78份水稻制恢材料的抗瘟性、农艺性状及杂种优势评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由Magnaporthe grisea (Hebert) Barr.[无性态Pyricularia grisea (Cooke) Sacc异名Pyricularia oryzae Cavara.]引起的稻瘟病是水稻最主要的病害之一,世界普遍发生,全生育期均可发病。实践证明,选育和利用抗病品种,是防治该病害最经济、最有效、最绿色环保的措施。抗稻瘟病种质资源的发掘、筛选、评价及其科学利用是水稻抗稻瘟病育种的重要基础。本文对78份水稻制恢材料的稻瘟病抗性、主要农艺性状、外观米质及碾磨米质进行了评价;利用三系不育系Ⅱ-32A对供试材料进行测交,对其测交F1代的抗瘟性、主要农艺性状和杂种优势进行了评价;对抗性突出的重点制恢材料GR55进行了配合力及遗传力分析。
     1、抗瘟性鉴定结果表明,78份制恢材料中有11份制恢材料叶瘟1-4级、穗颈瘟1-3级,表现抗至中抗稻瘟病;有14份材料叶瘟3-3级、穗颈瘟5级,表现中感稻瘟病;有20份材料叶瘟5-9级、穗颈瘟7级,表现感稻瘟病;其中GR09和GR56叶瘟和穗颈瘟均为1级抗性表现最高,GR55叶瘟3级,穗颈瘟为0级。
     2、农艺性状观测结果表明,78份制恢材料农艺性状有丰富的遗传多样性;制恢材料的播始天数变幅为101.00-119.00d;株高的变幅为92.40-123.80cm;穗长的变幅为20.66-29.72cm;单株有效穗的变幅为6.53-11.33穗;千粒重的变幅为24.89-40.60g;穗着粒数的变幅为112.69-234.99粒;穗实粒数的变幅为70.48-166.08.粒;结实率的变幅为55.88-74.84%;着粒密度的变幅为4.01-8.38粒·cm-1;单株实粒重的变幅为19.20-36.28;以单株实粒重为主要性状,单株实粒重在30g以上,表现丰产性较好的材料有GR49、GR73、GR15、GR70、GR50、GR16等26份材料。
     3、米质观测结果表明,78份制恢材料的出糙率达到国颁一级优质稻的有GR74、GR75、GR73等23份,达到国颁二级的有GR30、GR72、GR50等29份,达到三级有GR43、GR48、GR51等18份;整精米率指标上,达到国颁一级优质稻的有GR21、GR60、GR07等25份,达到国颁二级的有GR03、GR18、GR36和GR05共4份,达到国颁三级有GR09、GR55、GR45、GR35、GR15、GR14共6份。垩白米率指标上,达到国颁一级优质稻的有GR45、GR14、GR44和GR41共4份,达到二级的有GR63、GR36、GR34等23份,达到三级的有GR08、GR62、GR73等21份。垩白度指标上,78份制恢材料中仅有GR45这一份材料达到国颁优质稻一级标准,有GR44、GR14和GR41共三份材料达到国颁二级标准,有GR36、GR63、GR48等10份材料达到国颁三级标准。
     4、F1代抗瘟性观测结果表明,GR5、GR9、GR44、GR45、GR49和GR53与Ⅱ-32A测配的6个F1代组合表现“冬不老”;其余72个测交组合抗瘟性鉴定结果表明叶瘟1~5级,穗颈瘟1级的材料有Ⅱ-32A与GR16、GR23、GR55等8份制恢材料所测配的组合,表现抗至高抗稻瘟病;对照品种冈优725的叶瘟8级,穗颈瘟7级。
     5、测交F1代农艺性状对冈优725的竞争优势观测结果表明,播始天数的竞争优势变幅是-4.0~8.0d,有Ⅱ-32A/GR31、Ⅱ-32A/GR30等17个组合的播始天数短于冈优725;株高的竞争优势变幅为-6.0~11.2cm,有Ⅱ-32A/GR12、Ⅱ-32A/GR26等19个组合株高低于对照;单株有效穗的竞争优势变幅为-3.7~1.9穗,有Ⅱ-32A/GR66、Ⅱ-32A/GR57等28个组合的单株有效穗高于对照;千粒重的竞争优势变幅为-2.7~4.8g,有Ⅱ-32A/GR55、Ⅱ-32A/GR57等48个组合高于对照;每穗着粒数的竞争优势变幅为-61.9~41.5粒,有Ⅱ-32A/GR37、Ⅱ-32A/GR32等6份高于对照;穗实粒数的竞争优势变幅为-35.5~53.0粒,有Ⅱ-32A/GR37、Ⅱ-32A/GR67等22个组合高于对照;结实率的竞争优势变幅为-52.~20.3%,有Ⅱ-32A/GR22、Ⅱ-32A/GR24等67个组合高于对照,仅有5个组合低于对照;单株重的竞争优势变幅为-14.3~10.7g,有Ⅱ-32A/GR02、Ⅱ-32A/GR64等21个组合高于对照。
     6、经方差及配合力方差分析结果表明,所有性状的区组方差均不显著,所有组合间方差均达到极显著水平;6个恢复系中蜀恢527在单株实粒重这一综合产量性状上配合力效应值最高;综合分析蜀恢527,GR55为最理想的恢复系亲本,不育系中川谷A为最理想不育系亲本;冈46A×GR55这一组合单株实粒重特殊配合力效应值在30个组合中名列最高,达到30.458,其次绿香4A×GR55这一组合特殊配合力效应值也相对较高。
Rice blast, caused by Magnaporthe grisea (Hebert) Barr., was one of the most devastating plant diseases, infecting rice crops all over the word. Breeding and utilization of resistant cultivars was the most effective and economical way to control this disease. Screening and utilization of rice resources resistant to blast was the foundational measure to breed resistant varieties. The resistance to rice blast, main agronomic traits, grain appearance quality and milling quality of 78 rice materials of breeding restorer line were evaluated in this paper. The resistance to rice blast, main agronomic traits and heterosis of the testcross combinations from CMS-lineⅡ-32A and 78 rice materials were ecaluated. The combining ability and heritability of GR55 which was the important rice material were analysised.
     1. The resoult of resistance identification of 78 rice materials showed that 11 were highly resistant to both leaf blast and panicle blast,14 were medium in leaf blast and panicle blast and 20 were susceptible. GR09 and GR56 were highly resistant to rice blast, with both leaf blast and panicle of 1 scale. GR55 was also highly resistant to rice blast, with leaf blast 3 scales and panicle blast 0 scale.
