基于贝叶斯网络的水质风险分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长期以来,水环境的治理效果受到许多不确定性因素的影响,这些不确定性来源于监测资料的短缺以及人类认识水平的有限性。不确定性总是存在,不可能完全被消除,此时,传统的确定性研究方法表现出不适应性。量化污染物预测结果的不确定性并制定考虑不确定性的管理决策成为目前的研究热点。概率统计理论可以量化随机不确定性,是目前最主要的不确定性研究方法。基于概率统计理论的不确定性研究方法又分为基于机理模型的方法和基于统计模型的方法。传统的贝叶斯网络是一种统计模型,基于数据驱动,通过数据来建立变量间的统计关系。此外,还存在一种特殊的贝叶斯网络,它利用机理模型代表变量间的关系,是基于机理模型的方法和基于统计模型的方法的融合。
     本文以钱塘江流域的子流域东阳江流域为案例,利用概率统计理论量化水质超标风险。先后建立了基于机理模型的贝叶斯网络BN1以及基于数据驱动的贝叶斯网络BN2。前者用于计算不同降雨和气温条件下的水质超标风险,后者用于计算考虑降雨和气温随机性时的水质超标风险。BN1的优势是能够基于少资料建模,BN2的优势是推理迅速,适用于大量的风险计算。本文对两种方法取长补短,实现了优势互补。此外,以2020s时期(2011-2030年)为预测期,进一步研究了气候变化对东阳江水质超标风险的可能影响,以便决策者对未来水质情况进行评估并做出预防性决策。论文的主要内容和成果如下:
     (1)建立了基于降雨径流模型和水质模型的贝叶斯网络BN1,将本案例的主要控制变量、中间变量和响应变量相互连接,并用降雨径流模型、水质模型等机理模型(即子模型)来代表各变量之间的关系。利用一种新的MCMC算法—DRAM,对子模型进行贝叶斯参数估计(亦即对BN1的参数估计),然后通过对BN1进行MC随机模拟实现了不同降雨、气温、水库下泄流量和点污染源排放条件下的水质超标风险计算。并利用DRAM将点源与BN1的水质模型参数一同进行贝叶斯参数估计,既有效量化了不确定性,又突破了数据的限制实现了少资料地区建模。
     (2)建立了基于数据驱动的贝叶斯网络BN2,选择6月和12月为典型月份,将月均降雨和月均气温的随机分布输入BN1进行随机模拟,利用基于概率分布的柔性离散方法对降雨、气温以及BNl模拟产生的随机数进行离散以用于训练BN2的参数,最后利用BN2推理计算了减排前后考虑降雨和气温随机性的水质超标风险。此外,还计算了增加水库下泄流量对水质超标风险的影响,结果显示,通过增加水库下泄流量可以有效降低水质超标风险。BN2的一个重要优势是推理计算迅速,当参数估计完毕,各类风险计算可以通过推理计算很快完成。尤其是当随机模拟次数比较多、风险计算量比较大、机理模型比较复杂时,BN2的效率要明显高于BN1。
     (3)择2020s时期为预测期,利用大气环流模式HadCM3在A1B、A2和B1三种气候情景下的预测结果,并选择天气发生器对预测结果进行降尺度处理生成逐日降雨和气温数据。结果显示2020s时期东阳市的月均降雨量和月最高、最低气温没有明显变化,但强降雨和高温天气发生的概率增加。然后利用BN2计算了2020s时期考虑降雨和气温随机性时6月份和12月份的水质超标风险。最后将基准期和预测期的水质超标风险进行综合比较,为管理者从不同角度预防未来水质超标提供借鉴。
For a long time, water environmental treatment is affected by uncertainty, which comes from the shortage of monitoring data and the limited knowledge of human. Uncertainty will always exist and can not be completely avoided. Then, the traditional deterministic methods show their unadaptability. Studying on the uncertainty methods to quantify the uncertainty of water quality prediction and make risk-based descisions has become a focus recently. Probability and statistics theory can be used to quantify the statistical uncertainty, and is the most important uncertainty analysis method. Uncertainty methods based on probability and statistics theory can be further divided into method based on mechanism model and method based on statistical model. The traditional Bayesian Network is data-driven statistical model, that is, the statistical relationships between viariables are estimated by data. In addtion, there is a special kind of Bayesian Network, which uses mechanism models to represent relationships between variabes. It is a couple of methods based on mechanism model and that based on statistical model.
