浅水湖泊浮游植物生长影响因子及修复评价指标体系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湖泊富营养化是环境保护所面临的世界性难题之一,我国长江中下游浅水湖泊多处于富营养化状态,城市浅水湖泊的富营养化具有生活污水污染严重,城市地表径流等面源污染严重的特点。蓝藻水华频发是这一类型湖泊的典型特征。由于生态系统的复杂性和不稳定性,水华的爆发机理现在还不十分清楚。为了研究城市浅水湖泊这种典型水体的富营养化特点及浮游植物生长影响因子,本文以武汉市浅水湖泊为例,分别采用野外监测与室内培养实验的方法,比较了两种情况下群体性非丝状浮游植物及其典型代表铜绿微囊藻的生长分布规律,讨论了氮、磷营养盐及不同氮磷比对其生长的限制作用。为了研究控制浮游植物和蓝藻水华的工程方法,通过依托工程监测分析了不同水生植物的控藻效应。本文还提出了一套基于修复进程的生态系统修复评价指标体系,用以评价并定量分析修复工程的修复效果。
     本文主要的研究结果如下:
     (1)武汉市浅水湖泊大多处于重度富营养化状态,其浮游植物生物量极高,夏季和年均生物量分别达到456.87mg/L和189.24mg/L。夏季时优势种为铜绿微囊藻,色球藻及尾裸藻;冬季以硅藻及隐藻为主。超过80%的调查湖泊的氮磷比小于10,但固氮蓝藻未成为优势种,说明低的氮磷比不会导致固氮蓝藻成为优势种。水温和总磷是浮游植物生物量的首要影响因子,总磷浓度与浮游植物生物量间的相关性最大。非丝状群体性蓝藻的生物量在总磷浓度在0.2~0.5mg/L左右时达到最大,其均值超过TP>0.5mg/L时的均值。这表明总磷浓度0.5mg/L可能是适合非丝状群体性蓝藻生长的饱和阈值。总氮则没有类似的影响机制。结果还显示,重度富营养化湖泊中,氮磷比分布变化范围极广,表明在总磷浓度大于0.4mg/L的城市浅水湖泊中,氮、磷营养盐浓度远超浮游植物同化能力,此时氮磷比不能作为区分营养盐限制因素的指标。
     (2)在室内培养条件下,总磷浓度在0.8mg/L以下时,微囊藻的最大现存量随着总磷浓度的增加而明显增加,但与野外监测结果不同,当总磷浓度超过0.8mg/L时其最大现存量增长幅度变小。表明总磷浓度具有最适于微囊藻等非丝状群体性蓝藻的生长阈值,该阈值在室内培养条件下可能在0.5~0.8mg/L左右,大于野外自然条件下的0.2~0.5mg/L。原因可能在于室内培养条件下铜绿微囊藻多为分散的个体细胞,没有形成群体胶鞘导致的对总磷同化利用能力的差异。
     (3)紫阳湖生态修复工程实施过程中不同水生植物对浮游植物密度、种群结构的监测结果表明,与挺水植物(苦草)和浮叶植物(睡莲)相比,沉水植物(金鱼藻)能有效抑制周围浮游生物的生长;其抑藻作用要强于挺水和浮叶植物。这种抑制作用除了对浮游植物生物量的限制外,还表现在对其群落结构的改变上,金鱼藻种植区的浮游植物各物种构成比重较均衡,没有明显的优势种。
     (4)在分析总结生态系统修复评价已有成果的基础上,提出了一种基于修复进程的生态系统修复评价指标体系,该指标体系采用待评指标单位时间内的变化率计算修复度得分,加权求和后得到综合修复度指标(IRI)。该指标不是基于生态系统的某个状态而言的,而是引入基于进程的概念进行评价。IRI综合修复度不仅能反映系统状态,还能定量分析修复工程引起的生态系统的变化趋势和程度。
Lake eutrophication, a syndrome of ecosystem responses to human activities thatfertilize water bodies with nitrogen (N) and phosphorus (P), has become a worldwideenvironmental issue. Most of the urban shallow lakes in China had been functioned asreceiving water bodies of sewage effluent for long time, together with urban runoff,leading to increasing trophic status. Many urban lakes in the middle-lower reaches ofYangzte River has been in eutrotrophic status, characterized with frequent outbreak ofMicrocystis blooms. Due to the complexity and unstability of an ecosystem, themechanism of Microcystis bloom in urban eutrophic lakes, however, has not beenidentified.
     To characterize eutrophication and the influential factors for algal growth in typicalurban shallow lakes, the shallow lakes in Wuhan city were taken as instances in this study,and samples from15shallow lakes in Wuhan City were taken and analyzed during theperiod from March2004to March2006. By conducting field monitoring and indoorcultivation experiments, the regularity of growth and distribution of non-filamentous algae,typically Microcystis aeruginosa, under both circumstances were compared, and thelimiting effects of the concentration and ratio of nitrogen and phosphorus on algal growthwere discussed. Algae inhibition effect by various macrophytes was analyzed through theecological remediation project in the Ziyang Lake, in order to investigate appropriateengineering techniques for algae and bloom control. A set of remediation process-basedassessment index system was also proposed to assess and quantify the effect of anecological restoration project.