     2. The agronomic traits of 78 rice materials of breeding restorer line were abundant genetic diversity. Day of sowing to initial heading was from 101.00 to 119.00d, plant heigh was from 92.40 to 123.80cm, spike length was from 20.66 to 29.72cm, effective panicles per plant was from 6.53 to 11.33,1000-grain weigh was from 24.89 to 40.60g, spikelets per panicle was from 112.69 to 234.99, seed density was from 4.01 to 8.38 per cm, grain weight per plant was 19.20~36.28. With grain weight per plant for main characters, the grain yields of 26 materials were above 30g and had high performance.
     3. The result of the roughness of 78 rice materials of breeding restorer line indicated that there were 23 materials reached the first grade of the national standards,29 reached the secend grand of the national standards and 18 was the third grand of the national standards. The result of whole paddy rate showed that 25 were the first grade of the national standards,4 were secend grand and 6 were third grand. The result of chalkiness showed that GR45, GR14, GR44 and GR41 were fisrt grand,23 were secend grand and 21 were third grand. Chalkiness degree indicated that only GR45 was first grand of national standards, GR44, GR14 and GR41 were secend grand,10 were third grand.
     4. The result of resistance to rice blast of F1 generation showed thatⅡ-32A/GR5,Ⅱ-32A/GR9,Ⅱ-32A/GR44,Ⅱ-32A/GR45,Ⅱ-32A/GR49 andⅡ-32A/GR53 were not heading. The resistance result of other 72 F1 generations indicated that 8 was with leaf blast 1-5 scale and panicle blast 1 scale which had high resistance.
     5. Compete vigor of agronomic traits of F1 combinations to Gangyou725 showed that, The range of compete vigor of the period of from sowing to heading was -4.0~8.0d. The period of from sowing to heading ofⅡ-32A/GR31,Ⅱ-32A/GR30 etc 17 combinations was shorter than Gangyou725; The competitive advantage of plant height ranged -6.0~11.2cm, there were 19 competitive were lower than Gangyou725; The range of compete vigor of panicles per plant was -3.7~1.9 panicles; The range of compete vigor of 1000-grain weight was -2.7~4.8g; The range of compete vigor of spikelet per panicle was -61.9~41.5 grain; The range of compete vigor of filled spikelet per panicle was -35.5~53.0 grain; The range of compete vigor of seed setting percentage was -52.0~20.3%; The range of compete vigor of grain yield per plant was -14.3~10.7 grain,21 combinations's range of 72 testcross F1 combinations was superiority.
     6. The analysis of test variance and combining ability variance showed that variance of all the traits of the block were not significant, the variance between all combinations have reached a significant level. Shuhui527 had the maximum value of combining ability of grain yield per plant among the six restorer parents. Comprehensive analysis of Shuhui527 and GR55 were the ideal restorer parents while the ChuanguA was the ideal CMS parents. Obtained by the analysis of specific combining ability, nonadditive genetic effects of agronomic characters were diverse while there was diversity in gene interaction. Based on the results of specific combining ability effect value,46A×GR55 was the best hybrid combination for its maximum grain yield per plant 30.458g while the 4A×GR55 also performed well.
引文
[1]南京农业大学等.农业植物病理学[M].南京,江苏科学技术出版社,1996,6:79-85.
    [2]Ou S H. Rice disease [M]. Farnham Royal, U K:Commonwealth Agricultural Bureaux,1985.
    [3]孙国昌,杜新法,陶荣祥,等.水稻稻瘟病防治研究进展和21世纪初研究设想[J].植物保护,2000,26(1):33-35.
    [4]孙漱沅,孙国昌.我国稻瘟病研究的现状和展望[J].植保技术与推广,1996,(3):39-40.
    [5]黄利兴.水稻系列不育系对稻瘟病的抗性遗传研究[D].福建农林大学博士论文,2009.
    [6]彭国亮,罗庆明,冯代贵,等.稻瘟病的爆发与稻瘟菌致病性变异的关系[J].西南农业大学学报,1996,18(16):561-564.
    [7]黄富,程开禄,罗庆明,等.四川省水稻抗稻瘟病育种现状与发展方向[J].植物保护学报,2001,28(4):371-374.
    [8]袁隆平.杂交水稻学[M].北京:中国农业出版社,2002.
    [9]程式华,李建.现代中国水稻[M].北京:金盾出版社,2007.
    [10]靳学慧,马汇泉.农业植物病理学[M].内蒙古:内蒙古科学技术出版社,1999.
    [11]刘二明.水稻品种与稻瘟病菌的遗传多样性及稻瘟病持续控制研究[D].雅安:四川农业大学,2001.
    [12]张天真.作物遗传育种总论[M].北京:中国农业出版社,2004.
    [13]朱小源,杨祁云,霍超斌,伍尚忠.水稻品种对稻瘟病的质量抗性和数量抗性的初步研究[J].中国水稻科学,1996,10(3):181-184.
    [14]曾令祥,戴继跃,周维佳,等.贵州地方稻种资源品种对稻瘟病和白叶枯病抗性评定研究[J].西南农业学报,1991,4(2):71-76.
    [15]王建平,乔中英,周新伟,等.优质水稻产量性状特点及其改良策略[J].江苏农业科学,2003,(5):22-23.
    [16]沈瑛,朱培良.我国稻瘟病菌的遗传多样性[J].植物病理学报,1993,23(4):308-313.
    [17]陆凡,郑小波,王法明,等.两个田间稻瘟病菌株杂交后代的致病性分离及其遗传学分析[J].南京农业大学学报,2000,23:41-45.
    [18]陈利锋.农业植物病理学(第三版)[M].北京:农业出版社,2007-108-109.
    [19]凌忠专,雷财林,王久林.稻瘟病菌生理小种研究的回顾与展望[J].中国农业科学,2004,37(12):1849-1859.
    [20]雷财林,凌忠专,王久林,等.北方稻区稻瘟病菌生理小种变化与抗病育种策略[J].作物杂志,2000,(3):14-16.
    [21]Sasaki R. Existence of strains in rice blast [J]. Journal of Plant Protection,1922,9:633-644.
    [22]山崎羲人,高坂卓尔(1980,凌忠专、孙昌其译).稻瘟病与抗病育种[M].农业出版社,1990.
    [23]Latterell F M, Marchetti M A, Grove B R. Co-ordination of effort to establish an international system for race identification in Pyricularia oryzae [M]. The Rice Blast Disease. Johns Hopkins Press, Baltimore, Maryland,1965:257-276.)