     The subbasin of Qiantang River Basin—ongyang River Basin is taken as a study case, and the probability and statistics theory is used to quantify the risk of water quality exceeding standard values. Two Bayesian Networks—BN1and BN2are constructed. BN1is used to calculate the risks of water quality exceeding the standard values under different rainfall amount and temperature, and BN2is used to calculate the corresponding risks when considering the statistical distributions of rainfall and temperature. The main advantage of BN1is that it can be parameterized by little data, and that of BN2is that it can quickly calculate a great deal of risks. These two methods can be completment with each other's advantages. In addition, for the period2020s, the possible impact of climate change on the risks of water quality exceeding the standard values in Dongyang River is further studied in purpose of helping decision-makers to assess future water quality and make preventive descisions. The main contents and research results are as follows:
     (1) A mechanism-model-based Bayesian Network—BN1, which connects control, intermediate and response viariables and uses mechanism modes (which are submodels) to stand for the relationships of viariables, is built. A new MCMC algorithm—RAM is applied on Bayesian parameter estimation of submodels(that is also parameter estimation of BN1). Then, MC simulations are carried out on BN1to calculate the risks of water quality exceeding standard values under different rainfall amount and temperature. DRAM can be used to make Bayesian estimation of point pollution dsicharge and water quality parameter at the same time. That can breakthrough the limitation of little data, and also quantify the uncertainty.
     (2) A data-based Bayesian Network—BN2is built. June and December are chosen as typical months, and the distributions of monthly average rainfall and temperature of June and Decmber are inputed to BN1to carry out MC simulations. A probability-based soft discretization approach is used to discretize the random results of BN1, then the discretized data is used to train BN2. At last, by the inference algorithm of BN2, the water quality risks when considering the statistical distributions of rainfall and temperature are calculated. Furthermore, the risks under more reservoir discharge are also calculated. The important advantage of BN2is its rapid reasoning algorithm, which can qulickly calculate all kinds of risks once parameter estimation is finished. Especially, when there are many times of MC simulation, or many risks need to be calculated, or complex mechanism models, BN2is significantly more efficient than BN1.
     (3) This paper applies the LARS-WG weather generator to simulate daily rainfall and temperature data of a single station under the A1B, A2and B1emission scenarios using the results of General Circulation Model HadCM3. The results show that the monthly average rainfall, monthly highest and lowest temperature will not change obviously, but the frequency of heavy rainfall and high temperature will possibly increase. Then, based on BN2, water quality risks when considering stochastic uncertainty of rainfall and temperature of June and December in2020s are calculated. Finally, a comparison of water quality risks between baseline period, A1B, A2and B1emission scenarios is made in order to provide a reference for decision-makers to prevent water quality from exceeding standard values.
引文
[1]Henderson B, Bui E. Determining uncertainty in sediment & nutrient transport models for ecological risk assessment [R]. Ocala:2005.
    [2]Sasikumar K, Mujumdar P. Grey fuzzy optimization model for water quality management of a river system [J]. Advances in Water Resources.2006,29(7): 1088-1105.
    [3]Sun S, Fu G T, Djordjevi c S, et al. Separating aleatory and epistemic uncertainties:Probabilistic sewer flooding evaluation using probability box [J]. Journal of Hydrology.2012,420-421:360-372.
    [4]胡国华,夏军.风险分析的灰色-随机风险方法研究[J].水力学报.2001,4:1-6.
    [5]胡国华.灰色概率分布及其参数估计[J].湖南师范大学自然科学学报.2002,25(2):16-20.
    [6]Haimes Y. Risk modeling, assessment, and management [M]. Wiley, New York: 1998.
    [7]Oberkampf W L, Helton J C, Joslyn C A, et al. Challenge problems:uncertainty in system response given uncertain parameters [J]. Reliability Engineering and System safety.2004,85(1-3):11-19.
