水稻系列不育系对稻瘟病的抗性遗传研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稻瘟病是广泛发生在世界各稻区的一种最具毁灭性的真菌性病害。培育持久、广谱抗稻瘟病水稻系列不育系,并揭示其抗性遗传机理是杂交稻抗病育种的理论与实践基础。本文在评述水稻抗稻瘟病遗传和育种研究现状、阐述水稻品种与稻瘟菌互作机制、植物抗病基因同源序列的克隆与测序的基础上,以一个历时22年成功育成的一个水稻不育系抗稻瘟病系谱为材料,进行其抗谱、与稻瘟菌互作、抗稻瘟病基因遗传及抗病基因同源序列相似性等方面研究,初步揭示水稻系列不育系对稻瘟病的抗性遗传规律,为进一步有效利用和克隆其抗稻瘟病基因提供科学依据。主要结果如下:
     1.采用苗期室内喷雾接菌鉴定和稻瘟病重发区田间自然诱发鉴定相结合的方法,以10个水稻系列不育系和6个恢复系,按NCII设计配制一套包括16个亲本和60个杂种一代为研究对象,利用20个来自福建省主要稻瘟病区有代表性的致病力强的菌株,并结合2个包括福建省龙岩市茶地乡和湖北省恩施州白果乡稻瘟病重发区田间自然诱发点的数据,探讨了其抗谱特征。发现从1995年成功育成福伊A,到2001年育成的夏丰A、谷丰A、昌丰A,再到2004年育成的安丰A、全丰A、长丰A、乐丰A、富丰A等9个抗稻瘟病不育系及其配制的54个杂种一代,对近年福建省流行的稻瘟病菌生理小种及茶地和恩施的田间稻瘟病菌的群体毒力都具有很强的抗病反应,抗性频率均达100%,抗谱广,持续时间久,均含有显性主效抗瘟基因,对杂交稻均具有很强的显性抗瘟遗传效应;连丰A不育系及其配制的6个杂种一代,平均抗性频率为21.93%。在供试的6个水稻恢复系中,蜀恢527的抗性频率为72.3%,抗谱较广;明恢77、晚3、福恢13、明恢86、福恢5138等5个恢复系的抗性频率幅度为4.5%~13.6%,抗谱较窄。
     根据供试亲本抗瘟性系统聚类结果,可将16个亲本分成两大类型。第1大类为抗病类型,包括9个抗稻瘟病水稻不育系福伊A、夏丰A、谷丰A、昌丰A、安丰A、全丰A、长丰A、乐丰A、富丰A和1个中抗稻瘟病水稻恢复系蜀恢527。但福伊A、夏丰A等9个抗稻瘟病水稻不育系之间的抗病性表现差异不大,而与蜀恢527之间存在一定的差异。第2大类为感病类型,包括1个感病水稻不育系连丰A及5个水稻恢复系明恢77、晚3、福恢13、明恢86、福恢5138。
     2.在抗谱分析的基础上,同样以上述10个水稻系列不育系为母本,6个恢复系为父本,按NCII设计配制一套包括16个亲本(P)、60个F1和60个F2的遗传材料,采用数量性状的加性?显性?上位性及与环境互作的遗传模型和统计分析方法,以22个稻瘟病菌株和稻瘟病重发区田间自然诱发点作为环境,深入探讨了水稻系列不育系与稻瘟菌互作的遗传基础。发现供试水稻品种抗瘟性的表现是由供试水稻品种中的抗瘟基因与稻瘟病菌株互作的结果。对供试水稻品种抗瘟性的遗传控制作用从大到小依次为基因加性效应、显性×菌株互作效应、显性效应、加性×菌株互作效应、加性×加性上位性效应,而不存在加性×加性上位性×菌株互作效应。夏丰A、昌丰A、安丰A、福伊A、乐丰A、长丰A、全丰A、富丰A、谷丰A等9个水稻不育系及蜀恢527的抗瘟性可以稳定地传递给后代,都能极显著地提高其后代的抗瘟性,在抗瘟性方面有很高的育种利用价值。供试水稻品种抗瘟性的加性基因遗传概率是非加性基因遗传概率的2.2倍,加性基因产生的抗瘟性可以稳定地传递给后代;普通狭义遗传力是互作狭义遗传力的6.4倍,显示在不同的稻瘟病菌株胁迫的环境条件进行水稻抗瘟性的选择是有效的。
     3.在抗稻瘟病水稻不育系系谱中,选用抗源谷农13、天谷B、福伊B、谷丰B、全丰B为材料,在一套以CO39为轮回亲本的6个近等基因系和1个感病对照丽江新团黑谷(LTH)的遗传背景下,人工分别组配了谷农13、天谷B、福伊B、谷丰B、全丰B与CO39近等基因系和感病对照的包括亲本(P)、F1、F2 3个世代的遗传材料,以3个稻瘟病菌株进行苗期室内喷雾接菌鉴定,应用经典遗传学分析方法研究该不育系系谱抗稻瘟病基因的遗传及其等位性关系。发现谷农13、天谷B、福伊B、谷丰B和全丰B等5个亲本的抗瘟性都由显性基因控制。谷农13、福伊B、谷丰B和全丰B中都含有2对与CO39近等基因系中的Pi-1、Pi-2、Pi-3、Pi-4a、Pi-4b不等位的显性抗稻瘟病基因。天谷B中含有3对显性抗稻瘟病基因,它们都与Pi-1、Pi-2、Pi-4a、Pi-4b不等位,其中有1对与Pi-3等位。
     4.根据已知NBS-LRR类抗病基因结构中氨基酸的保守区域设计简并引物PR2和ER4,采用PCR方法对福伊A、谷丰A等10个水稻系列不育系,谷农13、V41B等11个亲本,及感稻瘟病对照丽江新团黑谷(LTH)的NBS-LRR类抗病基因同源序列(RGAs)进行克隆、测序,分析抗病基因同源序列相似性关系。在供试材料中,共获得33个NBS-LRR类抗病基因的同源片段。其中,从谷农13、福伊A、地谷B、昌丰A、夏丰A、连丰A、乐丰A、V41B、龙特甫B、博白B、金23B等11亲本中各获得2个同源片段,从天谷B、谷丰A、安丰A、全丰A、长丰A、富丰A、LTH、R931022、Y20、Y27、Y12等11亲本中各获得1个同源片段。运用Clustal W方法和DNAstar软件对这些氨基酸序列进行聚类分析,可分为12类NBS-LRR类抗病基因同源序列。用DNAsis软件对这12类抗病基因同源片段再次聚类分析,可分为9类NBS-LRR类抗病基因同源片段。其中,氨基酸片段间同源性最高达98.8%,最低仅为19.8%。
Rice blast is one of the most devastating fungal diseases in rice region of world. To breed durable and broad-spectrum blast resistance of rice series sterile lines, and to reveal the genetic mechanism of resistance, it is hybrid rice breeding for disease resistance based on the theory and practice. This dissertation expatiated on the rice blast resistance breeding, the interaction between rice variety and Magnaporthe grisea and cloning and sequencing the RGA of plant. For breeding the male sterile lines resistance to rice blast during the 22 years as an examples. The study on the spectrum of this rice variety, interaction between rice variety and Magnaporthe grisea, rice blast resistence gene and homologous resistance gene analogues and revealed an male sterile line of rice blast resistance of inheritance, in order to use and clone of rice blast resistance gene effectively. Main research results are as follows:
     1.The use of indoor spraying seedling identification and blast strains then re-issued identification of areas of field-induced combination of natural methods for the 10 series male sterile line of rice and 6 restorer lines. According to the design of NCII, 2 generations genetic research materials including 16 parents(P), 60 hybrid rice varieties(F1 generations). We discuss its resistance spectrum using 20 strong blast strains which come from fields that susceptible to blast strains of FuJian province and 2 datas of serious blast areas of LongYan ChaDi country of FuJian province and EnShiZhou BaiGuo Country of Hubei Province. Fuyi A was cultivated in 1998. Xiafeng A, Gufeng A and Changfeng A were cultivated in 2001. Anfeng A, Quanfeng A, Changfeng A, Lefeng A, Fufeng A were cultivated in 2004. The results showed 9 sterile lines resistaance to blast fungus and 54 hybrid varieties represented high resistance to Fujian popular blast races and blast strain in ChaDi and Enshi, and resistance frequencies were 100%, have broad resistance spectrum. These varities not only contain the main effect dominant blast resistance gene, but also have a strong dominant genetic effect of blast resistance for the hybrid rice combinations. The average of resistance frequencies of 6 sterile resistance to blast fungus and 6 hybrid varities were 100%. Among 6 restoring lines, Shuhui 527 have broad resistance spectrum with resistance frequency of 72.3%. 5 restoring lines (Minghui 77, Wan 3, Fuhui 13, Minghui 86 Fuhui 5138) and Lianfeng A range have narrow resistance spectrum with resistance frequency of 4.5% to 13.6%.