    [24]MARCHETTI M A, RUSH M C, JUNTER W E. Current status of rice blast in the Southen Uinted States [J]. Plant Des. Reptr,1976,60:721-725. IRRI. ANN. Rept. For 1975,92-99. Los Banos, Philippines,1976,548.
    [25]何秋月,唐文华.水稻稻瘟病菌研究进展:Ⅰ.水稻稻瘟病菌多样性及其变异机制[J].云南农业大学学报,2001,16(1):60-64.
    [26]冯代贵,彭国亮,罗庆明,等.稻瘟病菌生理小种变化与水稻品种抗瘟性丧失之间的关系[J].植物保护,1987,13(5):2-5.
    [27]冯代贵,彭国亮,罗庆明,等.应用稻瘟病菌种群消长动态监测四川省杂交稻抗瘟性变化[J].植物保护:1992,18(3):4-5.
    [28]冯代贵,彭国亮,罗庆明,等.水稻品种抗病性变化与稻瘟病菌致病性变异的相关效应研究[J],植物病理学报,1995,25(2):184.
    [29]彭国亮,罗庆明,冯代贵,等,稻瘟病抗源筛选和病菌生理小种监测及应用[J].西南农业学报,1997,10(植保专辑):6-10.
    [30]潘学贤,程开禄,黄富,等.水稻品种抗稻瘟病性丧失规律[J].云南农业大学学报,2004,19(5):536-540.
    [31]Yamada M, Kiyosawa S, Yamaguchi T, et al. Proposal of a new method for differentiating races of Pyricularia oryzae Cavara in Japan [J]. Ann Phytopathol Soc Jpn,1976,42:216-219.
    [32]Atkins j g, Johnston T H. Inheritance in rice of recation to races 1 and 6 of Piricularia oryzae[J]. Phytopathology,1965,55:993-995.
    [33]Atkins J G. Physiologic races of Piricularia oryzae in Western Hemisphere [A]. The Rice Blast Disease[M], The Jones Hopkins Press, Baltimore, Maryland,1965:243-244.
    [34]Atkins J G, Robert A L, Adair C R, et al. An international set of rice varieties for differentiating races of Piricularia oryzae[J]. Phytopathology,1967,57:297-301.
    [35]Mackill D J, Bonman J M. Inheritance of blast resistance in near-isogenic lines of rice [J]. Phytopathology,1992,82:746-749.
    [36]凌忠专.国际通用的水稻稻瘟病菌生理小种鉴别体系创建成功[J].中国农业科学,1995,28(4):94-95.
    [37]Hamer J E, R J Howard, F G ChumLey, et al. A mechanism for surface attachment in spores of a plant pathogenic fungus [J]. Science,1988,15:288-290.
    [38]凌忠专,潘庆华,王久林,等.云南粳稻红镰刀谷的抗瘟性分析.见:朱立宏等编.主要农作物抗病性遗传研究进展[M].南京:江苏科学技术出版社,1990:111-115.
    [39]IRRI. Ann. Rept. For 1975,92-99. LosBanos, Philippines,1976:548.
    [40]S.H.欧编著,何家泌译.水稻病害[M].北京:农业出版社,90-173.
    [41]Namai T, EHara T Y, Tagashi J. Changes in aggressiveness of a Pyricularia oryzae isolate (race 337) by successive passage on rice cultivars with different true resistance gene. Ann. Phytopath. Soc. Japan,1990,56:1-9.
    [42]1980全国稻瘟病生理小种联合试验组.我国稻瘟病菌生理小种研究[J].植物病理学报,1980,10(2):71-82.
    [43]张学博.1986-1987年福建省的稻瘟病菌生理小种[J].福建农业科技,1990,(6):6-7.
    [44]郑凤萍,杨勤忠,赵志坚,等.稻瘟病菌致病性变异[J].云南农业大学学报,1998,13(1):20-24.
    [45]罗朝喜,李进斌,李成云.稻瘟病菌有性世代及色素的基因表达分析[J].植物保护学报,1999,16(2):107-110.
    [46]黄富,程开禄,罗庆明,等.稻瘟病菌致病性变异研究[J].西南农业学报,1999,12(4):69-73.
    [47]何月秋,唐文华,Leung H,等.Pot2在稻瘟病菌群体结构分析中的应用研究[J].华中农业大学学报,2000,19(4):317-321.
    [48]李进斌,罗朝喜,李成云,等.云南省近年稻瘟病生理小种的组成和分布[J].植物保护,2001 (2):12-14.
    [50]Iwano M, Lee J L, Kong P. Distribution of pathogenic race and changes in virulence of rice blast fungus, Pyricularia oryzae Cav., in Yunnan Province, China[J]. JARQ (Japan Agricultural Research Quarterly),23:241-248.
    [51]俞大绂.愈大绂论文集[M].北京:北京农业大学出般社,1991.
    [52]秦敏,何忠全,何明,等.稻瘟病菌继代培养中遗传稳定性研究[J].西南农业大学学报,1998,20(5):508-511.
    [53]Latterell F M, Rossi A E. Logevity and pathogenic stability of Pyricularia oryzae[J]. Phytopathology,1986,76:231-235.
    [54]郑凤萍,杨勤忠,赵志坚,等.稻瘟病菌致病性变异[J].云南农业大学学报,1998,13(1):20-24.
    [55]Bonman J M, Vergel De Dios T I, Bandong J M et al. Pathogenic variability of monoconidial isolates of Pyricularia pryzae in Korea and in the Philippines [J]. Plant disease,1987,71: 127-130.
    [56]Latterell F M. Phenotypic stability of pathogenic races of Piricularia oryzae and its implications for breeding of blast resistant varieties proc [J]. Horiz. Resist. Dis. Rice. CIAT ser. CE-9 1971 Cali. Combia,1975,199-234.
    [57]Hwang, B K et al. A note on quantitative variation in Pathogenicity of Pricularia orizae in the greenhouse[J]. Kor. J. Prot.1980,19:1-4.
    [58]Bonman J M, Vergel De Dios T I, Bandong J M et al. Pathogenic variability of monoconidial isolates of Pyricularia pryzae in Korea and in the Philippines[J]. Plant disease,1987,71:127-130
    [59]雷财林,王久林,凌忠专.稻瘟病菌广致病谱菌株致病性的稳定性研究.浙江农业学报,1993,5(增刊):61-63.