    [8]Schaarup-Jensen K., Hvitved-Jacob sen T. Causal stochastic simulation of dissolved oxygen depletion in rivers receiving combined sewer overflows [J]. Water Science and Technology.1994,29:191-198.
    [9]Lindenschmidt K E, Hesser, F B, Rode M. Integrating Water Quality Models in the High Level Architecture (HLA) Environment [J]. Advances in Geosciences. 2005,4:51-56.
    [10]Madsen H O, Krenk S and Lind N C. Methods of structural safety [M]. Englewood Cliffs, NJ:Prentice-Hall, Inc,1986.
    [11]Omlin M, Reichert P. A comparison of techniques for the estimation of model prediction uncertainty [J]. Ecological Modelling.1999,115(1):45-59.
    [12]Portielje R, Hvitved-Jacobsen T and Schaarup-Jensen K. Risk analysis using stochastic reliability methods applied to two cases of deterministic water quality models [J]. Water Resources.2000,34(1):153-700.
    [13]Maier H R. Maier, Lence B J, Tolson B A, et al. First-order reliability method for estimating reliability, vulnerability, and resilience[J]. Water resources Research.2001,37(3):
    [14]Hamed M M, El-Beshry M Z.Uncertainty Analysis in Dissolved Oxygen Modeling in Streams[J]. Environmental Management.2004,34(2):233-244.
    [15]Han K Y, Kim S H and Bae D H.Stochastic water quality analysis using reliability method [J]. Journal of the American Water Resources Association. 2001,37(3):695-708.
    [16]Ng T L and Eheart J W. Effects of Discharge Permit Trading on Water Quality Reliability [J]. Journal of Water Resources Planning and Management.2005, 131(2):81-88.
    [17]Gorden N, Salmond D and Smith A. Novel approach to nonlinear/non-Gaussian Bayesian stater estimation [J]. IEE Procedings-F(S0956-375X).1993,140(2): 107-113.
    [18]Ansari A, Jedidi K. Bayesian Factor Analysis for Multilevel Binary Observations [J]. Psychometrika.2000,65(4):475-496.
    [19]Johansen A M, Doucet A and Davy M. Particle methods for maximum likelihood estimation in latent variable models [J]. Statistical and Computing.2008,18: 47-57.
    [20]Fuentes M, Guttorp P and Challenor P. Statistical Assessment of Numerical Models [J]. International Statistical Review.2003,71(2):201-221.
    [21]Kennedy M C and O'Hagan A. Bayesian calibration of computer models [J]. Journal of the Royal Statistical Society.2001,63(3),425-464.
    [22]Craig P S, Goldstein M, Rougier J C, et al. Bayesian forecasting for complex systems using complex simulators [J]. Journal of the American Statistical Association.2001,96 (454):717-729.
    [23]Krzysztofowicz R. Bayesian Forecasting via Deterministic Model [J], Risk Analysis.1999,19(4):739-749.
    [24]Krzysztofowicz R. Bayesian theory of probabilistic forecasting via hydrologic model [J]. Water Resources Research.1999,35(9):2739-2750.
    [25]Krzysztofowicz R. Bayesian system for probabilistic river stage forecasting [J]. Journal of Hydrology.2002,268:16-40.
    [26]Poole D, Raftery A E. Inference for deterministic simulation models:the Bayesian melding approach [J]. Journal of the American Statistical Association. 2000,95(452):1244-1255.
    [27]Hornberger G, Spear R. An approach to the preliminary analysis of environmental systems [J]. Environmental Mamagement.1981,12:7-18.
    [28]Hornberger, G. M. and R. C. Spear. An approach to the analysis of behavior and sensitivity in environmental systems. In:Beck, M. B. and G. van Stratten (eds.), Uncertainty and Forecasting of Water Quality, Springer-Verlag.1983:101-116.
    [29]Rose K, Smith E and Gardner R, et al. Parameter sensitivities, Monte Carlo filtering and model forecasting under uncertainty [J]. Journal of Forecasting. 1991,10:117-133.
    [30]Gelman A, Carlin J and Smith L, et al. Hydrogeological decision analysis:1. A framework [J]. Ground Water.1990,28(5):738-766.
    [31]Bernardo J, Smith A. Bayesian Theory. Wiley, Chichester,1994.