     According to the results of blast resistance cluster analysis, we divided the 16 parents into two types. One type is blast resistance, including nine sterile lines of resistance to blast fungus(Fuyi A, Xiafeng A, Gufeng A, Changfeng A, Quanfeng A, Changfeng A, Lefeng A, Fufeng A, respectively.) and one sterile lines of moderate resistance, Shuhui 527. However, there were significant differences in resistance between Shuhui 527 and the other 9 sterile lines, while there were no significant differences in resistance between the other 9 sterile lines. The other type is susceptible to blast resistance, including one sterile lines of susceptible to blast fungus (LianfengA), and five restoring lines (Minghui 77, Wan 3, Fuhui 13, Minghui 86 Fuhui 5138).
     2. The 10 series male sterile line of rice for the female parent, 6 restorer lines of rice as male parent, similarly to the above-mentioned in the anti-spectrum analysis. According to the design of NCII, 3 generations genetic research materials including 16 parents(P), 60 F1 and 60 F2 were prepared. In order to reveal genetic mechanism of rice resistance to blast, genetic effect of interaction sterile line and blast fungus were analysised according to the interaction genetic model of additive-dominance-epistatic with the environment and statistical methods by 22 rice blast strains and in blast nursery nature achievement environment. The results showed the performance of blast resistance in rice were controlled by the blast resistance gene and environment interaction of the blast. The genetic control effects were followed in turn additive effect > interaction effect of dominant×blast stains > dominant effect > interaction effect of additive×blast stains > additive×additive epistatic effect. The interaction effect of additive×additive epistatic×blast stains was not existent. Blast resistance of 9 sterile lines (Xiafeng A, Changfeng A, Anfeng A, Fuyi A, Lefeng A, Changfeng A, Quanfeng A, Fufeng A, Gufeng A, respectively.) and Shuhui 527 can stably transmitted to offsprings, and can significantly improve blast resistance of offsprings. They have the very high breeding value in the anti-blast breeding. The heritability of additive genetic probability was 2.2 times of non-additive genetic probability in the tested rice varieties to blast resistance. The blast resistance causing from additive gene can stably transmitted to offsprings. The rice anti-blast ordinary narrow heritability was 6.4 times of the narrow mutual heritability. The results indicated it is effective for rice blast selection under environmental stress condition of the different rice blast strains.
     3. Male sterile line of rice resistance to blast in the pedigree, the selection of anti-agricultural source Gunong 13, TianguB, FuyiB, Gufeng B, Quanfung B for the whole material, in a set of recurrent parent CO39 for the six near-isogenic lines and a susceptible control Lijiangxintuanheigu (LTH) of the genetic background, the artificial group, respectively, with the Gumong 13, Tiangu B, Fuyi B, GufengB, QuanfengB and CO39-wide near-isogenic lines and a sense of disease control, including parental (P), F1, F2 3 generation of the genetic material to blast three strains spray indoor access to the seedling stage to identify bacteria. Using classical genetic analysis method, the maintainer line(Fuyi B, Gufeng B, Quanfeng B) of sterile line, the number and genetic mechanism of resistance gene to blast in resistance parents(Gunong 13, Tiangu B), and allelic relationship between known resistance gene to blast in near-isogenic lines(NILs) of CO39 were studied. The results indicated 5 parents have dominant resistance genes to blast. Gunong13, Fuyi B, Gufeng B and Quanfeng B contain 2 pairs of dominant resistance genes to blast, existing non-allelic relationship with Pi-1、Pi-2、Pi-3、Pi-4a、Pi-4b in NILs of CO39. Tiangu B contains 3 pairs of dominant resistance genes to blast, existing non-allelic relationship with Pi-1、Pi-2、Pi-4a、Pi-4b, while 1 pairs of dominant resistance genes existing allelic relationship with Pi-3.
     4. Based on conserved regions of the known NBS-LRR type R genes, a pair of degenerate primers PR2 and ER4 was designed. Using PCR method, the NBS-LRR type RGAs (resistance gene analogues) were isolated from 10 sterile lines( Fuyi A, Gufeng A etc.), 11 parents (Gunong13, V41B, etc.) and susceptible control LTH. The similarity and evolution relations of cloned RGAs were analysed. The reuslts indicated total 33 NBS-LRR type RGAs were obtained (2 RGAs from Gunong 13, Fuyi A, Digu B, Changfeng A, Xiafeng A, Lianfeng A, Lefeng A, V41B, Longtepu B, Bobai B, Jin 23B, respectively; 1 RGAs from Tiangu B, Gufeng A, Anfeng A, Quanfeng A, Changfeng A, Fufeng A, LTH, R931022, Y20, Y27 and Y12, respectively.). The deduced amino acids from 33 RGAs analysis showed 33 RGAs were divided into 12 classes by Clustal W and DNAstar. Further cluster analysis indicated 33 RGAs were divided into 9 classes by DNAsis software. Homology analysis showed sequence identity among the deduced amino acid sequences identity from 33 RGAs ranged from 19.8 % to 98.8%.
引文
包亮,李一博,高冠军,等.广谱抗稻瘟病基因d12的遗传分析及分子标记辅助选择应用[J].分子植物育种,2008,6(4):631-636.
    陈家豪,张学博,曾汉章,等.福建早稻主栽品种(组合)抗瘟性鉴定及其影响因素[J].福建农业大学学报,2000,29(3):346-350.
    陈观水,周以飞,林生,等.甘薯NBS类抗病基因类似物的分离与序列分析[J].热带亚热带植物学报,2006(5):10-15.
    陈观水,潘大仁,周以飞,等.三浅裂野牵牛NBS类抗病基因同源序列的克隆与分析[J].西北植物学报,2007,27(9):1728-1734.
    陈志伟,郑燕,吴为人,等.抗稻瘟病基因Pi-2(t)紧密连锁的SSR标记的筛选与应用[J].分子植物育种,2004(3):321-325.
    程式华,曹立勇,占小登编著.杂交水稻制种技术[M].北京:金盾出版社,2005:前言,1-8.
    丁克坚,檀根甲.稻瘟病为害损失研究[J].植物保护学报,1999,26(1):61-64.
    董继新,董海涛,李德葆.水稻抗瘟性研究进展[J].农业生物技术学报,2000,1:99-102.
    董继新,董海涛,李德葆.植物抗病基因研究进展[J].植物病理学报,2001,31(1):1-9.
    董丽英,徐兴芬.水稻抗稻瘟病基因研究进展[J].云南农业科技,2007,3:25-26.
    杜晓宇,刘建国.南充市稻瘟病重发成因分析及治理对策研究[J].现代农业科技,2008,19:151-152,155.
    杜正文主编.中国水稻病虫害综合防治策略与技术[M].北京:农业出版社,1991:1-406.
    段永嘉,朱有勇.稻瘟病抗性基因分析研究[J].植物病理学报,1988,18(4):233-238.
    段永嘉,朱有勇,刘二明.稻瘟病抗性遗传规律研究[J].云南农业大学学报,1989,4(4):293-301.
    鄂志国,张丽靖,焦桂爱,等.稻瘟病抗性基因的鉴定及利用进展[J].中国水稻科学,2008,22(5):533-540.
    冯道荣,许新萍,卫剑文,等.使用双抗真菌蛋白基因提高水稻抗病性的研究[J].植物学报,1999(11):14-17.
    冯淑杰,王玲,马俊红,等.稻瘟病菌无毒基因AvrPi7的遗传及物理作图[J].科学通报,2007,52(3):283-290.
    官华忠,陈志伟,潘润森.通过标记辅助回交育种改良优质水稻保持系金山B-1的稻瘟病抗性[J].分子植物育种,2006(1):101-107.
    韩德俊,曹莉,陈耀峰,等.植物抗病基因与病原菌无毒基因互作的分子基础[J].遗传学报,2005,32:1319-1326.
    何月秋,唐文华,Hei Leung,Robert S.Zeigler.CO39近等基因系抗稻瘟病性分析[J].作物学报,2001,27(6):838-841.