    [60]朱小源,霍超斌,杨祁云.稻瘟病菌致病性测试及稳定性菌株筛选研究[J].广东农业科学,(6):34-35.
    [61]Valentine B, Sweigard J A, Orback M J, et al. Two cloned genes for host specificity in the rice blast fungus, Pyricularia grisea. Sixth Annual Meeting of the International Program on Rice Biotechnology. Chiang Mai, Thailand. Abstracts.1993.
    [62]Dioh W, Tharreau D, Gomez R ea al. Mapping avirulence genes in the rice blast fungus Magnaporthe grisea. In. rice genetics III:proceedings of the Third International Rice Genetics Symposium. Ed. By Khush G S. IRRI, Philippines,1996.
    [63]Broun P, Ganal M W, Tanksley S D.1992. Teloneric arrays display high levels of heritablie polymorphism among closely related plant varieties[J]. Pro. Nat. Acad. Sci. USA,1992,89: 1354-1357.
    [64]Horowitz H, Thorburn P, Haber J E. Rearrangements of highly polymorphic regions near telomeres of Saccharomyces cerevisae[J]. Molecular Cellufar Bioloty,1984,4:2509-2517.
    [65]孙漱沅,金敏忠,张志明,等.水稻稻瘟病及其防治[M].上海:上海科学出版社,1986:36-44.
    [66]段永嘉.云南省稻瘟病菌生理小种的研究[J].云南农大科技,1980(2):12-15.
    [67]罗宽,黄声仪,王国平,等.稻瘟菌致病力变异初探[J].植物病理学报,1984,14(2):92-94.
    [68]朱小源,霍超斌,杨祁云.稻瘟病菌致病性测试及稳定菌株筛选研究[J].广东农业科学,1993,(6)34-36.
    [69]项寿南,薛石玉.稻瘟病菌稳定菌株筛选研究初报[J].植物保护,1991(5)11-12.
    [70]郑凤萍,杨勤忠,赵志坚.稻瘟病菌致病性变异[J].云南农业大学学报,1998,(3):20-24.
    [71]王国珍,茹庆华,李华,等.稻瘟病病菌致病性变异的初步研究[J].宁夏农林科技1998(6):5-9.
    [72]陶家凤.稻瘟病病菌致病性变异的研究现状(述评).四川农业大学学报1995,13(4):518-521.
    [73]何月秋,唐文华.水稻稻瘟病菌研究进展:Ⅰ.水稻稻瘟病菌多样性及其变异机制[J].云南农业大学学报,2001,16(1):60-64.
    [74]孟军,赵明富,何月秋.稻瘟病菌重组研究概要[J].江西农业大学学报,2005,27(3):422-424.
    [75]闵绍楷,熊振民.水稻遗传和品种改良[M]。杭州:浙江科学技术出版社,1983:167-176.
    [76]Lau GW, Chao CT, Ellingboe AH. Ineteraction of genes controlling avirulencelvirulence of Magnaporthe grisea on rice cultivar Katy[J]. Phytopathology,1993,83:375-382.
    [77]何月秋,唐文华,Maria L,等.利用PCR标记对水稻稻瘟病菌适合度的测定[J].植物病理学报,1999,29(3):227-234.
    [78]李振岐.植物免疫学[M].北京,中国农业出版社,1995,162-168
    [79]Hebert T T. The perfect stage of Pyricularia oryzae [J]. Pytopathology,1971,61:83-87.
    [80]Orbach M J, Chumley F, Valent B. Electrophoretic karyotypes of Magnaporthe grisea pathegens of diverse grasses[J]. Mol Plant Microbio Interact,1996,9:261-271.
    [81]Itoi S, Mishima S, Arase S, et al. Mating behavior of Japanese isolates of Pyricularia oryzae[l]. Pytopathology,1983,73:155-158.
    [82]Leong S A, Farman M L, Nitta M. Genetic and molecular analysis of a cultivar's specificity locus from the rice blast fungus Pyricularia grisea. In:Khush G S(ed). Rice genetics Ⅲ, Proceedings of the third International Rice Genetics Symposium[J]. Manila, Philippines, International Resesrch Rice Institute,1995,16-20.
    [83]Chao C T, Ellingboe A H. Selection for mating competence in Magnaporthe grisea pathogenic to rice[J]. Can J Bot,1991,69:2130-2134.
    [84]Fatemi J, Nelson R J. Inter-isolate heterokaryosis in Pyricularia oryzae [J]. Phytopathology, 1978,68:1791-1794.
    [85]王艳丽,张正光,郑小波.源自江苏省的稻瘟病菌营养体亲和能力与无性重组研究[J].中国农业科学,2003,36(6):646-650.
    [86]Genovesi A D, Magill C W. Heterokaryosis and parasexuality in Pyricularia oryzae Cavara[J]. Can J Microbiol,1976,22:531-536.
    [87]Zeigler R S, Scott R P, Leung H, et a l. Evidence of parasexual exchange DNA in the rice blast fungus challenges its exclusive clonity[J]. Phytipathology,1997,87:284-294.
    [88]Levy M, Correa-Victoria F J, Zeigler R S, et al. Genetic diversity of the rice blast fungus in a disease nursery in Colombia[J]. Phytopathology,1993,83 (12):1427-1433.
    [89]柴荣耀,金敏忠.水稻稻瘟病菌小种间相对生存力研究[J].植物保护学报,1997,24(3):215-220.
    [90]Ellingboe A H, Wu B C, Roberston W. Inheritance of virulence in a cross of two isolates of Magnaporthe grisea pathogenic to rice[J]. Phytopathology,1990,80:108-111.
    [91]Silue D, Notteghem J L, Tharreau D. Evidence of a gene-for-gene relationship in the Oryza sativa-Magnaporthe grisea pathosystem[J]. Phytopathology,1992a,82:577-580.
    [92]李成云,沈瑛,袁萍,等.稻瘟病菌两个陆稻菌株的致病性遗传研究[J].中国农业科学,1997,30(4):30-36.
    [93]De Wit P J G M. Molecular characterization of gene for gene systems in plant-fungus interaction and a virulence genes in control of plant pathogens [J]. Annu Rev. Phytopathol.1992,30: 391-418.
    [94]Valent B, Chumley F G. Molecular genetic analysis of the rice blast fungus Magnaporthe grisea[}]. Annual Review of Phytopathology,1991,29:443-467.
