人工湿地中新型填料净化污水能力的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是个水污染严重的国家,水污染已经越来越受到人们的关注。目前我国大中城市解决水污染的主要措施是建立以生物处理为主体工艺的二级污水处理厂,这和发达国家几乎是处于同一水平,但由于这些传统的污水处理工艺投资运行费用十分昂贵,而我国人均国民生产却远远低于这些国家,因此必须开发新型、高效、低耗、低运行成本,符合我国国情的污水处理工艺。
     人工湿地系统作为一种生态处理方法,它具有投资少、低运行费用、低能耗等优点,正逐渐成为比较有前途的污水处理工艺。但由于传统的人工湿地的填料主要局限在土壤、砾石、沸石等方面,使得人工湿地的出水中的氨氮难以达标,造成人工湿地运行周期大大缩短,制约了人工湿地在我国的推广应用。因此寻求一种吸附性能更好、价格更低、储量更加丰富的粘土矿物成为本课题的研究重点。本文针对这个问题,选择了粘土矿物蛭石进行研究,主要采用静态和静态条件下的动态实验相结合的方法,重点研究了在实验室条件下蛭石净化污水的能力以及蛭石去除氨氮的吸附等温线和吸附速度,探讨了蛭石改性(活化)与再生的条件,以及活化、再生后对蛭石去污的影响,确定了蛭石在实验条件下净化污水的基础参数。
     实验结果表明:
     ①蛭石主要是通过离子交换作用去除污水中的氨氮的,物理吸附作用很小。
     ②在氨离子浓度较小即q_e<<Q_m或蛭石用量较大时,蛭石吸附平衡时间与离子浓度和蛭石的投加量无关,不同浓度和投加量下平衡时间均为5h。
     ⑧蛭石在常温下的吸附等温线符合Langmuir和Frcundlich公式,其中Langmuir吸附等温式表示为:q_e=0.117C_e/1+0.00562C_e,求得蛭石的饱和吸附量(Q_o)为20.83mg/g,这和蛭石的理论饱和吸附容量21mg/g相差无几。Freundlich吸附等温式表示为:q_e=0.259C_e~(0.642)。
     ④影响蛭石吸附的因素很多,实验研究表明:蛭石的吸附容量在pH2.0~6.0范围内随pH增大而增大,最适pH为4.0~6.0;温度在15℃~35℃范围内,随温度的升高而减小;随着接触时间的延长而增大,在开始的10min内吸附速度最快,30min后就趋于平衡;氨氮的初始浓度小于200mg/L,其去除率是逐渐增大的;氨氮的去除率随着蛭石的用量的增加而增加;长有生物膜的蛭石其去除负荷能导致蛭石的使用周期延长甚至会成倍增加。
     ⑤蛭石不但能有效去除污水中的不溶性有机物,对可溶性有机物也有较强的去除能力。
     ⑥蛭石吸附饱和后通过再生可以多次使用,再生后的蛭石的吸附容量较原蛭石有明显的提高,吸附容量与再生次数的关系为:q=-0.0457n+2.427
     ⑦蛭石经酸改性后,对有机物的吸附容量有明显提高,对氨氮的吸附提高不明显;经盐改性后的蛭石饱和吸附容量较改性前有大幅度提高,为30.41mg/L。
     ⑧蛭石过滤实际污水实验,结果表明:其渗透系数为9.56cm/h,出水效果和模拟污水的效果相当。
Water pollution is very serious, and it is getting more and more attentions in China. Currently, the main polluted water treatment process is based on bio-treatment in China. At this aspect, it keeps almost the same level with developed country. However, this traditional treatment process is a high cost process, and Chinese economy is far below than developed country. Therefore, it is emergently to develop innovative process suitable for China. And this method must provide multi-benefit including high efficiency, low energy, and low operational cost.