    何月秋,唐文华.水稻稻瘟病菌研究进展(一)水稻稻瘟病菌多样性及其变异机制[J].云南农业大学学报, 2001,16(1):60-64.
    何月秋,唐文华.水稻稻瘟病菌研究进展(二)水稻稻瘟病菌遗传与分子生物学研究进展[J].云南大学学报,2001,16(2):154-159.
    黄富,谢戎,刘成元,等.亲本抗瘟性对杂交水稻组合抗瘟性的影响[J].杂交水稻,2007,22(2):64-68.
    黄费元,彭绍裘,刘二明,等.持久抗瘟性稻种鉴定与评价方法研究[J].湖南农业科学,2003,(2):38-41.
    黄金英,刘宜柏,况慧云,等.辐射杂合材料结合花药培养技术育成早籼新品种赣早籼56号[J].核农学报,2005,19(2):81-84.
    黄利兴,游年顺,雷捷成,等.高产、抗病、优质新组合福优964[J].杂交水稻,2000,15(6):39-40.
    黄利兴,游年顺,雷捷成,等.爪籼交恢复系福恢964的选育与利用研究[J].中国农学通报,2005,21(10):114-118,171.
    黄利兴,游年顺,张以华,等.优质抗稻瘟病高产三系杂交水稻组合的选育[J].江西农业大学学报,2007,29(5):701-706.
    黄书针,刘建平,翁国华.福建水稻抗性研究十五年[J].福建稻麦科技,1991,(4):1-9.
    赖星华,高汉亮.稻瘟病主要抗源品种对稻瘟病菌生理小种的抗谱[J].作物品种资源,1989,3:25-27.
    雷财林,王久林,蒋琬如,等.北方粳稻区稻瘟病菌生理小种与毒性及其变化动态的研究[J].作物学报,2000,(6):769-776.
    雷财林,凌忠专,王久林,等.水稻抗病育种研究进展[J].生物学通报,2004,39(11):4-5.
    雷财林,王久林,毛世宏,等.籼稻品种窄叶青8号抗稻瘟病基因分析[J].遗传学报,1997,24(1):36-41.
    雷捷成,游年顺,黄利兴,等.籼稻不育系福伊A选育与利用[J].杂交水稻,1998,13(3):8-11.
    雷捷成,游年顺,黄利兴.福建省农业科学院又育成4个籼型野败不育系[J].杂交水稻,2002,17(1):61.
    雷捷成,游年顺,黄利兴,等.籼稻雄性不育系福伊A抗稻瘟特性的研究与应用[J].福建农林大学学报,2004,33(2):141-147.
    雷上平,黄利兴,张以华,等.安丰A等五个不育系的选育与利用初报[J].福建稻麦科技,2005,23(3):6-9.
    雷上平,黄利兴,郑长林,等.高产杂交晚稻新组合谷优964[J].福建稻麦科技,2007,25(1):23-25.
    李成云,罗朝喜,李进斌,等.稻瘟病菌无毒基因的分子标记[J].中国农业科学,2000,33(3):49-53.
    李华,顾才东,殷延勃.不同粳型水稻不同时期抗瘟性及抗谱分析[J].种子,2007,26(1):66-68.
    李进斌,姚春馨,许明辉,等.三个外源抗稻瘟病基因聚合与抗性研究[J].西南农业学报,2007(1):7-10.
    李梅芳,凌忠专,等. Pi-Zt基因的导入及其应用效果[J].农业新技术,1986(1):7-8.
    李仕贵,马玉清.籼稻品种地谷抗稻瘟病基因的遗传分析和定位[J].自然科学进展,2000,10(1):44-48.
    李宪,夏景玉.稻瘟病菌生理小种和品种抗谱的研究[J].安徽农业科学,1996,24(2):167-169.
    李晔,范静华,何月秋,等.云南省部分地区水稻品种与稻瘟病菌互作关系研究[J].安徽农业科学,2006,34(15):3728-3729,3737.
    李子银,陈受宜.水稻抗病基因同源序列的克隆、定位及其表达[J].科学通报,1999,44(7):727-734.
    廖新华,梁斌,王建军,等.云南稻种抗稻瘟病品种资源的抗谱研究[J].植物病理学报,2000,30(1):90.
    凌忠专,Mew T,王久林,等.中国水稻近等基因系的育成及其稻瘟病生理小种鉴别力[J].中国农业科学,2000,33(4):1-8.
    凌忠专.寄主、病原菌体系基因对基因关系及其在抗病基因分析中的应用[J].作物学报.1984.10(1):25-32.
    凌忠专.中国部分品种抗瘟性分类[J].中国农业科学,1984,17(2):19-28.
    凌忠专,潘庆华,王久林,等.云南粳稻红镰刀谷的抗瘟性分析[A].凌忠专.稻瘟病研究论文集[C].北京:中国农业出版社,2005,153-157.
    林福呈,李德葆.稻瘟病菌侵入机理[J].微生物学通报,1997,24(3):167-170.
    林晶.水稻不育系系谱抗稻瘟病遗传及抗病基因同源序列分析(硕士学位论文).福建农林大学,2007.
    林世成.水稻多抗育种[J].遗传与育种,1978,(4):17-18.
    刘洋,徐培洲,张红宇,等.水稻抗稻瘟病Pib基因的分子标记辅助选择与应用[J].中国农业科学2008,41(1):9-14.
    刘继梅,程在全,杨明挚等.云南3种野生稻中抗病基因同源序列的克隆及序列分析[J].中国农业科学,2003,36(3):273-280.
    刘文德,阮志平,郑士琴,等.水稻主要抗瘟基因对福建稻瘟菌群体的抗性分析[J].植物病理学报,2005,35(6):526-531.
    刘二明,彭绍裘,黄费元.水稻品种对稻瘟病抗性聚类分析[J].中国农业科学,1994,27(3):44-49.
    刘二明,彭绍裘,黄费元,等.3个水稻持久抗瘟性品种的抗性遗传初步研究[J].植物保护,1999,25(2):10-11.
    刘二明,叶华智,孙雁,等.水稻抗瘟性分类及品种与病菌谱系互作[J].湖南农业大学学报(自然科学版),2005,31(2):147-152.
    陆凡,郑小波,范永坚,等.江苏省稻瘟病菌有性态的研究[J].菌物系统,2001,20(1):122-128.
    陆凡,郑小波,陈志谊,等.江苏省稻瘟病菌的毒性多样性及水稻品种的抗病性[J].生物多样性,2001,9(3):201-206.
    罗利民,王云高,罗耀光,等.稻种资源对稻瘟病的抗谱测定[J].作物品种资源,1996,1:11-13.
    吕亮,田剑,陈其志,等.不同水稻品种间栽控制稻瘟病的田间试验[J].华中农业大学学报,2002,21(3):228-230.
    罗榕城,王乌齐,肖壁玉,等.闽北山区稻瘟病菌生理小种消长规律及其应用研究[J].福建省农科院学报,1995,10(2):30-33.
    马辉刚,曹九龙,胡水秀,等.水稻品种对稻瘟病的抗性分析和利用评价[J].江西农业大学学报,2006,28(2):213-216.
    马育华.植物育种的数量遗传学基础[M].南京:江苏科学技术出版社,1982:158-198.
    闵绍楷,熊振民.水稻遗传和品种改良[M].杭州:浙江科学技术出版社,1986:167-176.
    南京农业大学等编.农业植物病理学[M].南京:江苏科学技术出版社,1996:79-85.
    欧世璜.有关稻瘟苗夏抗瘟育种的争论[A].刘后利.作物育种研究与进展(第一卷)[M].北京农业出版社,1993,223-243.
    彭国亮,罗庆明,冯代贵,等.四川稻瘟病菌致病性变异与病害流行的关系[J].西南农业大学学报,1996,18(6): 561-564.
    彭绍裘,刘二明,黄费元,等.水稻持久抗瘟性研究[J].植物保护学报,1996,23(4):293-299.
    钱前,程式华.水稻遗传学和功能基因组学[M].北京:科学出版社,2006:1-527.
    任金平,郭晓莉,郑民,等.吉林省稻瘟病菌对水稻品种的致病谱研究[J].吉林农业科学,2006,31(6):35-37,47.
    任鄄胜,肖培村,陈勇,等.水稻品种稻瘟病抗性和抗病基因同源序列多态性分析[J].中国农业科学,2009,42(1):1-9.