    [95]Dean R A, Nicholas J, Ebbole D J, Farman M L, Mitchell T K. The genome sequence of the rice blastfungus Magnaporthe grisea[J]. Nature,2005,434(21):980-986.
    [96]Kiyosowa S. Pathogenic variations of Pyrlcularia oryxae and their use in genctic and breeding studies[J]. SABRAO Journal 1976,8:53-67.
    [97]Kwon S H, Oh J H. Selection for blast resistantmutants in irradiated rice populations In:induced mutations against plant disenses. IAEA, Vienna,1977,130-140.
    [98]Valent B, Farral L, Chunley F G. Magnaporthe grisea genes for pathogenicity and virulence identified through a series of backcross[J]. Genetics,1991,127:87-101.
    [99]Valent B, Chunley F G. Avirulence genes and mechanisms of genetic instability in the rice blat fungus[M]. In:Rice Blast Disease. Wallingford, UK:CAB International,1994.111-136.
    [100]Silue D, Thoreau D, Nottingham J L. Identification of Magnaporthe grisea avirulence genes to seven rice cultivars[J]. Phytopathology,1992b,82:1462-1467.
    [101]王宝华,鲁国东,林伟明,等.稻瘟病菌无毒基因Avr-Pil、Avr-Pi2和Avr-Pi4a的遗传分析及其分子标记[J].遗传学报,2002,29(9):820-826.
    [102]Farman M L, Lenong S A. Genetic and physical map-ping of telomeres in the rice blast fungus, Maganporthe grisea[J]. Genetics,1995,140(2):479-492.
    [103]Mandel M A, Crouch V W, Uvini P G. Physical mapping of the Magnaporthe grisea AVR1 — MARA locus reveals the virulent allele contains two deletions[J]. Molecular Plant—Microbe Interactions,1997,10(9):1102-1105.
    [104]冯淑杰,王玲,马俊红,等.稻瘟病菌新无毒基因Avr-Pi7的遗传及物理作图[J].科学通报,2007,52(3):23-26.
    [105]Sweigard J A, Carroll A M, Kang S, et al. Identification, cloning and characterization of PWL2, a gene for host species specificity inthe rice blast fungus[J]. The plant cell,1995,7(8):1221-1233.
    [106]Shull V, Hamer J E. Genomic structure and variability in Pyricularia grisea[M]. England:CAB International,1994:65-86.
    [107]郑艳.水稻与稻瘟菌互作多基因遗传基础的研究[D].浙江大学,2008.
    [108]Dean R A, Nicholas J, Ebbole D J, et al. The genome sequence of the rice blast fungus Magnaporthe grisea[J] Nature,2005,434(21):980-986.
    [109]段永嘉,朱有勇,刘二明.稻瘟病抗性遗传规律研究[J].云南农业大学学报,1989,4(4):293-301.
    [110]Yu Z H, Mackill D J, Bonman J M, et al. Tagging genes for blast resistance in rice viu linkage to RFLP markers[J]. Theor Appl Genet,1991,81:471-476.
    [I11]Zheng K, Huang N, Bennett J. PCR-based marker-assisted selection in rice breeding [C]. IRRI Discussion Paper Series No.12, International Rice Research Institute, P. O. Box 933, Manila,Philippines,1995.
    [112]李梅芳,周开达.水稻生物技术育种[M].北京:中国农业科技出版社,2001:239-269.
    [113]周喻苹,葛颂.新一代分子标记SNPs及其应用[J].生物多样性,2003,11(5):370-382.
    [114]张泽民,张桂权.水稻S-c座位的PCR精细标记定位及分子标记辅助选择[J].作物学报,2001,27(6):704-709.
    [115]Yu Z H, Mackill D J, Bonman J M, et al. Molecular mapping of genes for resistance to rice blast(Pyricularia grisea Sacc.) [J]. Theor Appl Genet,1996,93:859-863.
    [116]Pan QH, Hu ZD, Takathoshi T, et al. Fine mapping of the blast resistance gene Pi 15, linked to Pii, on rice chromosome 9[J]. Acta Botanica Sinica,2003,45:871-877.
    [117]Tabien RE, Li Z, Paterson AH, et al. Mapping of four major rice blast resistance genes from "Lemont" and "Teqing" and evaluation of their combinatorial effect for field resistance[J]. Theor Appl Genet,2000,101:1215-1225.
    [118]李仕贵,马玉清.籼稻品种地谷抗稻瘟病基因的遗传分析和定位[J].自然科学进展,2000,10(1):44-48.
    [119]Fukuoka S, Okuno K. QTL analysis and mapping of Pi21, a recessive gene for field resistance to rice blast inJapanese upland rice[J]. Theor Appl Genet,2001, (103):185-190.
    [120]Jiang J, Wang S. Identification of a 118-kb DNA fragment containing the locus of blast resistance gene Pi-2(t) in rice[J]. Mol Genet Genomics,2002, (268):249-252.
    [121]Ballini E, Morel J B, Droc G, et al. A genome-wide meta-analysis ofrice blast resistance genes and quantitative trait loci provides new insights into partial and complete resistance[J]. Mol. Plant Microbe Interact,2008,21:859-868.
    [122]Ashikawa I, Hayashi N, Yamane H, et al. Two adjacent nucleotide-binding site-Leucine-rich repeat class genes are requiredto confer Pikm-specific rice blast resistance[J]. Genetics,2008, 180:2267-2276.
    [123]McCouch S R, Kochert G, Yu Z H, et al. Molecular mapping Of rice chromosome[J]. Theor Appl Genet,1988,76:815-829.
    [124]刘占领,雷财林,程治军,等.水稻抗稻瘟病基因的定位与克隆研究进展[J].中国农学通报2010,26(10):270-275.
    [125]Tarchini R, Valent B. A single aminoacid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pita[J]. Plant Cell,2000,12:2033-2045.
    [126]Lin F, Chen S, Que ZQ, et al. The blast resistance gene Pi37 encodes a nucleotide binding site leucine-rich repeat protein and is a member of a resistance gene cluster on rice chromosome 1[J]. Genetics,2007,177(3):1871-1880.
    [127]Bryan GT, Wu KS, Farrall L, et al. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta [J]. Plant Cell,2000,12:2033-2046.
    [128]Qu S, Liu G, Zhou B, et al. The broad-spectrum blast resistance gene Pi-9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice[J]. Genetics,2006,172:1901-1914.
    [129]Lee SK, Song MY, Seo YS, et al. Rice Pi5-mediated resistance to Magnaporthe oryzae requires the presence of two CC-NB-LRR genes[J]. Genetics,2009,181(4):1627-1638.