    Constructed wetland system is a new type of ecological wastewater treatment technology. It is a process with low investment, cheap operational fee, low energy and so on. So, constructed wetland will become a prospect of polluted water treatment methods. But the substrate of traditional constructed wetland mainly limited by soil, gravel, zeolite. This makes effluent NH4-N not good enough to meet The National Sewage Discharge Standard and reduces live span of constructed wetland considerably, and inhibits its development. This paper does some study about vermiculite. The experiment integral captive test and dynamic test at static state .The main study: purification capacity of wastewater with vermiculite; NH4-N removal sorption isotherm line and sorption speed. This paper also discusses activation and regeneration of vermiculite, and the influence after activation and regeneration. It confirms basic parameters of vermiculite at laboratory conditions. The main results show: ① Most NH4-N mainly remove by ion ex
    change, the role of physico-chemical sorption is
    negligible. ② With low concentration of NH4-N, namely qe<    relationship between absorb equilibrium time and ion concentration and investment dosage of
    vermiculite. There is the same equilibrium time (5h) at different concentration and different
    dosage of vermiculite. ③ At normal temperature, sorption isotherm line is accorded with Langmuir-isotherm plots and
    Freundlich-isotherm plots. The Langmuir-isotherm plots: qe =0.117Ce/1+0.00562Ce. According
    to the Langmuir line: saturated sorption capacity (Qo) is 20.83mg/g, it is closed to theoretical value (21mg/g). Freundlich-isotherm plots: qe=0.259Ce0.642
    ④ There are many factors affecting vermiculite's sorption. Experimental results showed: at pH level:2.0~6.0. sorption capacity of vermiculite increase with pH growing, the optimal pH value:4.0~6.0; but at temperature value:15℃~35℃, sorption capacity of vermiculite inverse to temperature. Sorption capacity gets improvement when elongate the contacting time. At the
    
    
    
    outset 10 minutes sorption speed is very fast, and after 30 minutes, it reaches to sorption
    balance. The initial concentration bellows 200mg/l, the removal rate is getting up. There is
    positive relevance between removal rate of NH4-N and dosage of vermiculite. When there is
    bio-film with vermiculite, the life span of vermiculite is getting longer. ⑤ Vermiculite not only can remove insoluble organic pollutant efficiently, but also can remove
    soluble organic pollutant from wastewater. ⑥ When removal capacity of vermiculite is used up, it can reuse by regenerating, the sorption
    capacity improves apparently after regeneration. The relationship between sorption capacity
    and times of regeneration is q=-0.0457n+2.427 ⑦ The sorption capacity of organic pollutant improves apparently by transforming vermiculite
    with acid, but there is no different of NH4-N-sorption. Sorption capacity improve
    significantly after transforming vermiculite with salt, the saturated sorption capacity is up to
    30.41mg/L
    ⑧ Using vermiculite as filter material, the coefficient is 9.56cm/h
引文
[1] 吴晴.了解我们的国情[N].光明日报,1999-04-27(5)
    [2] 蒋展鹏,尤作亮,师绍琪等.城市污水强化一级处理水工艺—活化污泥法[J].中国给水排水,1999,15(12):12-16
    [3] 王凯军,贾立敏.城市污水生物处理新技术开发和应用[M].北京:化工出版社,2001
    [4] 顾润南.我国城市生活污水处理方法述评[J].环境保护,2001
    [5] 杨鲁豫,王琳,王宝贞.我国水资源污染治理的技术策略[J].给水排水,2001,27(1):3—5
    [6] 上海市环保局.废水生化处理[M].上海:同济大学出版社,1999:5
    [7] 株洲日报编辑部.我国水污染状况不容乐观[N].株洲日报,1999-06-22(4)
    [8] 张公武.论城市生活污水资源化治理[J].株洲工学院学报,2000,14(2):55—56.