    山崎義人,高坂卓爾.稻瘟病与抗病育种[M].凌忠专,孙昌其译.北京:农业出版社,1990.
    沈瑛,朱培良,金敏忠,等.我国稻瘟病菌有性态的研究[J].中国农业科学,1994,27(1):25-29.
    施德,陶荣祥,孙漱沅.浙江太湖稻区部分粳稻品种抗瘟性的聚类分析[J].浙江农业学报,1995,7(6):486-488.
    孙国昌,杜新法,柴荣耀,等.水稻品种与稻瘟病菌群体互作的选择作用研究[J].植物病理学报,1999,29(1):45-49.
    孙国昌,杜新法,陶荣祥,等.水稻稻瘟病防治策略和21世纪研究展望[J].植物病理学报,1998,28(4):289-292
    孙漱沅,金敏忠,张志明,等.水稻稻瘟病及其防治[M].上海:上海科学出版社,1986:36-44.
    孙漱沅,孙国昌.我国稻瘟病研究的现状与展望[J].植保技术与推广,1996,(3):39-40.
    孙祥良,姚海根,韩志能.秀水系统品种对稻瘟病菌的抗谱分析[J].安徽农业科学,1999,27(5):460-461.
    孙雁,王云月,何月秋,等.云南稻种抗病基因同源序列类似性分析[J].中国农业科学,2002,35(5):502-507.
    孙雁,王云月,万瑞亭,等.黑龙江水稻品种抗病基因同源序列聚类分析[J].云南农业大学学报,2001,16(2):107-109.
    宋成艳,李桦,孟庆忠,等.黑龙江省水稻病害调查[J].黑龙江农业科学,2001,4:1-4.
    唐传道,何顺武.威优晚3的选育与应用[J].杂交水稻,1996,11(6):8-10.
    谭向红,陈学伟,李仕贵,等.籼稻品种地谷抗稻瘟病基因的遗传[J].遗传学报,2000,27(8):701-705.
    谭天伟,黄留玉,苏国富,等译.[英]J.M.沃克,R.拉普勒编.分子生物学与生物技术[M].北京:化学工业出版社, 2003:18-89.
    王邦俊,王强,张志刚,等.利用RACE技术扩增大豆抗病基因同源cDNA 5’末端序列[J].遗传,2003,25(4):425-427.
    王建飞,何新建,张红生,等.太湖流域粳稻地方品种黑壳子粳对稻瘟病抗性的遗传分析[J].遗传学报,2002,29(9):803-807.
    王久林,凌忠专,雷财林,等.籼稻品种浙辐802抗稻瘟病基因的鉴定与分离[J].中国农业科学,2004,37(5):670-674.
    王宗华.福建稻瘟菌的群体遗传规律[J].植物病理学报,1998,28(2):192.
    王宝华,鲁国东,林伟明,等.稻瘟病菌无毒基因Avr-Pil、Avr-Pit和Avr-Pi4a的遗传分析及其分子标记[J].遗传学报,2002,29(9):820-826.
    王洪凯,林福呈,李德葆.稻瘟病菌致病相关基因研究进展[J].菌物系统,2002,21(3):459-464.
    万贤宗.宣州区2008年杂交中稻穗颈瘟流行原因浅析[J].安徽农学通报,2009,15(1):150-151.
    王艳丽,Claudia Kaye, Amandine Bordat,等.稻瘟病菌株CH63和TH16杂交组合的遗传图谱构建及无毒基因定位[J].中国水稻科学,2005,19(2):160-166.
    王玉平,李仕贵,黎汉云,等.高配合力优质水稻恢复系蜀恢527的选育与利用[J].杂交水稻,2004,19(4):12- 14.
    吴全安,朱小阳,刘克明,等.稻瘟病菌生理小种类型及其分布[J].植物保护,1998,(1):49.
    吴建利,庄杰云,柴荣耀,等.水稻抗穗瘟基因的分子定位[J].植物病理学报,2000,30(2):111-115.
    吴建利,庄杰云,李德葆,等.水稻对稻瘟病抗性的分子生物学研究进展[J].中国水稻科学,1999,13(2):123-128.
    吴金红,蒋江松,陈惠兰,等.水稻稻瘟病抗性基因Pi-2(t)的精细定位[J].作物学报,2002,28(4):505-509.
    伍尚忠,朱小源,杨祁云,等.籼稻品种三黄占2号的稻瘟病持久抗性评价与遗传分析[J].中国农业科学,2004,37(4):582-534.
    肖连成译著.[日]高坂淖尔,山崎义人编著.稻瘟病和抗病育种[M].长春:东北师范大学第二印刷厂,1983:1- 448.
    谢华安,郑家团,姜兆华,等.杂交早稻威优77及其恢复系明恢77的选育研究[J].三明农业科技,1999,1:1-6.
    谢华安.明恢63的选育与利用[J].福建农业学报,1998,13(4):1-6.
    徐吉臣,王久林,凌忠专,等.利用QTL定位分析水稻的稻瘟病抗性基因[J].科学通报,2004,49(3):245-251.
    薛勇彪,唐定中,张燕生,等.水稻基因组中R类抗病基因同源序列的分离[J].科学通报,1998,43(3):277-281.
    杨春华,李仕贵.籼型三系杂交水稻不育系主要农艺性状配合力及遗传力分析[J].西南农业学报,2005,18(3):234-239.
    杨健源,陈深,曾列先,等.稻瘟病主效抗性基因对广东省籼稻稻瘟病菌的抗性评价[J].中国水稻科学,2008, 22(2):190-196.
    杨勤忠,杨佩文,王群,等.水稻抗病基因同源序列的克隆及测序分析[J].中国水稻科学,2001,15(4):241-247.
    杨秀红,陈庆山,杨庆凯,等.大豆NBS类抗相关基因的克隆与测序分析[J].高技术通讯,2005(2):11-14.
    易图永,谢丙炎,张宝玺,等.植物抗病基因同源序列及其在抗病基因克隆与定位中的应用[J].生物技术通报,2002,(2):16-20.
    于玲,王莱,牛吉山,等.植物抗病相关基因分离策略[J].西北植物学报,2002,22(6):1494-1503.
    袁隆平主编.杂交水稻学[M].北京:中国农业出版社,2002:前言.
    袁筱萍,魏兴华,余汉勇,等.部分中国栽培稻资源对稻瘟病的抗性分析[J].植物保护,2005,31(3):27-31.
    游年顺,黄利兴,雷捷成,等.四个野败新不育系的选育及其利用初报[J].福建稻麦科技,2002,20(2):5-7.
    游年顺,雷捷成,黄华康,等.优质晚籼新组合谷优527的选育与应用[J].杂交水稻,2004,19(5):11-13.
    翟淑梅,孟辉,尹小燕,等.玉米候选抗病相关基因片段的克隆[J].山东大学学报(理学版),2003,38(2):97-100
    曾千春,范静华,张树华,等.滇型杂交粳稻亲本种质资源抗瘟性研究[J].杂交水稻,1997,12(5):20-22.
    曾千春,叶华智,朱祯,等.稻瘟病分子生物学研究进展[J].生物技术通报,2000(3):1-7.
    曾士迈.植物病害流行学[M].北京:农业出版社,1986:34-54.
    张建福,王国英,谢华安,等.粳稻云引抗稻瘟病基因的遗传分析及其定位[J].农业生物技术学报,2003,11(3): 241-244.
    张建福,凌忠专,王国英,等.利用SSR标记定位粳稻云引抗稻瘟病基因[J].分子植物育种,2006,4(3): 359-364.
    张建新,郑家团,谢华安,等.水稻新种质明恢及其系列组合的选育研究[J].植物遗传资源科学,2001,1(1):32-36.
    张学博,余菊生,唐乐尘,等.籼稻品种抗稻瘟病的分类研究[J].植物病理学报,1994,24(4):337-342.
    张以华,黄利兴,林时迟,等.优质晚籼三系新组合全优94的选育与应用[J].中国稻米,2007,(5):19-20.
    张泽民,张桂权.水稻S-c座位的PCR精细标记定位及分子标记辅助选择[J].作物学报,2001,27(6):704-709.
    郑康乐,钱惠荣,庄杰云,等.应用DNA标记定位水稻的抗稻瘟病基因[J].植物病理学报,1995,25(4):307-313.
    郑先武,翟文学,李晓兵,等.水稻NBS-LRR类R基因同源序列[J].中国科学,2001,31(1):43-51.
    郑长林,张以华,陈双龙,等.优质高产杂交水稻新组合乐优94[J].杂交水稻,2007,22(4):78-79.