    [32]Beven K, Binley A. The future of distributed models-model calibration and uncertainty prediction [J]. Hydrological Processes.1992,6:279-298.
    [33]Sorooshian S, Gupta V K. Model Calibration [C]. In:Computer Models of Watershed Hydrology, V.P. Singh (Editor). Water Resources Publications, Highlands Ranch, Colorado.1995:33-68.
    [34]Freer J, McDonnell K J and Beven D, et al. Topographic Controls on Subsurface storm flow at the hillslope scale for two hydrological distinct small catchments [J]. Hydrological Processes.1997,11(9):1347-1352.
    [35]Franks S W, Gineste P and Beven K, et al. On constraining the predicitions of a distributed models:the incorporation of fuzzy estimates of saturated areas into the calibration process [J]. Water Resources Research.1998,34(4):787-797.
    [36]Gelman S, Geman D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images [C]. IEEE Trans. Pattern Anal. Mach. Intel,1984,6: 721-741.
    [37]Gelman A, Rubin D B. Inference from iterative simulation using multiple sequences [J]. Statistic Science.1992,7(4):457-472.
    [38]Diaconis P, Holmes S, Neal R M. Analysis of a non-reversible Markov chain sampler [R]. Biometrics Unit:Cornell University,1997.
    [39]Bjorn E. MCMC Analysis of Diffusion Models with Application to Finance [J]. Journal of Business and Economy Statistics.2001,19(2):177-191.
    [40]Chib S, Greenberg E. Understanding the Metropolis-Hastings Algorithm [J]. American Statistician,1995,49(4):327-335
    [41]Haario H, Saksman E, and Tamminen J. An adaptive Metropolis algorithm [J]. Bernoulli.2001,7(2):223-242.
    [42]Zuev K M, Katafygiotis L S. Modified Metropolis-Hastings algorithm with delayed rejection [J]. Probabilistic Engineering Mechanics,2011,26(3): 405-412.
    [43]Haario H, Laine M, Miria A, and Saksman E:DRAM:Efficient adaptive MCMC [J]. Statistics and Computing,2006,16(4):339-354.
    [44]Borsuk, M. et al. A Bayesian network of eutrophication models for synthesis, prediction, and uncertainty analysis [J]. Ecological Modelling.2004,173(2-3): 219-239.
    [45]Said, A. The implementation of a Bayesian Network for Watershed Management Decision [J]. Water Resourses Management.2006,20(4):591-605.
    [46]Alameddine I, Cha Y, Reckhow K H. An evaluation of automated structure learning with Bayesian networks:An application to estuarine chlorophyll dynamics [J]. Environmental Modelling & Software.2011,26(2):163-172.
    [47]Aguilera P A, Fernandez A, Fernandez R, Rumi A, et al. Bayesian networks in environmental modeling [J]. Environmental Modelling & Software.2011,26(12): 1376-1388.
    [48]Nash D, Hannah M. Using Monte-Carlo simulations and Bayesian Networks to quantify and demonstrate the impact of fertiliser best management practices [J]. Environmental Modelling & Software.2011,26(9):1079-1088.
    [49]Bowles D S, and Grenny W J. Estimation of diffuse loading of water quality pollutants by Kalman Filtering [C]. in Application of Kalman Filter to Hydrology, Hydraulics, and Water Resources (edited by Chiu, C.-L.), University of Pittsburgh,1978:581-597.
    [50]Eigbe U, Bech M and Wheater H S, et al. Kalman filtering in groundwater flow modelling:problems and prospects [J]. Stochastic Hydrology and Hydraulics. 1998,12(1):15-32.
    [51]Whelan M J, Gandolfi C, Bischetti G B. A simple stochastic model of point source solute transport in rivers based on gauging station data with implications for sampling requirements [J]. Water Resources,1999,33(14):3171-3181.
    [52]何理,曾光明.河流水环境中的非突发性水质风险模型研究[J].环境污染与防治,2003,25(1):52-53.
    [53]Ganoulis J, Anagnostopoulos P and Mpimpas H. Fuzzy numerical simulation of water quality [C]. in:Proc 30th IAHR Congress, Thessaloniki,2003:147-152.