    [130]Zhou B, Qu S, Liu G, et al. The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea[J]. Mol. Plant Microbe Interact,2006,19(11):1216-1228.
    [131]Liu X, Lin F, Wang L, et al. The in silico map-based cloning of Pi36, a rice coiled-coil nucleotide-binding site leucine-rich repeat gene that confers race-specific resistance to the blast fungus[J]. Genetics,2007,176:2541-2549.
    [132]Lin F, Chen S, Que Z, et al. The blast resistance gene Pi37 encodes a nucleotide binding site leucine-rich repeat protein and is a member of a resistance gene cluster on rice chromosome 1[J]. Genetics,2007,177:1871-1880.
    [133]Chen X, Shang J, Chen D, et al. A B-lectin receptor kinase gene conferring rice blast resistance[J]. Plant J,2006,46:794-804.
    [134]Wang ZX, Yano M, Yamanouchi U, et al. The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeatclass of plant disease resistance genes[J]. Plant J,1999, 19:55-64.
    [135]Fukuoka S, Okuno K. QTL analysis and mapping of pi21, a recessive gene for field resistance to rice blast in Japanese upland rice[J]. Theor Appl Genet,2001,103:185-190.
    [136]Fujii K, Hayano S Y, Saito K, et al. Identification of a RFLP marker tightly linked to the panicle blast resistance gene, Pbl, in rice [J]. Breeding Science,2000,50 (3):183-188.
    [137]Hayashi N, Inoue H, Kato T, et al. Durable panicle blast-resistance gene Pbl encodes an atypical CC-NBS-LRR protein and was generated by acquiring a promoter through local genome duplication [J]. The Plant Journal,2010,64(3):498-510.
    [138]Shinoda H, Toriyama K, Yunoki T, et al. Studies on the varietal resistance of rice to blast,6 Linkage relationship of blast resistance genes[J]. Bulletin of the Chugoku Agricultural Experiment Station,1971,20:1-25.
    [139]Causse M A, Fulton T M, Cho Y G, et al. Saturated molecular map of the rice genome based on an interspecific backcross population [J]. Genetics,1994,138:1251-1274.
    [140]Okuyama Y, Kanzaki H, Abe A, et al. A multifaceted genomics approach allows the isolation of the rice Pia blast resistance gene consisting of two adjacent NBS-LRR protein genes [J]. The Plant Journal,2011,66,467-479.
    [141]Wang Z X, Yano M, Yamanouchi U, et al. The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes [J]. The Plant Journal, 1999,19(1):55-64.
    [142]Chen X W, Li S G, Xu J C, et al. Identification of Two Blast Resistance Genes in a Rice Variety, Digu [J]. Journal of Phytopathology,2004,152(2):77-85.
    [143]Chen X W, Shang J J, Chen D X, et al. A B-lectin receptor kinase gene conferring rice blast resistance [J]. The Plant Journal,2006,46(5):794-804.
    [144]Shang J J, Tao Y, Chen X W, et al. Identification of a New Rice Blast Resistance Gene, Pid3, by Genomewide Comparison of Paired Nucleotide-Binding Site-Leucine-Rich Repeat Genes and Their Pseudogene Alleles Between the Two Sequenced Rice Genomes[J]. Genetics,2009,182:1303-1311.
    [145]Hayashi K, yoshida H, Ashikawa I. Development of PCR-based allele-specific and InDel marker sets for nine rice blast resistance genes [J]. Theoretical and Applied Genetics,2006,113:251-260.
    [146]Zhai C, Lin F, Dong Z Q, et al. The isolation and characterization of Pik, a rice blast resistance gene which emerged after rice domestication [J]. New Phytologist,2011,189(1):321-334.
    [147]Sharma T R, Madhav M S, Singh B K, et al. High-resolution mapping, cloning and molecular characterization of the Pi-kh gene of rice, which confers resistance to Magnaporthe grisea [J]. Molecular Genetics and Genomics,2005,274(6):569-578.
    [148]Li L Y, Wang L, Jing J X, et al. The Pikm gene, conferring stable resistance to isolates of Magnaporthe oryzae, was finely mapped in a crossover-cold region on rice chromosome 11 [J]. Molecular Breeding,2007,20(2):179-188.
    [149]Ashikawa I, Hayashi N, Yamane H, et al. Two Adjacent Nucleotide-Binding Site-Leucine-Rich Repeat Class Genes Are Required to Confer Pikm-Specific Rice Blast Resistance [J]. Genetics,2008, 180(4):2267-2276.
    [150]Wang L, Xu X K, Lin F, et al. Characterization of Rice Blast Resistance Genes in the Pik Cluster and Fine Mapping of the Pik-p Locus [J]. Phytopathology,2009,99(8):900-905.
    [151]Yuan B, Zhai C, Wang W J, et al. The Pik-p resistance to Magnaporthe oryzae in rice is mediated by a pair of closely linked CC-NBS-LRR genes [J]. Theoretical and Applied Genetics,2011,122(5): 1017-1028.
    [152]Araki E, Yanoria M J T, Ebron L A, et al. Mapping of a rice blast resistance gene Pish [J]. Breeding Research (Suppl.2),2003,5:333. (in Japanese).
    [153]Takahashi A, Hayashi N, Miyao A, et al. Unique features of the rice blast resistance Pish locus revealed by large scale retrotransposon-tagging [J]. BMC Plant Biology,2010,1:175.
    [154]Kaji R, Ogawa T, Nishimura M. RFLP mapping of a blast resistance gene, Pit, in rice [J]. Breeding Science (Suppl.1),1997,47:37.
    [155]Hayashi K, yoshida H, Ashikawa I. Development of PCR-based allele-specific and InDel marker sets for nine rice blast resistance genes [J]. Theoretical and Applied Genetics,2006,113:251-260.
    [156]Hittalmani S, Parco A, Mew T V, et al. Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice [J]. Theoretical and Applied Genetics,2000,100: 1121-1128.
    [157]Gregory T B, Wu K S, Farrall L, et al. A Single Amino Acid Difference Distinguishes Resistant and Susceptible Alleles of the Rice Blast Resistance Gene Pi-ta [J]. The Plant Cell,2000,12(11): 2033-2046.
    [158]Zhou B, Qu S H, Liu G F, et al. The Eight Amino-Acid Differences Within Three Leucine-Rich Repeats Between Pi2 and Piz-t Resistance Proteins Determine the Resistance Specificity to Magnaporthe grisea [J]. Molecular Plant-Microbe Interactions,2006,19(11):1216-1228.