     Main conclusions of the study are listed as follows:
     (1) Majority of the lakes in Wuhan are in the highly eutrophic status, with extremelyabundant biomass of phytoplankton, averaged456.87mg/L in summer and189.24mg/Lduring annual period, respectively. The phytoplankton community was dominated byMicrocystis aeruginosa and Euglena caudate in summer and Cryptomonas ovata andCyclotella meneghiniana in winter. Low TN:TP ratios were detected accompanied withfewer occurrences of nitrogen-fixing cyanobacteria and other filamentous algae.81 percent of the lakes in summer had the ratio of nitrogen to phosphorus content of less than10, with no nitrogen-fixing cyanobacteria dominant the algea community, indicating thatlow TN:TP ratio does not always result in the preferential growth of nitrogen-fixingcyanobacteria. Temperature and TP content were found to be the principal limiting factorsfor phytoplankton growth on an annual basis, due to the maximum positive relationshipbeween TP concentration and phytoplankton biomass (r=0.817, p<0.001). The results ofredundance analysis (RDA) show that the biomass of Microcystis and Euglena caudatehad significant positive correlation with TP. The results of variance analysis (ANOVA)demonstrated that the density of phytoplankton increased with the increase of TPconcentrations, and reached the maximal with the TP concentration in the range of0.2-0.5mg/L. This phenomenon implies that the threshold of TP concentration for themaximum algae biomass is probably between0.2mg/L and0.5mg/L in the studied lakes.On the other hand, total nitrogen showed no similar relationship. Thus we concluded thatneither TP nor TN is the limiting factor of phytoplankton biomass in urban eutrophic lakeswith extremely high nutrient concentrations, since the nutrient concentration is high abovethe assimilating capacity of algea.
     (2) A set of bench-scale completely random combination experiments were designedto test the effects and limitation of nitrogen and phosphorus under different ratios whenMicrocystis aeruginosa were cultured. The results showed that the maximum stockingbiomass of Microcystis increased significantly with the increase of total phosphorusconcentration ranging from0.5mg/L to0.8mg/L, but were less influenced when the TPconcentration was greater than0.8mg/L. Thus, the optimal phosphorus threshold forMicrocystis aeruginosa is probably in the range of0.5-0.8mg/L, which is different to theresults of field tests in these lakes. This phenomenon can attributed to the lowerassimilation ability of Microcystis aeruginosa to the phosphorus, which was caused by thedispersive cells in pure cultured conditions.
     (3) The effect of different macrophytes on the physico-chemical composition andcommunity of algea was investigated during the process of ecological restoration projectin the Ziyang Lake. The results showed that submersed macrophytes, e.g., Ceratophyllumdemersum, more effectively inhibit the growth of surrounding phytoplankton by directly releasing allelopathic substances through stalk and leaves, as compared to emergedmacrophytes (e.g. Vallisneria natans) and floating macrophytes(e.g. Nymphaea alba). Thestudy also found that the ratios of nitrogen to phosphorus were all less than10in the lakeswhere algae blooms broke out. On the other hand, TN:TP ratios were less than10duringmost of the monitoring periods at the four stations in the Ziyang Lake, but the algaedensity was far less than the degree of the outbreak of water bloom. Hence we concludedthat low TN:TP ratio is not a “sufficient condition”, but a “necessary condition” for waterbloom.
     (4) Based on the published results and study, a set of restoration process-basedassessment index system for ecosystem restoration of lake is proposed. The index system,named integrated restoration index (IRI), includes a “restoration score” and the weightedcoefficient factors. The restoration score equal the sum of change ratios of thelogarithm-indicators during the periods of assessment unit, which could denote the effectof an ecological restoration project. By using IRI, we can not only get information on thestatus of an ecosystem, but also quantify long-range variation of the eco-system of a lakefollowing ecological remediation project.
引文
[1] Kaarina S, Gary J. Cyanobacterial Toxins. In: Chorus I, Bartram J,(editors). ToxicCyanobacteria in Water. A guide to their Public Health Consequences, Monitoring andManagement. London: E and FN Spon,1999.41-111.
    [2]金相灿,刘鸿亮,章宗涉等.中国湖泊富营养化.北京:中国环境科学出版社,1990.13-135.
    [3]刘连成.中国湖泊富营养化的现状分析.灾害学,1997,12(3):61-65.
    [4]张敏.长江中下游浅水湖泊富营养化机制与重金属富营养化研究:[博士学位论文].北京:中国科学院研究生院,2005.
    [5]孔繁翔,高飞.大型浅水富营养化湖泊中蓝藻水华形成机理的思考.生态学报,2005,25:589-595.
    [6] Gerard A R, Eutrophication: causes, consequences, correctives. Washington DC:National Academy of Science,1969,3-5.
    [7] Patricia M G, Sybil S, Cynthia A H, et al. The role of eutrophication in the globalproliferation of harmful algae blooms. Oceanography,2005,18(2):198-209.
    [8] Chen, W., Song, L. R., Peng, L., et al. Reduction in microcystin concentrations in largeand shallow lakes: Water and sediment-interface contributions. Water Research,2008,42:763-773.
    [9] Carmichael, W. W.,2001. Health effects of toxin-producing cyanobacteria:‘‘theCyanoHABs’’. Human and Ecological Risk Assessment,7:1393-1407.
    [10] Xie L Q, Xie P, Guo L G, et al. Organ distribution and bioaccumulation ofmicrocystins in freshwater fishes with different trphic levels from the eutrophic LakeChaohu, China. Environmental Toxicology,2005,20:293-300.
    [11]耿红.水体富营养化和蓝藻对轮虫影响的生态毒理学研究:[博士学位论文].北京:中国科学院研究生院,2006.
    [12] Smith, V H. Low nitrogen to phosphorus ratios favor dominance by blue-green algaein lake phytoplankton. Science,1983,221:669-671.
    [13]Chapman B R, Ferry B W, Ford T W. Phytoplankton communities in water bodies atDungeness, U.K.: analysis of seasonal changes in response to environmental factors.Hydrobiologia,1998,362:161-170.