    [9] 国家环保总局.中国环境状况公报[N],2001
    [10] 杨鲁豫等.我国水资源污染治理的技术策略[J].给水排水,2001,27(1):95
    [11] 俞庭康,杨健.城镇污水最佳实用技术新进展[J].环境污染治理技术与设备,2000,1(5):54—59
    [12] 杨鲁豫等.我国水资源污染治理的技术策略[J].给水排水,2001,27(1):95
    [13] 唐受印,汪大恽.废水处理工程[M].北京:化工出版社,1999
    [14] 环境科学编委会.环境科学大词典[M].北京:中国环境科学出版社,1997
    [15] Jahn A and Nielsen P H,Cell Biomass and Exopolymer Composition in sewer Biofilm[J].Wat. Sci. Tech. 1998, 37(1):17-24
    [16] Zhang X, Bishop P L and Kupferle M J, Measurement of Polysaccharides and Proteins in Biofilm Extracelluar Polymers[J].Wat. Sci.Tech. 1998, 37(4-5): 345-348
    [17] Veiga Cetal. Composition and Role of Extracellular in Methanogenic Granules[J].Appl. nviron. Microbial. 1997, 63(2): 403-407
    [18] 高廷耀,顾国维.水污染控制工程[M].北京:高等教育出版社
    [19] 高拯民,李宪法,城市污水土地处理手册[M].北京:中国标准出版社,1990
    [20] J.W. Clark, W. Viessman,Jr., and M. J. Hammer. Water Surpply and Pollution control[M]. Harper & Row--Pullishers, 1977
    [21] 诸惠昌等.新型废水处理工艺——人工湿地的设计方法[J].环境科学,1993,14(2):39—43
    [22] Habel, R., et al., Constructed wetlands in Europe. Kadiec, R.H., et al., (eds), Selected proceedings, the 4TH international conference on wetland system to water pollution control[J], water sci. technol., 1995.306--315, 32(3)
    [23] Brown, D.S., et al.. Inventory of constructed wetland, the united states, in: Bavor, H.J.,et al.,(eds), wetland systems in water pollution control[J], water sci.Technol.,1994.309—318, 29(4)
    [24] Juwarkar, A.S.,et al.. Domestic wastewater treatment through constructed wetland in India, in: Kadiec, R.H. et al.. (eds), Selected proceedings for the 4TH international conference on wetland systems for water pollution control[J], water sic.Technol.,1995.291--294.32(3)
    [25] Kickkuth R. Degradation and incorporation of matrient from rural wastewaters by plant rhizos phere under limic conditions[A]. In: Utilization of Manure By landSpreading, Commission of the Europe Communities[M]. London, 1997, 243—335
    [26] Reed S C, Brown DS, Constructed wetland design the first generation[J]. Wat. Res. 1992,
    
    64(6): 776-781
    [27] Andrew P Knuzic. Natural treatment systems[J]. Wat. Env. Res. 1994, 66(4):357-361
    [28] 朱彤,许振成,胡康萍,等.人工湿地污水处理系统应用研究[J].环境科学研究,1991,4(5):17—22
    [29] 吕宪国,黄锡畴.我国湿地研究进展[J].地理科学,1998,18(4),293—300
    [30] 杨朝飞.中国湿地现状及其保护对策[J].中国环境科学,1995,(6):407—411
    [31] 白晓慧,王宝贞等.人工湿地水处理技术及其发展应用[J].哈尔滨建筑大学学报,1999,32(6):8
    [32] Hans Brix. Use of constructed wetland in water pollution control:historical development, present status, and future perspectives[J]. Wat .Sci. tech., 1994, 30(8): 209-223
    [33] Nicholson D K et al.. Reductive Dechlorination of Chlorophenols by a Pentachlorophenol-Acclimated Methanogenic Consortium[J]. Appl. Eviron. Microbiol.,1992,58(8):2280—2286
    [34] Briyant Y O et al.. Regiospecific Dechlorination of Pentachorophenol by Dichlorophenol-Adapted Microorganisms in Freshwater, Anaerobic Sediment Slurries[J]. Appl. Enwiron. Microbiol, 1991, 57(2): 2293--2201
    [35] Weimin Wu et al.Performance of Anaerobic Granules for Degradation of Pentachlorophenol[J]. Appl. Environ. Microbiol., 1993, 59(2): 389--397
    [36] 魏复盛等.水与废水检测分析方法(第三版)[M].北京:中国环境科学出版社,1989:235
    [37] Waterson J. T et al, Constructed wetlands for wastewater treatment[J]. Michigan; Lewis Publishers InC., 1989, 379—391