    [159]吴金红,蒋江松,陈惠兰,等.水稻稻瘟病抗性基因Pi-2(t)的精细定位[J].作物学报,2002,28(4):505-509.
    [160]Jeon J S, Chen D, Yi G H, et al. Genetic and physical mapping of Pi5(t), a locus associated with broad-spectrum resistance to rice blast [J]. Molecular Genetics and Genomics,2003,269(2):280-289.
    [161]Lee S K, Song M Y, Seo Y S, et al. Rice Pi5-Mediated Resistance to Magnaporthe oryzae Requires the Presence of Two Coiled-Coil-Nucleotide-Binding-Leucine-Rich Repeat Genes [J]. Genetics,2009,181(4):1627-1638.
    [162]Liu G, Lu G, Zeng L, et al. Two broad-spectrum blast resistance genes, Pi9(t) and Pi2(t), are physically linked on rice chromosome 6 [J]. Molecular Genetics and Genomics,2002,267(4):472-480.
    [163]Qu S H, Liu G F, Zhou B, et al. The Broad-Spectrum Blast Resistance Gene Pi9 Encodes a Nucleotide-Binding Site-Leucine-Rich Repeat Protein and Is a Member of a Multigene Family in Rice [J]. Genetics,2006,172:1901-1914.
    [164]Fukuoka S, Okuno K. QTL analysis and mapping of pi21, a recessive gene for field resistance to rice blast [J]. Theoretical and Applied Genetics,2001,103(2-3):185-190.
    [165]Fukuoka S, Saka N, Koga H, et al. Loss of Function of a Proline-Containing Protein Confers Durable Disease Resistance in Rice [J]. Science,2009,325(5943):998-1001.
    [166]Liu X Q, Wang L, Chen S, et al. Genetic and physical mapping of Pi36(t), a novel rice blast resistance gene located on rice chromosome 8 [J]. Molecular Genetics and Genomics,2005,274(4): 394-401.
    [167]Liu X Q, Lin F, Wang L, et al. The in Silico Map-Based Cloning of Pi36, a Rice Coiled-Coil-Nucleotide-Binding Site-Leucine-Rich Repeat Gene That Confers Race-Specific Resistance to the Blast Fungus [J]. Genetics,2007,176(4):2541-2549.
    [168]Chen S, Wang L, Que Z Q, et al. Genetic and physical mapping of Pi37(t), a new gene conferring resistance to rice blast in the famous cultivar St. No.1 [J]. Theoretical and Applied Genetics,2005, 111(8):1563-1570.
    [169]Lin F, Chen S, Que Z Q, et al. The Blast Resistance Gene Pi37 Encodes a Nucleotide Binding Site-Leucine-Rich Repeat Protein and Is a Member of a Resistance Gene Cluster on Rice Chromosome 1 [J]. Genetics,2007,177(3):1871-1880.
    [170]Chen H L, Wang S P, Xing Y Z, et al. Comparative analyses of genomic locations and race specificities of loci for quantitative resistance to Pyricularia grisea in rice and barley [J]. Proc Natl Acad Sci USA,2003,100(5):2544-2549.
    [171]杨红,储昭晖,傅晶,等.抗稻瘟病主效QTL rbr2是Pib的等位基因[J].分子植物育种,,2008,6(2):213-219.
    [172]杨勤忠,林菲,冯淑杰,等.水稻稻瘟病抗性基因的分子定位及克隆研究进展[J].中国农业科学,2009,42(5):1601-1615.
    [173]魏才强.水稻抗瘟育种技术[J].种子世界,2003,(10),6-7.
    [174]林世成.水稻多抗性育种.遗传与育种,1978,(4):19-20.
    [175]王存晋,刘澍才.辽宁省作物种质资源工作现状与展望[J].辽宁农业科学,1998(2):42-43.
    [176]郭坤池.水稻品种资源多样性利用及保护[J].福建稻麦科技,1995,13(1):53-56.
    [177]高卫东,王述民,方嘉禾.世界种质资源的研究[J].世界农业,1997,220(8):21-23.
    [178]潘大建,范芝兰,李晨,等.水稻种质资源收集、保存、评价与创新.广东农业科学,2006,9: 84-87.
    [179]稻种资源抗病虫鉴定子专题协作组.稻种资源抗稻瘟病性鉴定研究.作物品种资源,1993,(1):32-33.
    [180]杨忠义,曹永生,苏艳,等.中国三系杂交粳稻种质资源的评价.西南农业学报,2007,6(20):1151-1156.
    [181]王金英,江川.国外稻种资源在福建的引进、评价与利用.福建稻麦科技,2008,12:8-12.
    [182]王金英,江川.福建优异稻种资源[J].福建稻麦科技,1996f4):27-35.
    [183]陈家豪,张学博,曾汉章,等.福建早稻主栽品种(组合)抗瘟性鉴定及其影响因素[J].福建农业大学学报,2000,29(3):346-350.
    [184]唐乐尘,张学博,邱红芳.杂交水稻抗瘟性的遗传系谱分析与优化组合[J].福建农业大学学报(自然科学版),1994,23(3):286-292.
    [185]周少川,朱小源,江雁芳,等.稻瘟病持久抗性在三系杂交稻上的导人[J].中国水稻科学,1999,13(2):59-72.
    [186]袁筱萍,魏兴华,余汉勇,等.部分中国栽培稻资源对稻瘟病的抗性分析[J].植物保护,2005,31(3):27-31.
    [187]黄锐.杂交水稻及其亲本抗瘟性和农艺性状评价[D].四川农业大学,2007.
    [188]张晋.95份水稻抗瘟资源的抗瘟性和农艺性状评价[D].四川农业大学,2007.
    [189]郑艳.水稻稻瘟病种质资源筛选和评价[D].四川农业大学,2008.
    [190]刘巧稚.24份优质抗稻瘟病种质资源遗传多样性[D].四川农业大学,2007.
    [191]唐乐尘,张学博,邱红芳.杂交水稻抗瘟性的遗传系谱分析与优化组合[J].福建农业大学学报(自然科学版),1994,23(3):286-292.
    [192]陈德西,李仕贵,马炳田,等.水稻抗稻瘟病育种研究进展[J].安徽农学通报,2008,14(17):206-209.