    [14] Figueredo C C, Giani A. Seasonal variation in the diversity and species richness ofphytoplankton in a tropical eutrophic reservoir. Hydrobiologia,2001,445:165-174.
    [15]黄有馨,刘志礼.固氮蓝藻.北京:农业出版社,1984.67-69,163.
    [16] Sproviero E M, Gascon J A, McEvoy J P, et al. Quantum mechanisms.molecularmechanisms structural models of the oxygen-evolving complex of photosystem II.Current Opinion of Structural Biology,2007,17:173-180.
    [17] Smith, V H. The nitrogen and phosphorus dependence of algal biomass in lakes: Anempirical and theoretical analysis. Limnology and Oceanography,1982,27:1101-1112.
    [18] H kanson L, Bryhn A C, Hytteborn J K. On the issue of limiting nutrient andpredictions of cyanobacteria in aquatic systems. Science of Total Envionment,2007,379(1):89-108.
    [19] Allan K, Thomas D B. Effect of Temperature on Blue-Green Algae (Cyanobacteria)in Lake Mendota. Applied and Environmental Microbiology,1978,36(4):572-576.
    [20] Oliver R L, Gnaf G G. Fresh algal blooms. In: The Ecology of Cynobacetria.TheNetherlands: Kluwer Academic Publishier.2000.149-194.
    [21] Alain D, Jean D, Francoise P, et al. Growth rate of four freshwater algae in relation tolight and temperature. Hydrobiologia,1990,207:221-226.
    [22]徐宁,陈菊芳,王朝晖等.广东大亚湾浮游植物水华的动力学分析Ⅰ.浮游植物水华的生消过程及其与环境因子的关系.海洋环境科学,2001,20(2):1-6.
    [23] Tammi L R, Christopher E G, Heaney S I. Temperature, growth and seasonalsuccession of phytoplankton in Lake Baikal, Siberia. Freshwater Biology,2000,44:431-440.
    [24] Hansen P J. Effect of high pH on the growth and survival of marine phytoplankton:implications for species succession. Aquatic Microbial Ecology,2002,28:279–288.
    [25]吴剑,孔倩,杨柳燕等.铜绿微囊藻生长对培养液pH值和氮转化的影响.湖泊科学,2009,21(l):123-127.
    [26] Xie L Q, Xie P, Li S X, et al. The low TN:TP ratio, a cause or a result of Microcystisblooms? Water Research,2003,37:2073-2080.
    [27] Steemann E N, Hansen V K, Jorgensen E G. The adaptation to different lightintensities in Chlorella vulgaris and the time dependenee on transfer to a new lightintensity. Physiologia Plantarum,1962,15(3):505-517.
    [28]马祖友.蓝藻的生长生理特征及其竞争优势研究:[硕士学位论文].杨陵:西北农林科技大学图书馆,2005.
    [29] Stefan T. Automated object recognition of blue-green algae for measuring waterquality-A preliminary study.Water Research,1995,29(10):2398-2404.
    [30]梁瑜.浮游植物增殖过程中关键因子的提取与应用研究:[硕士学位论文].上海:上海交通大学,2008.
    [31] Stumm W, Morgan J J. Aquatic Chemistry. New York: John Wiley&Sons Ltd.,1970.1-583.
    [32] Liebig J V. Organic chemistry in its application to agriculture and physiology. Ed.from the manuscript of the author by Lyon Playfair. London: Taylor and Walton,1840.
    [33] Shelford V E. Animal communities in temperate America, as illustrated in theChicago region. Chicago: University of Chicago Press, Illinois, USA,1913.
    [34]谢平.论蓝藻水华的发生机制.北京:科学出版社,2007,30-35.
    [35] Sakamoto M. Primary production by phytoplankton community in some Japaneselakes and its dependence on lake depth. Archiv für Hydrobiologie,1966,62:1-28.
    [36] Paerl H W, Fulton R S, Moisander P H. et al. Harmful freshwater algal blooms, withan emphasis on cyanobacterial. Science World,2001,1:76-113.
    [37] Wang H J, Liang X M, Jiang P H, et al. TN:TP ratio and planktivorous fish do notaffect nutrient-chlorophyll relationships in shallow lakes. Freshwater Biology,2008,53:935-944.
    [38] David W S, Hecky R E, Findlay D L, et al. Eutrophication of lakes cannot becontrolled by reducing nitrogen input: Results of a37-year whole-ecosystemexperiment. PNAS,2008,105:11254-11258.
    [39] Murphy T P, Lean D R S, Nalewajko C. Blue-green algae: their excretion ofiron-selective chelators enables them to dominate other algae. Science,1976,192:900-902.
    [40]刑伟.铁对水华蓝藻的生态生理学效应研究:[博士学位论文].北京:中国科学院研究生院,2007.
    [41]王海明,王宁,王晓蓉等.不同浓度Mn2+对铜绿微囊藻的生长及其生物可利用性的影响.环境污染与防治,2008,30(1):13-16.
    [42] Gulati, R D, Van D E. Biomanipulation in the Netherlands: applications in freshwaterecosystems and estuarine water–an introduction. In: Van Donk, E., Gulati, R.D.(Eds.), Proceedings of a Congress organized by the Netherlands HydrobiologicalSociety, Amsterdam,1988. Aquatic Ecology,23:1-4.
    [43] Gulati, R D, Van D E. Lakes in the Netherlands, their origin, eutrophication andrestoration: state-of-the-art review. Hydrobiologia,2002,478:73-106.