    郑家团,张建新,罗家密,等.重穗型恢复系明恢86及其配制组合的选育[J].福建农业大学学报,1998,27 (3):279-284.
    郑燕.水稻与稻瘟菌互作多基因遗传基础的研究(浙江大学博士学位论文),2008:18-27.
    钟金城.活性基因效应假说[J].西南民族学院学报(自然科学报),1994,20(2):203-205.
    周建明,朱群,白永延.稻瘟病菌侵染水稻的机理[J].植物生理学通讯,1999,35(1):49-54.
    周少川,朱小源,江雁芳,等.稻瘟病持久抗性在三系杂交稻上的导人[J].中国水稻科学,1999,l3(2):59-72.
    周玮斌,史晰,詹树萱,等.普通野生稻中NBS同源序列的克隆和分析[J].复旦学报,2001,40(5):516-520.
    周益军,范永坚,吴淑华,等.稻瘟病菌生理小种离体接种鉴定和致病性人工诱变研究[J].江苏农业研究,1999,1(20):34-38.
    周益军,白娟,程兆榜,等.我国稻瘟病菌群体多样性研究[J].中国水稻科学,2004,18(3):277-280.
    朱立煌,刘世贵,陈学伟,等.籼稻品种地谷抗瘟病基因的遗传[J].遗传学报,2000,(8):10-15.
    朱立煌,徐吉臣,陈英,等.用分子标记定位一个未知的抗稻瘟病基因[J].中国科学(B辑),1994(24):1048-1052.
    朱军.遗传模型分析方法[M].北京:中国农业出版社,1997,93-255.
    朱小源,伍尚忠,杨祁云,等.广东优质水稻新品种(系)抗稻瘟病研究[J].西南农业大学学报,1998,20(5):503-505.
    Aarts N, Metz M, Holub E, et al. Different requirements for EDS1 and NDR1 by disease resistance genes define at least two R gene-mediated signaling pathways in Arabidopsis[J]. Proc. Natl. Acad. Sci. USA, 1998, 95:10306-10311.
    Ahn SN, Kim YK, Hong HC, et al. Molecular mapping of a new gene for resistance to rice blast (Pyricularia grisea Sacc.)[J]. Euphytica, 2000, 116: 17-22.
    Aver'yanov, AA Pasechnik, TD Lapikova, et al. Possible contribution of blast spores to the oxidative burst in the infection droplet on rice leaf[J]. Acta Phytopathologica et Entomologica Hungarica, 2007, 42(2): 305-319.
    Ballini, E. Berruyer, R. Morel, et al. Modern elite rice varieties of the‘Green Revolution’have retained a large introgression from wild rice around the Pi33 rice blast resistance locus[J]. New Phytologist, 2007, 175(2): 340-350.
    Baker B, Zambryski P, Brian S, et al. Signaling in plant-microbe interactions[J]. S cience, 1997, 276: 726-733.
    Berruyer R, Adreit H, Milazzo J, et al. Tharreau D. Identification and fine mapping of Pi33, the rice resistance gene corresponding to the Magnaporthe grisea avirulence gene ACEI[J]. Theor Appl Genet, 2003, 107: 1139-1147.
    Betts MF, Tucker SL, Galadima NG, et al. Development of a high throughout transformation system for insertional mutagenesis in Magnaporthe grisea[J]. Fungal Genetics and Biology, 2007, 44: 1035-1049.
    Bryan GT, Wu KS, Farrall L, et al. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta[J]. The Plant Cell, 2000, 12: 2033-2046.
    Cao N, Li X, Dong X. Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance[J]. Proc Natl Acad Sci USA. 1998, 95:6531-6536.
    Catherine F, Gabriele S, Beat K. Molecular cloning of a new recep to r-like kinase gene encoded at the Lr10 disease resistance locus of wheat[J]. Plant , 1997, 11 (1) : 45- 52.
    Causse MA, Fulton TM, Cho YG, et al. Saturated molecular map of rice genome based on an inter-specific backcross population[J]. Genetics, 1994, 138: 1251-1274.
    Chauhan S, Farman ML, Zhang HB, et al. Genetic and physical mapping of a rice blast resistance locus, PiCO39(t), that corresponds to the avirulence gene AVR-CO39 of Magnaporthe grisea[J]. Mol. Genet. Genomics. 2002, 267: 603-612.
    Chen D, Ling ZZ, Nelson RJ. Pathotypic analysis of Pyricularia grisea using two sets of near-isogenic lines[J]. International Rice Research Newsletter, 1995, 20(4): 24-26.
    Chen DH, delavina M, Inukai T, et al. Molecular mapping of the blast resistance gene, Pi44 (t), in a line derived from a durably resistant rice cultivar[J]. Theor Appl Genet, 1999, 98: 1046-1053.
    Chen XW, Li SG, Xu JC, et a1. Identification of two blast resistance genes in a rice variety, Digu[J]. J Phytopathol,2004, 152: 77-85.
    Chen XW, Shang JJ, Chen DX, et a1. A B-lectin receptor kinase gene conferring rice blast resistance[J]. Plant J, 2006, 46: 794-804.
    Chern MS, Fitzgerald HA, Yadav RC, et a1. Evidence for a disease-resistance pathway in rice similar to the NPR1-mediated signaling pathway in Arabidopsis[J]. Plant J, 2001, 27:101-113.
    Cheverud JM, Routman KJ. Epistasis and its contribution to genetic valance components[J]. Genetics, 1995, 139: 1455-1461.
    Cho YoungChan, Kwon SoonWook, Choi ImSoo, et al. Identification of major blast resistance genes in Korean rice varieties (Oryza sativa L.) using molecular markers[J]. Journal of Crop Science and Biotechnology, 2007, 10(4): 265-276.
    Collins N, Park R, Spielmeye W, et al. Resisance gene analogs in barley and their relationship to rust resistance genes[J]. Genome, 2001, 44: 375-381.
    Conaway-Bormans CA, Marchetti MA, Johnson CW, et al. Molecular markers linked to the blast resistance gene Pi-z in rice for use in marker-assisted selection[J]. Theor Appl Genet, 2003, 105: 1014-1020.
    Dangl JL, Dietrich RA, Richberg MH. Death don't have no mercy: Cell death programs in plant-microbe interactions[J]. Plant Cell, 1996, 8:1793-1807.
    Dangl JL, Jones JDG. Plant Pathogens and integrated responses to infection[J]. Nature, 2001, 411:826-833. Delaney TP, Uknes S, Vernooij B, et al. A central role of Salicylic acid in plant disease resistance[J]. Science, 1994, 266: 1247-1249.
    Di Gaspero G, Cipriani G. Resistance gene analogs are candicate markers for disease-resistance genes in grape(Vitis spp)[J]. Theor Appl Genet, 2002, 106: 163-172.
    Dioh W, Tharreau D, Notteghem JL, et al. Mapping of avirulence genes in the rice blast fungus, Magnaporthe grisea, with RFLP and RAPD markers[J]. MPMI, 2000, 13: 217-227.
    Donald T.M., Pellerone F., Adam-Blondon A.F., et al. Identification of resistance gene an alogs linked to a powdery mildew resistance locus in grapevine[J]. Th eor App1 Genet, 2002,104(4): 610-6l8.
    Ebron, LA Fukuta, Y. Imbe, et al. Near-isogenic lines of rice (Oryza sativa L.) for blast resistance with the genetic background of Indica-type line IR49830-7-1-2-2[B]. JIRCAS, 2006, 46: 179-196.
    Eizenga, G.C. Agrama, H.A. Lee, et al. Identifying novel resistance genes in newly introduced blast resistant rice germplasm[J]. Crop science. 2006, 46(5): 1870-1878.
    Fjellstrom, R. McClung, AM Shank, et al. SSR markers closely linked to the Pi-z locus are useful for selection of blast resistance in a broad array of rice germplasm[J]. Molecular Breeding, 2006, 17(2): 149-157.
    Flandez-Galvez H., Ford R., Pang E.C., et al. An intraspecific linkage map of the chickpea(Cicer arietinum L.)genome based on sequence tagged microsatellite site and resistance gene an alog markers[J].Theor. App1. Genet., 2003, 106(8): 1447-1456.
    Flor H H. The complementary genic systems in flax and flax rust. Adv Genetics, 1956, 8 :29-54.