    [54]Sasikumar K, Mujumdar P. Fuzzy optimization model for water quality management of a river system [J]. Journal of Water Resources Planning and Management.1998,124(2):79-88.
    [55]夏军.灰色系统水文学—理论、方法及应用[M].武汉:华中理工大学出版社,2000.
    [56]曾光明,张国强.河流水质系统灰色模型的识别、模拟和应用[J].中国环境科学.1994,14(1):57-61.
    [57]Sasikumar K, Mujumdar P. Application of fuzzy probability in water quality management of a river system [J]. International Journal of System Science.2000, 31(5):575-591.
    [58]何理,曾光明.水环境中的灰色水质风险研究[J].重庆环境科学,2002,24(1):55-57.
    [59]Reckhow K H. Water quality prediction and probability network models [J]. Canadian Journal of fishies and aquatic sciences.1999,56(7):1150-1158.
    [60]Borsuk M E, Schweizer S and Reichert P. A Bayesian network model for integrative river rehabilitation planning and management [J]. International Environmental Assessment and Management.2011:1-11.
    [61]Shachter R D, Kenley C.R. Gaussian Influence Diagrams [J]. Management Science.1989:35(5),527-550.
    [62]Frey B J, Hinton G E. Variational learning in nonlinear Gaussian belief networks [J]. Neural Computation.1999,11(1):193-214.
    [63]Ramoni M, Sebastiani P. Robust learning with missing data [J]. Machine Learning.2001,45(2):147-170.
    [64]Darwiche, A Modelling and reasoning with Bayesian networks [M]. first ed. Cambridge UP., New York,2009.
    [65]李连文,郭海鹏.贝叶斯网引论[M].北京:科学出版社,2006.
    [66]Henrion M.Search-based methods to bound diagnostic probabilities in very large belief nets[C].//Proceedings of Seventh Conference on Uncertainty in Artificial Intelligence,1991.
    [67]Poole D. The use of conflicts in searching Bayesian networks [C]//Proceedings of the Ninth Conference on Uncertainty in AI Washington D. C,1993:359—367.
    [68]Santos E J, Shimony S E. Exploiting casebased independence for approximating marginal probabilities [J]. International Journal of Approximate Reasoning, 1996(14):25-54.
    [69]Horvitz E, Suermondt H J, Cooper G F. Bounded conditional:flexible inference for decisions under scarce resources[C]//Proceedings of the Fifth Conference on Uncertainty in Artificial Intelligence, Windsor, Ontario,1989:182-193.
    [70]凌方,王建东.一种连续属性离散化的新方法[J].数据采集与处理.2002,17(2):
    [71]Ebert-Phoff I. A Probability-Based Approach to Soft Discretization for Bayesian Networks [R]. George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology,2009.
    [72]Green P J. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination [J]. Biometrika,1995,82(4):711-732.
    [73]Green P J. Trans-dimensional Markov chain Monte Carlo. In Peter J. Green, Nils Lid Hjort, and Sylvia Richardson (Editors), Highly Structured Stochastic Systems, number 27 in Oxford Statistical Science Series. Oxford University Press,2003.
    [74]Laine M, Tamminen J. Aerosol model selection and uncertainty modelling by adaptive MCMC technique [J]. Atmospheric Chemistry and Physics.2008, 8:7697-7707.
    [75]Liu Y, Yang P and Hu C, et al. Water quality modeling for load reduction under uncertainty:A Bayesian approach [J]. Water Research.2008,42:3305-3314.
    [76]Michalak A M, Kitanidis P K. A method for enforcing parameter nonnegativity in Bayesian inverse problems with an application to contaminant source identification. Water Resources Research.2003,39 (2):1033.
    [77]Michalak A M, Kitanidis, P K. Estimation of historical groundwater contaminant distribution using the adjoint state method applied to geostatistical inverse modeling.Water Resources Research.2004,40 (8), W08302.
    [78]范丽军.统计降尺度方法的研究及其对中国未来区域气候情景的预估[D].北京:中国科学院,2006.
    [79]Tipathir S, Srinivas V V, Nanjundiah R S. Dowinscaling of precipitation for climate change scenarios:A support vector machine approach [J].Journal of Hydrology,2006,330(3/4):621-640.
    [80]丛振涛,辛儒,姚本智等.基于HadCM3模式的气候变化下北京地区冬小麦耗水研究[J].水利学报,2010,41(9):1101-1107.
    [81]郝振纯,鞠琴,王璐等.气候变化下淮河流域极端洪水情景预估[J].水科学进展,2011,22(5):605-614.
    [82]张建云,王国庆,贺瑞敏等.黄河中游水文变化趋势及其对气候变化的响应[J]. 水科学进展,2009,20(2):153-158.
    [83]Semenov M A, Brooks R J, Barrow E M, et al. Comparison of the WGEN and LARS-WG stochastic weather generators in diverse climates[J]. Climate Research,1998 (10):95-107.
    [84]Kou X J, Ge J P, Wang Y, et al. Validation of the weather generator CLIGEN with daily precipitation. data from the Loess Plateau, China [J]. Journal of Hydrology,2007,347(3-4):347-357.
    [85]Chen J, Brissetter F P, Leconte R. A daily stochastic weather generator for preserving low-frequency of climate variability [J]. Journal of Hydrology,2010, 388(3-4):480-490.
    [86]Castellv P, Mormeneo I, PEREZ P J. Generation of daily amounts of precipitation from standard climatic data:a case study for Argentina [J]. Journal of Hydrology, 2004,289(1-4):286-302.
    [87]Semenov M A. Simulation of extreme weather events by a stochastic weather generator [J]. Climate Research,2008,35:203-212.
    [88]王幼奇,樊军,邵明安LARS-WG天气发生器在黄土高原的适应性研究[J].中国水土保持科学,2007,5(3):24-27.
    [89]Semenov M A, Pierre S. Use of multi-model ensembles from global climate models for assessment of climate change impacts [J]. Climate Research,2010, 40(1):1-14.
    [90]Semenov M A, Barrow E M. LARS-WG:a stochastic weather generator for use in climate impact studies. LARS-WG 3.0 manual [EB/OL]. http://www.rothamsted.bbsrc.ac.uk/mas-models/download/LARS-WG-Manual.pd f
    [91]许崇海,沈新勇,徐影IPCC AR4模式对东亚地区气候模拟能力的分析[J].气候变化研究进展,2007,3(5):287-292.
    [92]曹颖,张光辉.大气环流模式在黄河流域的适用性评价[J].水文,2009,29(5):1-5.
    [93]张颖娴.宁夏地区极端气候事件的情景分析[D].北京:中国农业科学院农业环境与可持续发展研究所,2009.
    [94]东阳市城市集中式饮用水水源地环境保护规划.2008.
    [95]许月萍,张庆庆,牛少凤,张翔.浙江省东阳江干流水质分析与评价.上海环境科学,2009,28(5):190-195.
    [96]刘瑞元.加权欧式距离及应用[J].数理统计与管理,2002,21(5):17-19.
    [97]李凡修,梅平,陈武.加权欧式距离模型在环境质量评价中的应用[J].环境保护科学,2004,30(1):58-60.
    [98]沈时兴,王国明,张辉等.模糊综合指数法评价巢湖原水水质及其应用研究[J].嘉兴学院报,2004,16(6):70-72.
    [99]陆垂裕,肖伟华,赵勇,等.复杂水环境系统数值年模拟及风险分析[M].北京:中国水利水电出版社,2010.
    [100]赵人俊.流域水文模拟——新安江模型与陕北模型[M].北京:中国水利水电出版社,1984.
    [101]SCS. National Engineering Handbook [S]. Hydrology, section 4, Soil Conservation Service, US Department of Agriculture, Washington, DC,1956.
    [102]Mishara S K, Tyagi J V, SINGH V P, et al. SCS-CN-based modeling of sediment yield [J]. Journal of Hydrology.2006,324:301-322.
    [103]Singh P K, Bhunya P K, MisharaS K, et al. A sediment graph model based on SCS-CN method [J]. Journal of Hydrology.2008,349:244-255.
    [104]Reshma T. Simulation of runoff in watersheds using SCS-CN and Muskingum-Cunge methods using remote sensing and geographical information systems [J].2010,25:31-42.