    [44] Vladimir matveev, Lilian matveeva, Gary J. Jones. Relaive impacts of Daphniagrazing and direct stimulation by fish on phytoplankton abundance in mesocosmcommunities, Freshwater Biology,2000,44:375-385.
    [45] Zhang X, Xie P, Chen F Z, et al. Driving forces shaping phytoplankton assemblagesin two subtropical plateau lakes with contrasting trophic status,Freshwater Biology,2007,52:1463–1475.
    [46] Pringsheim E G. Pure cultures of algae: their preparation and maintenance. New York:Hafner Press,1946.23-107.
    [47] Ketchum B H. The absorption of phosphate and nitrate by illuminated cultures ofNitzschia closterium. American Journal of Botany,1939,26:399407.
    [48] Gerald C G, Folke S. Cell Contents of Nitrogen and Phosphorous as a Measure ofTheir Availability for Growth of Microcystis aeruginosa. Ecology,1954,35(3):348-353.
    [49]易文利.不同营养盐对铜绿微囊藻生长的室内模拟研究:[硕士学位论文].杨陵:西北农林科技大学图书馆,2005.
    [50] Jiang Y, Ji B, Wong R N S, et al. Statistical study on the effects of environmentalfactors on the growth and microcystins production of bloom-formingcyanobacterium—Microcystis aeruginosa. Harmful Algae,2008,7:127-136.
    [51]黄钰玲.三峡水库香溪河库湾水华生消机理研究:[博士学位论文].杨陵:西北农林科技大学图书馆,2007.
    [52] Hagmann L, Juttner F. Fischerellin A. a novel photosystem-II inhibitingallelochemicail of the Cyanobaterium Fischerella muscicola with antifungal andherbicidal activity. Tetrahedron Letters,1996,37(36):6539-6542.
    [53] Srivastava A, Juttner F, Strasser R J. Action of the allelochemical, fischerenllin A, onphotosystem II. Biochimica et Biophysica Acta/Bioenergetics,1998,1364(3):326-336.
    [54] Rice E L. Allelopathy.2nd Edition. New York: Academic Press,1984.
    [55] Friebe A, Roth U, Kuck P, et al. Effects of2,4-dihydroxy1,4-benzoxazin-3-ones onthe activity of plasma membrane H*-ATPase. Phytochemistry,1996,44(6):979-983.
    [56]胡洪营,门玉洁,李锋民.植物化感作用抑制浮游植物生长的研究进展,生态环境,2006,15(1):153-157.
    [57] Nakai S, Inoue Y, Hosomi M. Growth inhibition of blue-green algae by allelopathiceffects of macrophytes. Water Science and Technology,1999,39:47-53.
    [58] Korner S. Loss of submerged macrophytes in shallow lakes in North-EasternGermany. International Review of Hydrobiology,2002,87:375-384.
    [59]杨善元,俞子文,孙文浩等.凤眼莲根系中抑藻物质分离与鉴定[J].植物生理学报,1992,18(4):399-402.
    [60] Hong Y, Hu H Y. Physiological and biochemical effects of allelochemical ethyl2-methyl acetoacetate (EMA) on cyanobacterium Microcystis aeruginosa.Ecotoxicology and Environm Ental Safety,2008,71:527-534.
    [61] Della G M, Ferrara M, Fiorentino A. Antialgal compounds from Zantrdeschiaaethiopica. Phytochemistry,1998,49:1299-1304.
    [62] Della G M, Fiorentino A, Isidori M, et al. Antialgal ent-labdane diterpenes fromRuppia maritime. Phytochemistry,2000,55(8):909-913.
    [63]王卫红,季民,王苗苗等.川蔓藻在再生水体中对普通小球藻的化感作用.湖泊科学,2007,19(3):321-325.
    [64] Nakai S, Inoue Y, Hosomi M, et al. Myrophyllum spicatum released allelopathicpolyphenoles inhibiting growth of blue-green algae Chlorella pyrenoidosa[J]. WaterResearch,2000,34(11):3026-3032.
    [65]Gross E M, Meyer H, Schilling G. Release and ecological impact of algicidalhydrolysable polyphenols in Myriophyllum spicatum. Phytochemistry,1996,41(1):133-138.
    [66]Wium A S. Allelopathy among aquatic plants. Archiv Fur Hydrobiologie,1987,27:167-172.
    [67] Barrett P R F, Curnow J C, Littlejohn J W. The control of diatom and cyanobacterialblooms in reservoirs using barley straw. Hydrobiologia,1996,340:307-341.
    [68] Huang Z Q, Liao L P, Wang S L. Allelopathy of phenolies from de-composing stump-roots in replant Chinese fir woodland. Journal of Chemical Ecology,2000,26(9):2211-2219.
    [69] Everall N C, Lees D R. The use of barley-straw to control general and blue-greenalgal growth in a Derbyshire reservoir. Water Research,1996,30(2):269-276.
    [70] Ball A S, Williams M, Vincent D,et al. Algal growth control by a barley straw extract.Bioresource Technology,2001,77:177-181.
    [71] Sabine H, Gross E M. Can allelopathically active submerged macrophytes stabilizeclear water states in shallow lakes? Basic and Applied Ecology,2008,9:422-432.
    [72] Nakai S, Inoue Y, Hosomi M. Growth inhibition of blue-green algae by allelopathiceffects of macrophytes. Water Science and Technology,1999,39:47-53.
    [73]汤仲恩,种云霄,吴启堂等.3种沉水植物对5种富营养化浮游植物生长的化感效应.华南农业大学学报,2007,28(4):42-46.
    [74]鲜啓鸣,陈海东,邹惠仙等.四种沉水植物的克藻效应.湖泊科学,2005,17(1):75-80.