    [38] Cooper P F et al, Constructed wetlands for wastewater treatment[J]. Michigan; Lewis Publishers InC., 1989, 153—172
    [39] 王薇,俞燕,王世和.人工湿地污水处理工艺与设计[J].城市环境与城市生态,2001,14(1):59—62
    [40] 秦毓西.试谈中国湿地[J].绥化师专学报,2000,20(2):16—18
    [41] 张毅敏,张永春.利用人工湿地治理太湖流域小城镇生活污水可行性探讨[J].农业环境保护,1998,17(5):232—234
    [42] Bhamidimarri R et al. Water Science Technology, 1991,24(5): 247
    [43] 丁疆华,舒强.人工湿地在处理污水中的应用[J].农业环境保护,2000,19(5):320
    [44] 沈耀良等.新型废水处理技术—人工湿地[J].污染防治技术,1996,9(1—2):1—8
    [45] 吴晓磊.人工湿地废水处理机理[J].环境科学,1995,16(3):83—86
    [46] Hammer, D. A..General principles. Constructed wetland for waste water treatment[M]. Lewis Publishers, 1989
    [47] Seidel, K.. Reingung von Gewassern durch hohere pflanzen[J]. Naturwiss., 1964,51:395
    [48] M.B.Green & J.R.Martin. Constructed Reed Beds Clean Up Storm Overflows on Small Wastewater Treatment Works[J]. Water Environment Research, 1996, 68(6): 1054--1060
    [49] Y. Yang Removal Efficiency of the Constructed Wetland Wastewater Treatment System at Bainikeng[J]. Shengzhen. Water Science & Technology, 1995, 32(3): 31--40
    [50] 尹澄清等.白洋淀水陆交错带对陆源营养物质截留作用的初步研究[J].应用生态学报,1995,6(1):76—80
    [51] Tenneese Valley Authority. River Basin Operations for Treatment of Municipal Wastewater[R]. Monitory Report for the period: March 1988 to October 1989,1990; 5
    [52] Guntenspergen, G.R. et al. Wetland vegetation[A]. In: Hammer, D. A. (ed). Constructed
    
    Wetlands for Waster Treatment; Municipal, Industrial, and Agricultural[C]. Chelsea, MI: Lewis Publishers, 1989.73-88
    [53] Reddy, K.R. and Debusk, W.F. Nutrient Storage Capabilities of aquatic and wetland plants[A]. In: Reddy. K.(eds). Aquatic Plants for Water Treatment and Resource Recovery[C]. Orlando, FL: Magnolia Publishing, 1987.337-357
    [54] Brix, H.Functions of macrophytes in Constructed wetlands[J]. Water Science and Technology, 1994, 29(4): 71-78
    [55] Brix, H. Do macrophytes play a role in construted treatment wetlands[J]? Water Science and Technology, 1997, 35(5):11-17
    [56] Gumbricht. T. Nutrient removal processes in freshwater submersed macrophyte system[J]. Ecological Enginneering, 1993, 15(2): 1-30
    [57] Davies, T.H. and Cottingham, H.Phosphate removal from waster in a constructed wetland[A].In:Moshiri, GA.(ed). Constructed Wetlands for Quality Improvement[C]. BoCaRaton, Florida: Lewis Publishers, 1993. 315-320
    [58] Reddy, K.R. and D'Angelo, E.M. Biogeochemical indicators to evaluate pollutand removal effcieney in constructed wetland[J]. Water Science and Technology, 1997, 35(5): 1-10
    [59] K.R.Reddy, Fate of Nitrogen and Phosphorus in a wastewater Reservior Containing Aquatic Macrophytes[J]. J.Environ.Qual., 1983, 12(1): 137--147
    [60] 缪绅裕,陈桂珠等.人工湿地中的磷在模拟秋茄湿地系统中的分配与循环[J].生态学报,1999,19(2):236—241
    [61] 林鹏,林光辉.九江口红树林研究Ⅵ.秋茄群落的氮磷的积累和循环[J].植物生态学与植物学丛刊.1985,9(1):21—32
    [62] Hingston et al, Anion Adsorption by Goethite and Gibbsite Ⅰ.The Role of the Proton in Determining Adsorption Envelopes[J], J.SoiI.Sci., 1972, 23: 177
    [63] Breeuwsma, A.,and Lyklema, Physical and Chemical Adsorption of Inos in the Electrical Double Layer on Hematite[J]. J.Coll.Interface. Sci., 1973, 43:437
    [64] Rajan, Adsorption of Divalent Phosphate on Hydrous Aluminum Oxide[J]. Nature, 1975, 253: 434
    [65] Rajah, Adsorption of Divaleny Phosphate on Hydrous Aluminum Oxide[J]. