,冯九焕,梁国华等.栽培稻与普通野生稻BC2F2群体产量相关性状的QTL分析[J].中国水稻科学,2006,20(5):553-556
    [71]Shailaja Hittalmani, H.E. Shashidhar, Prashanth G Bagali, et.al. Molecular mapping of quantitative trait loci for plant growth, yield and yield related traits across three diverse locations in a doubled haploid rice population [J]. Euphytica,2002,125(2):207-214
    [72]严长杰,陈峰,严松等.利用DH群体分析水稻产量与蒸煮品质的遗传相关性[J].作物学报,2007,33(3):363-369
    [73]李泽福,夏加发,苏泽胜等.水稻产量及其相关性状的数量性状基因座分析[J].南京农业大学学报,2002,25(2):1-6
    [74]C. Lu, L. Shen, Z. Tan, et.al. Comparative mapping of QTLs for agronomic traits of rice across environments using a doubled haploid population [J]. Theor Appl Genet,1996,93(8):1211-1217
    [75]许凌.利用重组自交系群体对水稻主要性状的QTL分析[D].南京:南京农业大学,2008:
    [76]崔克辉,彭少兵,邢永忠等.水稻产量库相关穗部性状的遗传分析[J].遗传学报,2002,29(2):144-152
    [77]徐建龙,薛庆中,罗利军等.水稻单株有效穗数和每穗粒数的QTL剖析[J].遗传学报,2001,28(8):752-759
    [78]Z. Li, SRM. Pinson, W. D. Park, et.al. Epistasis for Three Grain Yield Components in Rice (Oryza Sativa L.) [J]. Genetics,1997,145(2):453-465
    [79]C.Y. Liao, P. Wu, B. Hu, et.al. Effects of genetic background and environment on QTLs and epistasis for rice [J]. Theor Appl Genet,2001,103(1):104-111
    [80]杨正林,赵芳明,钟秉强等.不同遗传背景下杂交水稻产量性状的遗传分析[J].西南大学学报(自然科学版),2008,30(12):51-55
    [81]邢永忠,徐才国,华金平等.水稻穗部性状的QTL与环境互作分析[J].遗传学报,2001,28(5):439-446
    [82]梅德圣,李云昌,王汉中.作物产量性状QTL定位的研究现状及应用前景[J].中国农学通报,2003,19(5):83-88
    [83]J. Xiao, J. Li, L. Yuan, et.al. Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific rice cross [J]. Theor AppI Gene,1996, 92(2):230-244
    [84]J.-Y. Zhuang, H.-X, J. Lu, et.al. Analysis of QTL×environment interaction for yield components and plant height in rice [J]. Theor Appl Genet,1997,95(5):799-80
    [85]CAO Gang-qiang, ZHU Jun, HE Ci-xin, et.al. Study on Epistatic Effects and QTL×Environment Interaction Effects of QTLs for Panicle Length in Rice (Oryza sativa L.)[J].浙江大学学报(农业与生命科学版),2001,27(1):55-61
    [86]刘桂富,卢永根,王国昌等.水稻产量、株高及其相关性状的QTLs定位[J].华南农业大学学报,1998,19(3):5-9
    [87]樊叶杨,庄杰云,李强等.水稻株高QTL分析及其与产量QTL的关系[J].作物学报,2001,27(6):915-922
    [88]谭震波,沈利爽,袁祚廉等.水稻再生能力和头季稻产量性状的QTL定位及其遗传效应分析[J].作物学报,1997,23(3):289-295
    [89]Jianfeng Weng, Suhai Gu, Xiangyuan Wan, et.al. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight [J]. Cell Research,2008,18(12): 1199-1209
    [90]Y. Z. Xing, W. J. Tang, W. Y. Xue, et.al. Fine mapping of a major quantitative trait loci, qSSP7, controlling the number of spikelets per panicle as a single Mendelian factor in rice [J]. Theor Appl Genet,2008,116(6):789-796
    [91]Feng Tian, Zuofeng Zhu, Boshen Zhang, et.al. Fine mapping of a quantitative trait locus for grain number per panicle from wild rice (Oryza rufipogon GriV.)[J]. Theor Appl Genet,2006,113(4): 619-629
    [92]杜春芳,李朋波,李润.植物数量性状变异的分子基础与QTL克隆研究进展[J].西北植物学报,2005,25(12):2575-2580
    [93]吴海滨,赵德刚,李迪.水稻QTLs克隆研究进展[A].见:海南省生物工程协会.海南生物技术研究与发展研讨会论文集[C].北京:中国知网,2006:61-64
    [94]Motoyuki Ashikari, Hitoshi Sakakibara, Shaoyang Lin, et.al. Cytokinin Oxidase Regulates Rice Grain Production[J]. Science,2005,309(5735):741-745
    [95]Xian-JunSong, Wei Huang, Min Shi, et.al. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase [J]. NATURE GENETICS,2007,39(5): 623-630
    [96]Wei ya Xue, Yong zhong Xing, Xiao yu Weng, et.al. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice [J]. NATURE GENETICS,2008,40(6): 761-767
    [97]周元昌,陈启锋,吴为人等.作物QTL定位研究进展[J].福建农业大学学报,2000,29(2):138-144
    [98]董瑞霞,游晴如,杨东等.优质香型不育系川香29A特征特性观察[J].福建农业科技,2008,(5):1-3
    [99]Murray R A, Thompson W F. Rapid isolation of high reduced amylose level and improved quality [J].Transgenic Res,2003,12(1):71-82
    [100]李浩杰,李平,高方远等.SSR标记辅助选择改良冈46B直链淀粉含量的研究[J].作物学报,2004,30(11):1159-1163
    [101]McCouch S R, Cho Y C, Yano M. Report on QTL nomenclature [J]. Rice Gent Newl,1997,14(3): 11-13
    [102]H.WMei, J.L.Xu, Z.K.Li, et.al. QTLs influencing panicle size detected in two reciprocal introgressive line (IL) populations in rice (Oryza sativa L.)[J]. Theor Appl Genet,2006,112(4): 648-656
    [103]张秋英,欧阳由男,戴伟民等.水稻基部伸长节间性状与倒伏相关性分析及QTL定位[J].作物学报,2005,31(6):712-717
    [104]Fengshan Liang, Qiyun Deng, Yueguang Wang, et.al. Molecular marker-assisted selection for yield-enhancing genes in the progeny of "9311×O.rufipogon" using SSR [J]. Euphytica,2004, 139(2):159-165