    [75]鲜殷鸣,陈海东,邹惠仙等.沉水植物中挥发性物质对铜绿微囊藻的化感作用.生态学报,2006,26(11):3549-3554.
    [76]肖溪,楼莉萍,李华等.沉水植物化感作用控藻能力评述,应用生态学报,2009,20(3):705-712.
    [77]刘兵钦,王万贤,宋春雷等.菹草对湖泊沉积物磷状态的影响.武汉植物学研究,2004,22(5):394-399.
    [78]赵联芳,朱伟,莫妙兴.沉水植物对pH值的影响及其脱氮作用.水资源保护,2008,24(6):64-67.
    [79]李燕,王丽卿,张瑞雷.淀山湖沉水植物死亡分解过程中营养物质的释放,环境污染与防治,2008,2:45-48.
    [80]彭少麟.恢复生态学与植被重建.生态科学,1996,15(2):36–31.
    [81] Agata K., Rudy V. D., Jan P. B., et al. Wet meadow restoration in Western Europe: Aquantitative assessment of the effectiveness of several techniques. BiologicalConservation,2007,140(3-4):318-328
    [82] Kim J, Pan X B, Abel G, et al. Multi-level assessment of ecological coastal restorationin South Texas. Ecological Engineering,2010,36(4):435-440.
    [83] Zhang S Y, Liu A F, Ma J M. Changes in physicochemical and biological factorsduring regime shifts in a restoration demonstration of macrophytes in a smallhypereutrophic Chinese lake. Ecological Engeering,2010,36(12):1611-1619.
    [84]Sabine H., Elisabeth M. G., Michael H., et al. Restoration of submerged vegetation inshallow eutrophic lakes-A guideline and state of the art in Germany. Limnologica,2006,36:155-171.
    [85]Martin A S. Restoration and Rehabilitation of Native Species in the Great Lakes:Overview. Journal of Great Lakes Research,2007,33(S1):1-7.
    [86] Chen K N, Bao C H, Zhou W P. Ecological restoration in eutrophic Lake Wuli: Alarge enclosure experiment. Ecological Engineering,2009,35(11):1646-1655.
    [87] Hua W P, Zhai S J, Zhu Z C. Impacts of the Yangtze River water transfer on therestoration of Lake Taihu. Ecological Engineering,2008,34:30-49.
    [88]Morten L P, Jens M A, Kurt N, et al. Restoration of Skjern River and its valley: Projectdescription and general ecological changes in the project area. Ecological Engineering,2007,30(2):131-144.
    [89] Mark B B, Amy L H, Daniel P L, et al. Aquatic ecosystem protection and restoration:advances in methods for assessment and evaluation. Environmental Science&Policy,2000,3(S1):89-98.
    [90] Rapport D J, Thorpe C, Regier H A. Ecosystem medicine. Bulletin of EcologicalSociety of America,1979,180-182.
    [91] Rapport D J. What constitutes ecosystem health? Perspective Sin Biology andMedicine,1989,33:120-132.
    [92] Odum E P. The strategy of ecosystem development. Science,1969,164:262-270.
    [93]马克明,孔红梅,吴文彬等.生态系统健康评价:方法与方向,生态学报,2001,21(12):
    [94] Costanza R. Toward an operational definition of ecosystem health. In: Costanza, R.,Norton, B.G., Haskell, B.D.(Eds.), Ecosystem Health. Washington, DC: Island Press,1992,239-256,269.
    [95] Jennifer E R, Kelly A R. An assessment of long-term post-restoration water qualitytrends in a shallow, subtropical, urban hypereutrophic lake. Ecological Engineering,2002,19:265-280.
    [96] Ramesh D G, Miguel L, Ellen V D. Lake restoration studies: Failures, bottlenecksand prospects of new ecotechnological measures. Limnologica,2008,38:233-247.
    [97] Matthew C H, Bruce S. Submerged aquatic vegetation and bulrush in LakeOkeechobee as indicators of greater Everglades ecosystem restoration. EcologicalIndicators,2009,9s:s46-s55.
    [98] Zhang L, Wang M H, Hu J, et al. A review of published wetland research,1991–2008:Ecological engineering and ecosystem restoration. Ecological Engineering,2010,36(8):973-980.
    [99] Charles S, Denise R, Mark F. When is restoration not?: Incorporatinglandscape-scale processes to restore self-sustaining ecosystems in coastal wetlandrestoration. Ecological Engineering,2006,26(1):27-39.
    [100] Havens K E, Fukushima T, Xie P, et al. Nutrient dynamics and the eutrophication ofshallow lakes Kasumigaura (Japan), Donghu (PR China), and Okeechobee (USA).Environmental Pollution,2001,111:263-272.
    [101]胡鸿钧,李尧英,魏印心等.中国淡水浮游植物.北京:科学出版社,1980.
    [102] Shei P, Lin W, Wang S, et al. Plankton and seston structure in a shallow, eutrophicsubtropic Chinese lake. Archiv Fur Hydrobiologie,1993,129:199-220.
    [103]黄祥飞.湖泊生态调查观测与分析.北京:中国标准出版社,1999.
    [104] Jan L, Petr M. Multivariate Analysis of Ecological Data using CANOCO.Cambridge: Cambridge University Press,2003.
    [105] Ter-Braak C J F, milauer P. CANOCO Reference Manual and CanoDraw forWindows User's Guide: Software for Canonical Community Ordination (version4.5).NewYork: Microcomputer Power, Ithaca NY, USA.2002.