    [193]雷捷成,游年顺,黄利兴,等.籼稻雄性不育系福伊A抗稻瘟特性的研究与应用[J].福建农林大学学报,2004,33(2):141-147.
    [194]Wang GL, Mackill DJ, Bonman JM, et al. RFLP mapping of genes conferring complete and partial resistance to blast in a durably resistant rice cultivar[J]. Genetics,1994,136(4): 1421-1434.
    [195]李进斌,姚春馨,许明辉,等.三个外源抗稻瘟病基因聚合与抗性研究[J].西南农业学报,2007(1):7-10.
    [196]李江,黄东益.水稻抗稻瘟病分子育种研究进展[J].安徽农业科学,2007,35(35):11413-11415.
    [197]赵虔华,钟鸣,马慧,等.粳稻抗稻瘟病细胞突变体筛选技术体系的建立[J].安徽农业科学,2005,33(5):757-758.
    [198]Tanksley S D, YoungN D, Paterson A H, et al. RFLP mapping in plantbreeding:new tools for old sciences [J]. Biotechnology,1989, (7):257-264.
    [199]李仕贵,马玉清,王玉平,等.利用微卫星标记鉴定水稻的稻瘟病抗性[J].生物工程学报,2000,16(3):324-327.
    [200]陈学伟,李仕贵,马玉清,等.水稻抗稻瘟病基因Pi-d (t)、Pi-b、Pi-ta2的聚合及分子标记选择[J].生物工程学报,2004,20(5):708-714.
    [201]陈红旗,分子标记辅助聚合3个稻瘟病抗性基因.[扬州大学硕士学位论文],2005.
    [202]Liu S P, Li X, Wang C Y, et al. Improvement of Resistance to Rice Blast in Zhenshan 97 by Molecular Marker-aided Selection [J]. Acta Botanica Sinica,2003,45 (11):1346-1350.
    [203]Huang N, Angeles E R, Domingo J, Magpantay G, et al. Pyramiding of bacterial blight resistance genes in rice:markerassisted selection using RFLP and PCR[J]. Theor Appl Genet,1997,95: 313-320.
    [204]陈志伟,郑燕,吴为人,等.抗稻瘟病基因Pi-2(t)紧密连锁的SSR标记的筛选与应用[J].分子植物育种,2004(3):321-325.
    [205]王忠华,贾育林,吴殿星,等.水稻抗稻瘟病基因pi-ta的分子标记辅助选择[J].作物学报,2004,30(12):1259-1265.
    [206]徐建龙,赵新立.水稻白叶枯病抗性基因的聚合及其遗传效应[J].作物学报,1996,22(2):129-134.
    [207]黄富,程开禄,彭国亮,等.四川省水稻品种抗稻瘟病性规范化鉴定评价体系[J].中国农业大学学报,1998,3(增刊):22-26.
    [208]中华人民共和国国家标准.优质稻谷.GB/T17891-1999.北京:中国标准出版社,1999,192.
    [209]中华人民共和国农业部.中华人民共和国农业部部标准[M].北京:技术标准出版社,1978.
    [210]高之仁.数量遗传学[M].成都:四川大学出版社,1986.
    [211]McCouch S R, Kochert G, Yu Z H, et al. Molecular mapping Of rice chromosome[J]. Theor Appl Genet,1988,76:815-829.
    [212]王群,杨佩文,杨勤忠,等.云南省部分稻种资源稻瘟病抗性评价及基因分析[J].云南农业大学学报,2001,16(4):256-259.
    [213]李初军,刘建萍,贾丽颖,等.我国水稻育种的现状与展望[J].中国种业,2007(1):11-12.
    [214]李小湘,段永红,彭新德,等.湖南水稻种质资源研究进展与共享对策[J].湖南农业科学,2006,(1):17-19.
    [215]Ichimaru Y.佐贺县宇和场区早季稻品种越光的生育诊断:2节间性状与倒伏间的关系[J].日本九州支部汇报,1989(56):28-30.
    [216]汤圣祥,闵绍楷.水稻育种目标的制定[J].中国稻米,1997(2):38-39.
    [217]陈柏槐.湖北省优质水稻与发展思路[J].中国稻米,2004,(5):12-15.
    [218]马玉清,李世贵,王旭东,等.四川优质水稻育种现状与发展对策[J].作物杂志,2002,(2):47-49.
    [219]司徒志谋,罗森辉,蔡惠娇,等.广东省优质水稻生产现状与发展策略[J].中国稻米,2004,(2):41-42.
    [220]王建平,乔中英,周新伟,等.优质水稻产量形状特点及其改良策略[J].江苏农业科学,2003,(5):22-23.
    [221]廖西元,陈庆根,庞乾林.我国优质水稻生产现状与发展对策[J].农业技术经济,2002,(5):33-35.
    [222]Ahn,1994;朱小源等[[213], Ahn, S W. International collaboration on breeding for resistance to rice blast [M]. Zeigler R S, Leong S A, Teng P S. Rice Blast Disease. Wallingfoed:CAB International, In:Rice Blast Disease. CAB Internal, Wallingford,1994, pp.137-153.
    [223]朱杰,朱永昌,龚学书,等.核质不同的杂交稻亲本抗瘟性遗传[J].西南农业大学学报,10(植物专辑):1997,126-128.
    [224]《粮食科技与经济》编辑部.引导世界潮流的中国水稻业蓄势待发.粮食科技与经济,2003,5:1-2.
    [225]应存山等,1997应存山,盛锦山,罗利军,等.中国优异稻种资源[M].北京:中国农业出版社,1997:1-10.
    [226]鲁伟林,余明慧,胡建涛,等.水稻不同性状的配合力研究进展及应用[J].安徽农业科学,2006,34(19):4840-4841.
    [227]练进旺,李勇泉,杨慧杰,等.若干杂交水稻新组合的配合力分析[J].福建稻麦科技,1999(3):1-4.
    [228]游晴如,黄庭旭,郑家团,等.几个水稻新恢复系的配合力、遗传力分析[J].现代农业科技,2006(12):99-104.
    [229]廖伏明,周绅炉,盛孝邦,等.籼型三系杂交水稻主要农艺性状配合力研究[J].作物学报,1999,25(5):622-631.
    [230]栗学俊,韦鹏霄,吕志仁,等.杂交水稻产量性状配合力研究[J].广西植物,2004,24(1):91-96.
    [231]罗志祥,丁超尘,陈多璞,等.几个籼型三系杂交水稻亲本的配合力及遗传力研究[J].安徽农业科学,1999(4):315-317.