    Fourmann M, Chariot F, Froger N, et al. Expression, mapping, and genetic variability of Brassica napus disease resistance gene an alogues[J]. Genome, 2001, 44(6): 1083-l099.
    Fukuoka S, Okuno K. QTL analysis and mapping of Pi21, a recessive gene for field resistance to rice blast inJapanese upland rice[J]. Theor Appl Genet, 2001, (103): 185-190.
    Fukuta, Y. Ebron, LA Kobayashi, et al. Genetic and breeding analysis of blast resistance in elite indica-type rice (Oryza sativa L.) bred in International Rice Research Institute[J]. Japan Agricultural Research Quarterly, 2007, 41(2): 101-114.
    Gabriel D W, Rolfe B G. Working models of specific recognition in plant-microbe interactions. Annu. Rev. Phytopathol., 1990, 28: 365-391.
    Gassmann W, H insch M E, Staskaw icz B J. The A rabidop sisR PS 4 bacterial-resistance gene is a member of the TIR-NBS-LRR family of disease-resistance genes[J]. Plant, 1999, 20(3): 265- 277.
    Geffroy V., Sevignac M., De Oliveira J.C., et al. Inheritance of partial resistance against Colletotrichum lindemuthianum in Phaseollts vulgaris and co-localization of quantitative trait loci with genes involved in specific resistance[J]. Mo1. Plant Microbe Interact., 2000, l 3(3): 287-296.
    Gowda, M. Roy-Barman, S. Chattoo, et al. Molecular mapping of a novel blast resistance gene Pi38 in rice using SSLP and AFLP markers[J]. Plant Breeding, 2006, 125(6): 596-599.
    Graham M.A., Marek L.F., Lohnes D., et al. Expression an d genome organ ization of resistance gene analogs in soybean[J]. Genome, 2000, 43 (1): 86-93.
    Grahanl M.A., Marek L.F., Shoemaker R.C.. Organization, expression an devolution of a disease resistance gene cluster in soybearl[J]. Genetics, 2002, 162(4): l961-1977.
    Hammond-Kosack K E, Jones J D G. Plant disease resistance genes. Annual Review of Plant Physiology and Plant Molecular Biology, 1997(48): 573-605.
    Hanamareddy Biradar Bhargavi, MV Ravindra Sasalwad, Ramakrishna Parama, et al. Identification of QTL associated with silicon and zinc content in rice (Oryza sativa L.) and their role in blast disease resistance[J]. Indian Journal of Genetics and Plant Breeding, 2007, 67(2): 105-109.
    Hayashi, K. Yoshida, H. Ashikawa, et al. Development of PCR-based allele-specific and InDel marker sets for nine rice blast resistance genes[J]. Theoretical and applied genetics, 2006, 113(2): 251-260.
    Hunger S., di Gaspero G., Mohring S., et al. Isolation an d linkage analysis of expressed disease-resistance gene an alogues of sugar beet(Beta vulgaris L.)[J]. Genome, 2003, 46(1): 70-82.
    Imbe T, Oba S, Yanoria M J T, et al. A new gene for blast resistance in rice cultivar, IR24[J]. Rice Genetics Newsl, 1997, 14: 60-62.
    Inukai T, Nelson RJ, Zeigler RS, et al. Allelism of blast resistance gene in near-isogenic lines of rice[J]. Phypathology, 1994, (84): 1278-1283.
    Inukai T, Zeigler R S, Sarkarung S, et al. Development of pre-isogenic lines for rice blast resistance by marker-aided selection from a recombinant inbred population[J]. Theor Appl Genet, 1996, 93: 560-567.
    Jeung, JU Kim, BR Cho, et al. A novel gene, Pi40(t), linked to the DNA markers derived from NBS-LRR motifs confers broad spectrum of blast resistance in rice[J]. TAG Theoretical and Applied Genetics, 2007, 115(8): 1163-1177.
    Jiang J, Wang S. Identification of a 118-kb DNA fragment containing the locus of blast resistance gene Pi-2(t) in rice[J].Mol Genet Genomics, 2002, (268): 249-252.
    Jia Y, McAdams SA, Bryan GT, et al. Direct interaction of resistance gene and avirulence gene products confers riceblast resistance[J]. EMBO J, 2000, 19:4004-4014.
    Kaji R, Ogawa T. RFLP mapping of blast resistance gene Pi-km in rice. IRRN, 1996, 21: 47.
    Kaji R, Ogawa T, Nishimura M. RFLP mapping of a blast resistance gene, Pit, in rice[J]. Breeding Science, 1997, 47(S): 37.
    Kanazin V, M arek L F, Shoearker R C. Resistance gene analogs are conserved and clustered in soybean[J]. Proc Natl Acad Sci USA, 1995, 93(21): 11746-11750.
    Keen N.T. Gene-for-gene complementarity in plant-pathogen interaction. Annu. Rev. Genet. 1990, 24: 447-463.
    Kim S, Ahn IP, Lee YH. Analysis of genes expressed during rice-Magnaporthe grisea interactions[J]. MPMI, 2002, 14: 1340-1346.
    Kiyosawa S, Ikehashi H, Karo H, et al. Pathogenicity tests of Pillipine isolates of blast fungus using two sets of rice varieties[J].Breed,1981(31): 367-376
    Kiyosawa S. Methods for tests and gene analysis of blast resistance of rice varieties[J]. Oryza, 1976, (13): 1-32. Koizumi, S. Durability of resistance to rice blast disease[J]. JIRCAS Working Report, 2007, 53: 1-10.
    Koutroubas, SD Katsantonis, D. Ntanos, et al. Nitrogen utilisation efficiency and grain yield components of rice varieties grown under blast disease stress[J]. Australasian Plant Pathology, 2008, 37(1): 53-59.
    Kovalev, VS Mukhina, ZhM Il'nitskaya, et al. Combined approach to breeding rice for blast resistance with the use of molecular markers[J]. Russian Agricultural Sciences, 2006, 7: 5-6.
    Kumar, S.P. Dalal, V. Singh, et al. Cloning and in silico mapping of resistance gene analogues isolated from Rice lines containing known genes for blast resistance[J]. Journal of phytopathology, 2007, 155(5): 273-280.
    Lau GW, Chao CT, Ellingboe AH. lneteraction of genes controlling avirulencelvirulence of Magnaporthe grisea on rice cultivar Katy[J]. Phytopathology, 1993, 83: 375-382.
    Lee S.Y., Seo J.S., Rodriguez-Lanetty M., et al. Comparative an alysis of superfam ilies of NBS-encoding disease resistance gene an alogs in cultivated and wild appple species[J]. Mo1. Genet. Genomics, 2003, 269(1): 101-108.
    Leister D., Ballvora A., Salamini F., et al. A PCR-based approach for isolating pathogen resistance genes from potato with potential for wide application in plants[J]. Nat. Genet., 1996, 14(4): 421-429.
    Leister D, Kurth J, L aurie D A, et al. Rapid reo rganization of resistance gene homologues in cereal genomes [J]. Proc Natl Acad Sci USA, 1998, 95: 370-375.
    Leister D, Kurth J, L aurieD A, et al. RFLP and physical mapping of resistance gene homologues in rice (Oryza sativa L.) and barley (H. vulgare) [J]. Theor Appl Genet, 1999, 98: 509-520.
    Li, YB Wu, CJ Jiang, et al. Dynamic analyses of rice blast resistance for the assessment of genetic and environmental effects[J]. Plant Breeding, 2007, 126(5): 541-547.
    Lin F, Chen S, Que ZQ, et al. The blast resistance gene Pi37 encodes a nucleotide binding site leucine-rich repeat protein and is a member of a resistance gene cluster on rice chromosome 1[J]. Genetics, 2007, 177(3): 1871-1880.
    LING Z Z, MEW T W, WANG J L, et al. Development of near-isogenic lines as international differential of the blast pathogen[J]. International Research Rice Institute Notes, 1995, 20(4): 13-14.
    Liu B, Zhang SH, Zhu XY, et al. Candidate defense genes as predictors of quantitative blast resistance in rice[J]. MolPlant-Microbe Interact, 2004,17: 1146-1152.
    Liu G, Lu G, Zeng L, Wang GL. Two broad-spectrum blast resistance genes, Pi9(t) and Pi2(t), are physically linked on rice chromosome 6[J]. Mol Genet Genomics, 2002, 267: 472-480.
    Liu shi-ping, Li xin, Wang chao-yang, et al. Improvement of resistance to rice Blast in Zhenshan 97 by molecular marker-aided selection[J]. Acta Botanica Sinica, 2003, 45(11): 1346-1350.
    Liu XQ, Wang L, Chen S, et al. Genetic and physical mapping of Pi36 (t), a novel rice blast resistance gene located on rice chromosome 8. Mol Genet Gen, 2005, 274: 394-441.
    Liu XQ, Lin F, Wang L, Pan QH. The in silico map-based cloning of Pi36, a rice coiled-coil nucleotide-binding site leucine-rich repeat gene that confers race-specific resistance to the blast fungus[J]. Genetics, 2007, 176(4): 2541-2549.
    Li ZY, Chen SY. Molecular cloning, chromosomal mapp ingand expression analysis of disease resistance homologues in rice (Oryza sativa L.)[J]. Chinese Science Bulletin, 1999, 44 (13): 1202-1207.
    Luo CX, Yin LE Koyanagi S, Fannan ML, et al. Genetic mapping and chromosomal assignment of Magnaporthe avirulence gene AvrPik, AvrPiz and AvrPiz-t controlling cultivar specificity on rice[J]. Phytopathology, 2005, 95: 640-647.
    Lu q, Jantasuriyarat C, Zhou B, Wang GL. Compatible Isolation and characterization of novel defense response genes involved in and incompatible interactions between rice and Magnaporthe grisea[J]. Theor Appl Genet, 2004, 108: S2S-S34.
    Mackill D J, Bonman. Inheritance of blast resistance in near-isogenic lines of rice[J]. Phytopathology, 1992, (82): 746-749.
    Madsen L.H., Collins N.C., Rakwalska M., et al. Barley disease resistance gene analogs of the NBS-LRR class: identification and mapping[J]. Mo1. Genet. Genomics, 2003, 269(1): 150-16l.
    Mago R, N air S, Mohann M. Resistance gene analogues from rice: cloning, sequencing and mapping [J]. Theor Appl Genet, 1999, 99: 50-57.
    Maria R C, Elena F, Carla D G. Characterization of nematode resistance gene analogs in tetraploid wheat[J]. Plant Science, 2003, 164: 71-75.
    McCouch S R, Teytelman L, Xu Y B, et al. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.)[J]. DNA Res, 2002, 9: 199-207.
    McDowell JM, Cuzick A, Can C, et al. Downy mildew (Peronospora parasitica) resistance genes in Arabidopsis vary in functional requirements for NDR1, EDS1, NPRI and salicylic acid accumulation[J]. PIantJournal, 2000, 22: 523-529.
    Meyers B C, Dickerman A W , Michelmo re R W , et al. Plant disease resistance genes encodemembers of an ancient and diversep ro tein family w ithin the nucleo tide-binding superfam ily[J].Plant, 1999, 20 (3): 317- 332.
    Milligan S B, Bodeau J, Yaghoobi J, et al. The root knot nematode resistance gene mifrom tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes[J]. The Plant Cell, 1998, 10: 1307-1319.
    Miyamoto M, Ando I, Rybka K, et al. High resolution mapping of the indica-derived rice blast resistance genes. I. Pib[J]. Mol Plant Microbe Interact, 1996, 9: 6-13.
    Mohler V., Klahr A., W enzel G., et al. A resistance gene analog useful for targeting disease resistance genes against diferent pathogens on group 1S chromosomes of barley, wheat and rye[J]. Theor. App1. Genet., 2002, 105(2-3): 364-368.
    Naqvi NI, Bonman JM, Mackill DJ, et al. Identification of RAPD markers linked to a major blast resistance gene in rice[J]. Mol Breeding,1995, 1: 341-348.
    Naqvi NI, Chattoo BB. Molecular genetic analysis and sequence-characterized amplified region-assisted selection of blast resistance in rice. In: Rice genetics III. IRRI, Manila, The Philippines, 1996, 570-576.
    Nguyen, T. TT Koizumi, S. La, et al. Pi35(t), a new gene conferring partial resistance to leaf blast in the rice cultivar Hokkai 188[J]. Theoretical and Applied Genetics, 2006, 113( 4): 697-704.
    Noguchi, MT Yasuda, N. Fujita, Y. Evidence of genetic exchange by parasexual recombination and genetic analysis of pathogenicity and mating type of parasexual recombinants in rice blast fungus, Magnaporthe oryzae[J]. Phytopathology, 2006, 96(7): 746-750.
    Noir S., Combes M.C., Anthony F., et al. Origin, diversity and evolution of NBS-type disease-resistance gene homologues in cofee trees (Coffea L.)[J]. Mo1. Genet. Genomics, 2001, 265(4): 654-662.
    Ono E, Wong HL, Kawasaki T, et al. Essential role of the small GTPase Rac in disease resistance of rice[J]. Proc Natl Acad Sci USA. 2001, 98:759-764.
    Orbach MJ, Farrall L, Sweigard JA, et al. A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta[J]. Plant Cell, 2000, 12: 2019-2032.
    Ou S H. Rice disease. Commonwealth Agricultural Bureaux[M]. Slough. U K. 1985: 109-201.
    Pan Q, Wang L, Ikehashi H, et al. Identification of a new blast resistance gene in the indica rice cultivar kasalath using Japanese differential cultivars and iozyme makers[J]. Phytopathology, 1996, 6(10): 1071-1075.
    Pan Q, Wang L, Tanisala T, et al. Allelism of rice blast resistance gene in two Chinese rice cultivars and identification of two new resistance genes[J]. Plant Pthol, 1998, (47): 165-170.
    Pan Q., Wendel J., Fluhr R.. Divergent evolution of plant NBS-LRR resistance gene homologues in dicot and cereal genomes[J]. J. Mo1. Evo1., 2000, 50(3): 203-213.
    Pan QH, Wang L, Ikehashi H, et al. Identification of two new genes conferring resistance to rice blast in the Chinese native cultivar‘Maowangu’[J]. Plant Breeding, 1998b, 117: 27-31.
    Pan QH, Hu ZD, Takathoshi T, et al. Fine mapping of the blast resistance gene Pi15, linked to Pii, on rice chromosome 9[J]. Acta Botanica Sinica, 2003, 45: 871-877.
    Qu, SH Liu, GF Zhou, et al. The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site leucine-rich repeat protein and is a member of a multigene family in rice[J]. Genetics, 2006, 172(3): 1901-1914.
    Quint M., Mihalevic R., Dussle M., et al. Development of RGA-CAPS markers and genetic mapping of candidate genes for sugarcan emosaic virus resistance in maize[J]. Theor. App1. Genet., 2002, l05(2-3): 355-363.
    Radwan O., Bouzidi M.F., Vear F., et al. Identification of non-TIR-NBS-LRR markers linked to the Pl5/ Pl8 locus for resistance to downy mildew in sunflower[J]. Theor. App1. Genet., 2003, 106(8): 1438-1446.
    Ramalingam J., vera Cruz C.M., Kukreja K., et al. Candidate defense genes from rice, barley, and maize and their association with qualitative and quantitative resistance in rice[J]. Mo1. Plant Microbe Interact., 2003,l6(1):l4-24.
    Ronald P C. Themo lecular basis of disease resistance in rice[J]. PlantMolBio, 1997, 35: 179-186.
    Rybka K, Miyamoto M, Ando I, et al. High resolution mapping of the indica-derived rice blast resistance gene. II. Pi-ta2 and Pi-ta and a consideration of their origin[J]. Mol Plant-Microbe Interact, 1997, 10: 517-524.
    Sallaud C, Lorieux M, Roumen E, et al. Identification of five new blast resistance genes in the highly blast resistant rice variety IR64 using a QTL mapping strategy[J]. Theor Appl Genet, 2003, 106: 794-803.
    Sasaki, K. Yuichi, O. Hiraga, et al. Characterization of two rice peroxidase promoters that respond to blast fungus-infection[J]. Molecular Genetics and Genomics, 2007, 278(6): 709-722.
    Senguttuvel, P. Bapu, J. RK Senthil, R. Phenotypic screening of rice genotypes for blast resistance under artificial and field conditions[J]. Plant Archives, 2006, 6(1): 229-232.
    Sharma, R.C. Shrestha, S.M. Pandey, M.P. Inheritance of blast resistance and associated microsatellite markers in rice cultivar‘Laxmi’[J] Journal of phytopathology. 2007, 155(11-12): 749-753.
    Shen K A , Meyers B C, Islam-Faridi M N, et al. Resistance gene candidates identified by PCR with degenerate oligonucleo tide primers map to clusters of resistance genes in let tuce[J]. Mol PlantM icrobe Interact, 1998, 11(8): 815-823.
    Shi Z X, Chen X M, Line R F, et al. Development of resistance gene analog polymorphism markers for the Yr9 gene resistance to wheat stripe rust[J]. Genome, 2001, 4 (4): 509-5l6.
    Silue D, Tharreau D, Notteghem JL. Evidence for a gene-gene relationship in the Oryza sativa-Magnaporthe grisea pathosystem[J]. Phytopathology ,1992, 82: 577-580.
    Sirithunya P, Tragoonrung S, Vanavichit A, et al. Quantitative trait loci associated with leaf and neck blast resistance in recombinant inbred line population of rice (Oryza Sativa L.)[J]. DNA Research, 2002, 9: 79-88.
    Song JQ, Bradeen JM, Naess SK, et al. Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight[J]. Proc Natl Acad Sci USA, 2003, 100: 9128-9133.
    Stuber CW, Lincoln SE, Wolf DW, et a1. Identification of genetie factors contributing heterois in a hybrid from two elite maize inbred lines using molecular markers[J]. Genetics, 1992, 132: 823-839.
    Tai T H, Dahlbeck D, Clark E T, et al. Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato[J]. Proc Natl Acad Sci USA, 1999, 96 (24): 14153-14158.
    Tabien RE, Li Z, Paterson AH, et al. Mapping of four major rice blast resistance genes from‘Lemont’and‘Teqing’and evaluation of their combinatorial effect for field resistance[J]. Theor Appl Genet, 2000, 101: 1215-1225.
    Tarchini R, Valent B. A single aminoacid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pita[J]. Plant Cell, 2000, 12: 2033-2045.
    Tsunematsu H, Jeanie M, Yanoria T, et al. Development of monogenic lines of rice for blast resistance[J]. Breeding Science, 2000, 50(30): 229-243.
    Valent B, Chumley FG. Molecular genetic analysis of the rice blast fungus[J]. Magnaporthe grisea Annu Rev Phytopathol, 1991a, 29: 443-467.
    Valent B, Crawford MS, Weaver CG, et al. Genetic studies of fertility and pathogenicity in Magnaporthe grisea (Pyricularia oryzae)[J]. Iowa State J. Res. 1986, 60: 569-594.
    Valent B, Farrall L, Chumley FG. Magnaporthe grisea genes for pathogenicity and virulence identified through aseries of backcross[J]. Genetics, 1991b, 127: 87-101.
    Vanderplank J E. Host-pathogen interactions in plant disease[M]. New York: Academic Press, 1982.
    Vanderplank J E. Disease resistance in plants[M]. 2nd ed. New York: Academic Press, 1984.
    Wang AM, Mackill DJ, Bonman JM. Inheritance of partial resistance to blast in indica rice cultivars[J]. Crop Science, 1989, 29: 848-853.
    Wang, Z. Jia, Y. Rutger, et al. Rapid survey for presence of a blast resistance gene Pi-ta in rice cultivars using the dominant DNA markers derived from portions of the Pi-ta gene[J]. Plant Breeding, 2007, 126(1): 36-42.
    Wang B J, Wang Y J, Wang Q. Charaterization of an NBS-LRR resistance homologue from soybean[J].Journal of plant physiology, 2004, 161: 815-822.
    Wang GL, Mackill DJ, Bonman JM, et al. RFLP mapping of genes conferring complete and partial resistance to blast in a durably resistant rice cultivar[J]. Genetics, 1994 , 136(4): 1421 -1434.
    Wang Z X, Yano M, Yamanouchi U, et al. The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes[J]. Plant, 1999, 19 (1): 55- 64.
    Warren RF, Merritt PM, Holub E, et al. Identification of three putative signal transduction genes involved in R gene-specified disease resistance in Arabidopsis[J]. Genetics, 1999, 152: 401-412.
    Wu JL, Fan YY, Li DB, et a1. Genetic control of rice blast resistance in the durably resistant cultivar Gumei 2 against multiple isolates[J]. Theor Appl Genet, 2005, 111:50-56.
    Xiao JH, Li JM, Yuan LP, et a1. Dominance is the major genetie basis of hetemsis in rice arevealed by QTL analysis using molecular markers[J]. Genetics, 1995, 140: 745-754.
    Xiong L, Lee MW, Qi M, et al. Identification of defense-related rice genes by suppression subtractive hybridization and differential screening[J]. MPMI, 2001,14:685-692.
    Xue Y B, Tang D Z, Zhang Y S, et al. Isolation of candidate R disease resistance gene from rice[J]. Chinese Science Bulletin, 1998, 43 (6): 497-500.
    Yang Q, Saito K, Yang P, Wang Q, et al. Molecular mapping of a new blast resistance gene Pi25 (t) possessed in a
    Japonica rice cultivar, Oryza sativa L. cv. Yunxi 2. In: Proceedings of General Meeting of the Rice Blast in China, Kunming, 2001, 49-55.
    Yasuda N, Fujuta Y, Noguchi M. Identification of avirulence genes in the rice blast fungus corresponding to three resistance genes in Japanese differentials[J]. J Gen Plant Pathol, 2004, 70: 202-206.
    Yi G, Lee SK, Hong YK, et al. Use of Pi5(t) markers in marker-assisted selection to screen for cultivars with resistance to Magnaporthe grisea. Theor Appl Genet, 2004, 109: 978-985.
    
    Yo shimura S, YamanouchiU , Katayo se Y, et al. Expression of Xa1, a bacterial blight-resistance gene, is induced by bacterial inoculation [J]. Proc Natl Acad Sci USA, 1998, 95: 1663-1668.
    Yu Y G, Buss G R, Maroof M A S. Isolation of a superfamily of candidate disease-resistance genes in soybean based on a con-served nucleo tide-binding site[J]. Proc Natl Acad Sci USA. 1996, 93: 11751-11756.
    Yu ZH, Mackill DJ, Bonman JM, et al. Tagging genes for blast resistance in rice via linkage to RFLP makers[J]. Theoretical and Applied Genetics, 1991, (81): 471-476.
    Yu ZH, Mackill DJ, Bonman JM, et al. Molecular mapping of genes for resistance to rice blast (Pyricularia grisea Sacc.)[J]. Theor Appl Genet, 1996, (93): 859-863.
    Zenbayashi-Sawata, K. Fukuoka, S. Katagiri, et al. Genetic and physical mapping of the partial resistance gene, Pi34, to blast in rice[J]. Phytopathology, 2007, 97(5): 598-602.
    Zhang L.P., Khan A., Nino-Liu D., et al. A molecular linkage map of tomato displaying chromosomal locations of resistance gene analogs based on a Lycopersicon esculentum×Lycopersicon hirsutum cross[J]. Genome, 2002, 45(1): 133-146.
    Zheng KL, Zhuang JY, Lu J, et al. Identification of DNA markers tightly linked to blast resistance genes in rice. In Khush, G.S. ed. Rice genetics III, Manila, Philippines, IRRI. 1996, 565-569-132.
    Zheng Y, Zhang G, Lin FC, et al. Development of microsatellite markers and construction of genetic map in rice blast pathogen Magnaporthe grisea, Fungal Genetics and Biology[J]. 2008, 45(10): 1340-1347.
    Zhou JH, Wang JL, Xu JC, Lei CL, Ling ZZ. Identification and mapping of a rice blast resistance gene Pi-g(t) in the cultivar Guangchangzhan[J]. Plant Pathology, 2004, 53: 191-196.
    Zhou B, Qu S H, Wang G L, et a1. The eight amino-acid differences within three leucine-rich repeats between Pi2 and Pi-zt resistance proteins determ ine the resistance specificity to Magnaporthe grisea[J]. Mol Plant Microbe Interact, 2006, 19: 1216-1228.
    Zhuang jie yun, MA Wen bin, Wu jian li, et al. Mapping of leaf and neck blast resistance genes with resistance gene analog, RAPD and RFLP in rice[J]. Euphytica, 2002, 128: 36-37.
    Zhuang J, Wu J, Chai R, et al. DNA markers based gene mapping for leaf and neck blast resistance and verification of gene effects in rice. In: Abstracts of General Meeting of the International Program on Rice Biotechnology, Phuket, Thailand, 1999, 297.
    Zhu ML, Wang L, Pan QH. Identification and characterization of a new blast resistance gene located on rice chromosome 1 through linkage and differential analyses[J]. Phytopathology, 2004, 94: 515-519.