    [106] OECD,2008. Trophic Terminology and Prediction, Research of the Organization forEconomic Co-Operation and Development URL: http://www.chebucto.ns.ca/ccn/info/Science/SWCS/TPMODELS/OECD/trophic.html.(accessed26March2009)
    [107]Abrantes N, Antunes S C, Pereira M J, et al. Seasonal succession of cladocerans andphytoplankton and their interactions in a shallow eutrophic lake (Lake Vela, Portugal).Acta Oecologica,2006,29:54-64.
    [108] Torremorell A, Llames M E, Pérez G L, et al. Annual patterns of phytoplanktondensity and primary production in a large, shallow lake: the central role of light.Freshwater Biology,2009,54:437-449.
    [109] Qiu D R, Wu Z B, Liu BY, et al. The restoration of aquatic macrophytes forimproving water quality in a hypertrophic shallow lake in Hubei Province, China.Ecological Engineering,2001,18:147-156.
    [110] Xie L Q, Xie P. Long-term (1956–1999) dynamics of phosphorus in a shallow,subtropical Chinese lake with the possible effects of cyanobacterial blooms. WaterResearch,2002,36:343-349.
    [111] Alam M G M, Jahan N, Thalib L, et al. Effects of environmental factors on theseasonally change of phytoplankton populations in a closed freshwater pond.Environment International,2001,27:363-371.
    [112] Alex E J, Linda M. The sensitivity of phytoplankton in Loch Leven (U.K.) tochanges in nutrient load and water temperature. Freshwater Biology,2008,53:32-41.
    [113] Peter A S, Kaj S J. Seasonal changes in temperature and nutrient control ofphotosynthesis, respiration and growth of natural phytoplankton communities.Freshwater Biology,2006,51:249-262.
    [114] Tobias V, Ashley B, Cecilia M L, et al. Effects of N:P loading ratios onphytoplankton community composition, primary production and N fixation in aeutrophic lake. Freshwater Biology,2009,54,331-344.
    [115] Reynolds C S. Cyanobacterial water-blooms. In: Callow, J. A.,(Ed.) Advances inbotanical research. London: Academic Press,1987,13:67-143.
    [116] Steinberg C E W, Hartmann H M. Planktonic bloom-forming cyanobacteria and theeutrophication in lakes. Environmental Technology Letter,1988,9:337-350.
    [117]Paterson M J, Findlay D L, Salki A G, et al. The effects of Daphnia on nutrientstoichiometry and filamentous cyanobacteria: a mesocosm experiment in a eutrophiclake. Freshwater Biology,2002,47:1217-1233.
    [118] Muylaert K, Declerck S, Wichelen J V, et al. An evaluation of the role of daphnids incontrolling phytoplankton biomass in clear water versus turbid shallow lakes.Limnologica,2006,36:69-78.
    [119]吴军林,王建萍.太湖底泥中蓝藻复苏的温度阈值研究.绿色中国,2006,13:68-69.
    [120]王小雨,冯江,李贺.底泥疏浚前后长春南湖浮游生物群落变化研究.东北师大学报自然科学版,2005,37(3):90-94.
    [121] Schindler D W. Evolution of phosphorus limitation in lakes. Science,1977,195:260-262.
    [122] Smith V H. Eutrophication of freshwater and coastal marine ecosystems: a globalproblem. Environmental Science and Pollution Research,2003,10:126-39.
    [123] Jennifer C, Mary O, Alan D S. Phytoplankton response to light and internalphosphorus loading from sediment release. Freshwater Biology,2008,53:2530-2542.
    [124] Dodds W K, Smith V H, Lohman K. Nitrogen and phosphorus relationships tobenthic algal biomass in temperate streams. Canadian Journal of Fisheries and AquaticScience,2002,59:865-874.
    [125] Dokulil M T, Teubner K. Eutrophication and restoration of shallow lakes-theconcept of stable equilibria revisited. Hydrobiologia,2003,506-509:29-35.
    [126] Dokulil M T, Donabaum K, Pall K. Alternative stable states in floodplainecosystems. Ecohydrology Hydrobiology,2006,6:37-42.
    [127] Redfield A C. The biological control of chemical factors in the environment.Scientific American Magazine,1958,46:205-222.
    [128] Redfield A C, Ketchum B H, Richards F A. The influence of organisms on thecomposition of seawater. In: Hill, M. N.,(Ed.), The Sea. Ideas and Observations onProgress in the Study of the Seas. Vol.2, The Composition of Sea-Water Comparativeand Descriptive Oceanography, New York, London: Interscience Publishers, aDivision of John Wiley&Sons,1963,26-77.
    [129] Klausmeier C A, Litchman E, Daufresne T, et al. Optimal nitrogen-to-phosphorusstoichiometry of phytoplankton. Nature,2004,429:171-174.
    [130] Takamura N, Otsuki A, Aizaki M, et al. Phytoplankton species shift accompanied bytransition from nitrogen dependence to phosphorus dependence of primary productionin lake Kasumigaura, Japan. Archiv Fur Hydrobiolgie,1992,124:129-148.
    [131] Zhou Y Y, Song C L, Cao X Y, et al. Phosphorus fractions and alkaline phosphataseactivity in sediments of a large eutrophic Chinese lake (Lake Taihu). Hydrobiologia,2008,599:119-125.
    [132] Xie L Q, Xie P, Tang H J. Enhancement of dissolved phosphorus release fromsediment to lake water by Microcystis blooms—an enclosure experiment in ahyper-eutrophic, subtropical Chinese lake. Environmental Pollution,2003,122:391-399.
    [133] Li H B, Hou G X, Feng D K, et al. Prediction and elucidation of the populationdynamics of Microcystis spp. in Lake Dianchi (China) by means of artificial neuralnetworks. Ecological Informatics,2007,2(2):184-192.