    [105]Reshmidevi T V, Jana R, Eldho T I. Geospatial estimation of soil moisture in rain-fed paddy fields using SCS-CN-based model [J]. Agricultural Water Management.2008,25:447-457.
    [106]彭定志,游进军.改进的SCS模型在流域径流模拟中的应用[J].水资源与水工程学报.2006,17(1):20-24.
    [107]晋华,孙西欢,李仰斌.SCS模型在岚河流域的应用[J].太原理工大学学报.2003,34(6):763-736.
    [108]万荣荣,杨桂山,李恒鹏等.中尺度流域次降雨洪水过程模拟——以太湖上游 西苕溪流域为例[J].湖泊科学.2007,19(2):170-176.
    [109]房孝铎,王晓燕,欧阳.径流曲线数法(SCS法)在降雨径路计算中的应用—以密云石闸径流实验小区为例[J].首都师范大学学报(自然科学版).2007,28(1):9-102.
    [110]杨丽韫,吴松涛,李文华.太湖流域安吉县城绿地系统水生态服务功能[J].自然资源学报.2011,26(4):599-608.
    [111]Xiao B, Wang Q H, Fan J, et al. Application of the SCS-CN Model to Runoff Estimation in a Small Watershed with High Spatial Heterogeneity [J]. Pedosphere. 2011,21(6):738-749.
    [112]刘家福,蒋卫国,占文凤等.SCS模型及其研究进展[J].水土保持研究.2010,17(2):120-124.
    [113]IPCC. The regional impacts of climate change:An assessment of vulnerability. A special Report of IPCC working group Ⅱ. Watson R T, Zinyowera and Moss R H, eds., Cambridge University Press, UK.
    [114]Stefan H G, Preud'Homme E B. Stream temperature estimation from air temperature [J]. Water Resources Bulletin.1993,29(1):27-45.
    [115]Mohseni O, Stefan H G, and Eicksonr T R. A nonlinear regression model for weekly stream temperatures. Water Resources.1998,34(10):2685-2692.
    [116]Mohseni O, Erichkson T R, and Stefan H G. Sensitivity of stream temperature in United States to air temperature projected under a global warming scenario [J]. Water Resources Research.1999,35(12):3723-3733.
    [117]Mohseni O, Erichkson T R, and Stefan h g. Upper bounds fro stream temperature in the contiguous United States [J]. Journal of the American Water Resources Association.2002,128(1):4-11.
    [118]Webb B W, Clack P D, and Walling D E. Water-air temperature relationships in a Devon river system and the role of flow [J]. Hydrological Processes.2003,17: 3069-3084.
    [119]Smith K. Temperature characteristics of British rivers and the effects of thermal pollution [J]. In Man's Impact on the Hydrological Cycle in the United Kingdom, Holllis G E, ed. Geo Abstracts:Norwich:229-242.
    [120]Webb B W, Nobilis F. A long-term perspective on the nature of air-water temperature relationship:a case study. Hydrological Processes.1997,11: 137-147.
    [121]Crisp DT, Howson G. Effect of air temperature upon mean water temperature in streams in the north Pennies and English Lake District [J]. Freshwaer Biology. 1982,12:359:367.
    [122]冯民权.水环境模拟与预测[M].科学出版社,北京:2009.
    [123]张朝能.水体饱和溶解氧的求算方法探讨[J].环境科学研究,1999,12(2):54-55.
    [124]Mcintyre N R, Wagener T, Wheater H S, et al. Risk-based modeling of surface water quality:a case study of the Charles River, Massachusetts [J]. Journal of Hydrology,2003,274(2003):225-247.
    [125]李锦秀,廖文根,黄真理.三峡水库整体一维水质数学模拟研究[J].水力学报.2002,12:7-17.
    [126]寇晓梅.汉江上游有机污染物CODCr综合衰减系数的试验确定[J].水资源保护2005,21(5):31-33.
    [127]Bowie, G L, Mills W B, Porcella D B, et al. Rates, Constants, and Kinetics Formulations in Surface Water Quality Modeling. EPA/600/3-85/040, U.S. Environmental Protection Agency [S], Washington, D.C.,
    [128]东阳市水利局.东阳市横锦水库洪水复核报告[R].年份不详.