    [134]吴晓东,孔繁祥,张晓峰等.太湖与巢湖水华蓝藻越冬和春季复苏的比较研究.环境科学,2008,29(5):1313-1318.
    [135]董波,薛钦昭,李军.滤食性贝类摄食生理的研究进展.海洋科学,2000,24(7):31-34.
    [136] Kathryn W, Gary J J, Dunstan R H. Effect of irradiance on fatty acid, carotenoid,total protein composition and growth of microcystis aeruginosa. Phytochemistry,1997,44(5):817-824.
    [137]储昭升,金相灿,阎峰等. EDTA和铁对铜绿微囊藻和四尾栅藻生长和竞争的影响.环境科学,2007,28(11):2457-2461.
    [138] Hong Y, Hua H Y, Xie X, et al. Gramine-induced growth inhibition, oxidativedamage and antioxidant responses in freshwater cyanobacterium Microcystisaeruginosa. Aquatic Toxicology,2009,91:262-269.
    [139]金相灿.有机磷和无机磷对铜绿微囊藻生长的影响及动力学分析.环境科学研究,2006,19(5):40-44.
    [140]卢纹岱. SPSS for Windows统计分析(第三版).北京:电子工业出版社,2006,391-443.
    [141]方开泰.实用多元统计分析.上海:华东师范大学出版社,1989,1-200.
    [142] Nail R, Jacob K. Interactions among epilimnetic phosphorus, phytoplanktonbiomass and bacterioplankton metabolism in lakes of varying submerged macrophytecover. Hydrobiologia,2003,501:75-81.
    [143]李夜光,李中奎,耿亚红等.富营养化水体中N, P浓度对浮游植物生长繁殖速率和生物量的影响.生态学报,2006,26(2):317-325.
    [144]张玮,林一群,郭定芳等.不同氮磷浓度对铜绿微囊藻生长,光合及产毒的影响.水生生物学报,2006,30(3):318-312.
    [145] Hakanson L, Bryhn A C, Hytteborn J K. On the issue of limiting nutrient andpredictions of cyanobacteria in aquatic systems. Science of the Total Envionment,2007,379(1):89-108.
    [146]谭啸.微囊藻在水华形成过程中若干生物学特性的研究:[硕士学位论文].南京:南京师范大学图书馆,2006.
    [147] Bunrbegr A K, Blomqvist P. Recruitment of Microcystis (CyanoPhyceae) from lakesedimenis: The importance of littoral inocula. Journal of Phycology,2003,39:58-63.
    [148] Brunberg A K, Blomqvist P. Benthic overwinter of Microcystis colonies underdieffrent environmental conditions. Journal of Palnkton Research,2002,24:1247-1252.
    [149] Yang Z, Kong F X, Shi X L, et a1. Differences in response to rotifer Brachionusurceus culture mia filtrate between Scenedesmus obliquus and Microcystisaeruginosa. Journal of Freshwater Ecology,2006,21(2):209-214.
    [150]雷腊梅,宋立荣,欧丹云等.营养条件对水华蓝藻铜绿微囊藻的胞外多糖产生的影响.中山大学学报(自然科学版),2007,46(3):84-87.
    [151]马剑敏,贺锋,成水平等.汉阳莲花湖水生植被重建的实践与启示.武汉植物学研究,2007,25(5):473-478.
    [152]金相灿,王圣瑞,庞燕等.湖泊沉积物对磷酸盐的负吸附研究.生态环境,2004,13(4):493-496.
    [153]王海珍,刘永定,肖邦定等.围隔中鲢和菹草控藻效果及其生态学意义。水生生物学报,2004,28(2):141-146.
    [154]张兵之,伊乐藻对铜绿微囊藻的化感作用研究:[博士学位论文].北京:中国科学院图书馆,2007.
    [155] Fitter A. Making allelopathy respectable. Science,2003,301:1337-1338.
    [156] Rapport D J. Preventive ecosystem health care: the time is now (editorial).Ecosystem Health,1995,1:127-128.
    [157] Costanza R. Toward an operational definition of ecosystem health. In: Costanza, R.,Norton, B.G., Haskell, B.D.(Eds.), Ecosystem Health. Washington, DC: Island Press,1992,239-256,269.
    [158] Costanza R. Toward an operational definition of ecosystem health, in EcosystemHealth: New Goals for Environmental Management. In: Costanza R, Norton B G andHaskell B D,(eds), Washington, DC: Island Press.1992,239-256.
    [159] J rgensen S E. A holistic approach to ecological modeling by application ofthermodynamics. In: Mitsch, W., et al.(Ed.), Systems and Energy. Ann Arbor.,1982.
    [160] J rgensen S E. The application of ecological indicators to assess the ecologicalcondition of a lake. Lakes Reservoires: Research and Management,1995,1:177-182.
    [161] J rgensen S E. Exergy and ecology. Ecological Modelling,1992,63:185-214.
    [162] J rgensen S E. The application of ecosystem theory in limnology. Verh InternatVerein Limnol,1996,26:181-192.
    [163] Salomonsen J. Examination of properties of exergy, power and ascendancy along aeutrophication gradient. Ecological Modelling,1992,62:171-181.
    [164] Mejer H, Jorgensen S E. Exergy and ecological buffer capacity.In: S EJorgensen(Editor), State of Art in Ecological Modelling. Oxford: ISEM,Copenhagen/Pergamon,1979,829-846.
    [165]Jorgensen S E, Nielsena S N, Henning M. Emergy, environ, exergy and ecologicalmodeling. Ecological Modelling,1995,77:99-109.
    [166] Jùrgensen S E. Application of exergy and specifc exergy as ecological indicators ofcoastal areas,Aquatic Ecosystem Health and Management,2000,3:419-430.
    [167] Lu J, Wu H J, Li Y, et al. Application of multivariate statistics in simplifying theindicators of lake ecosystem health assessment. In: Feng, C.G.(Ed.), The proceedingsof the China association for science and technology, Vol.4(3): Proceedings of theannual conference of the china association for science and technology, Beijing:Science Press,2007,157-162.
    [168]邬红娟,崔博,吕晋等.武汉湖泊底栖动物群落结构及水质生态评价.华中科技大学学报(自然科学版),2005,33(10):96-98.
    [169]吕晋,邬红娟,林济东等.主成分及聚类分析在城市浅水湖泊生态区划中的应用.武汉大学学报(理学版),2005,51(4):461-466.
    [170]卢媛媛,邬红娟,吕晋等.武汉市浅水湖泊生态系统健康评价.环境科学与技术,2006,29(9):66-69.
    [171] Boulton A J. An overview of river health assessment: philosophies, practice,problems and prognosis. Freshwater Biology,1999,41:469-479.
    [172] Xu F L, Zhao Z Y, Zhan W, et al. An ecosystem health index methodology (EHIM)for lake ecosystem health assessment. Ecological Modelling,2005,188:327-339.
    [173] Xu F.L. Ecosystem health assessment for Lake Chao: a shallow eutrophic Chineselake. Lake and Reservoirs: Research and Management,1996,2(2):101-109.
    [174] Xu F L. Exergy and structural exergy as ecological indicators for the developmentstate of the Lake Chaohu ecosystem. Ecological Modelling,1997,99(1):41-49.
    [175] Xu F L. Ecological indicators for assessing fresh water ecosystem health. EcologicalModelling,1999,116(1):77-106.
    [176] Havens K E. Acidification effects on the algal zooplankton interface. CanadianJournal of Fisheries and Aquatic Sciences,1992,49:2507-2514.
    [177] Kane D D, Gordon S I, Munawar M, et al. The planktonic index of bioticintegrity(P-IBI): An approach for assessing lake ecosystem health. EcologicalIndicators,2009,9:1234-1247.
    [178]秦伯强.浅水湖泊生态系统恢复的理论与实践思考.湖泊科学,2005,17(1):9-16.
    [179]金相灿.湖泊富营养化控制和管理技术.北京:化学工业出版社,2002,32-38.
    [180]濮培民,王国祥,李正魁等.健康水生态系统的退化及其修复—理论、技术及应用.湖泊科学,2001,13(3):193-203.
    [181]王国祥,濮培民.若干人工调控措施对富营养化湖泊浮游植物种群的影响.环境科学,1999,20:71-74.
    [182] Jasser I. The influence of macrophytes on a phytoplankton community inexperimental conditions. Hydrobiologia,1995,306:21-32.
    [183] Kagalou I, Papastergiadou E, Leonardos I. Long term changes in the eutrophicationprocess in a shallow Mediterranean lake ecosystem of W. Greece: Response afterthe reduction of external load. Journal of Environmental Management,2008,87:497-506.
    [184] Katharine N S, Katherine L G, Gregory R H. Alternative states and positivefeedbacks in restoration ecology. Trends in Ecology and Ecolution,2004,19(1):46-53.
    [185] Giordani G, Zaldivar J M, Viaroli P. Simple tools for assessing water quality andtrophic status in transistional water ecosystems. Ecological Indicators,2009,9:982-991.
    [186] Hu W P, Zhai S J, Zhu Z C, et al. Impacts of the Yangtze river water transfer on therestoration of lake Taihu. Ecological Engineering,2008,34:30-49.
    [187] Havens K E, James R T, East T L, et al. N:P ratios, light limitation, andcyanobacterial dominance in a subtropical lake impacted by non-point sourcenutrient pollution. Environ Mental Pollution,2003,122:379-390.
    [188] Ranjan R. Environmental restoration of invaded ecosystems:How much versus howoften? Journal of Environmental Management,2008,86:616-626.
    [189] Robert F D. Ecological indicators for system-wide assessment of the greatereverglades ecosystem restoration program, Ecological Indicators,2009,9s:s2-s16.
    [190]张延欣,吴涛.系统工程学.北京:气象出版社,1990.56-63.
    [191] Li C H. Water Resources Renewability Assessment Based on TOPSIS. In:2009International Conference on Artificial Intelligence and Computational Intelligence,Shanghai: AICI,2009,1:582-587.
    [192]索晓波,门宝辉.变异系数权重TOPSIS法在水资源综合评价中的应用.南水北调与水利科技,2007,5(5):45-47.
    [193]门宝辉,梁川.基于变异系数权重的水质评价属性识别模型.哈尔滨工业大学学报,2005,37(10):1373-1375.
    [194] Allen, C D, Melissa S, Donald A F, et al. Ecological restoration of southwesternponderosa pine ecosystems: a broad perspective. Ecological Applications,2002,12:1418-1433.
    [195] Laura L J, Nikita L, Deborah H. Ecological Restoration: A Definition and Comments.Restoration Ecology,1995,3(2):71-75.
    [196] William R J, Michael E G, John D A. Restoration ecology: a synthetic approach toecological research. Cambridge: Cambridge University Press,2003.
    [197] Liu G H, Zhou J, Huang D S, et al. Spatial and temporal dynamics of a restoredpopulation of Oryza rufipogon in Huli Marsh, South China. Restoration Ecology,2004,12:456-463.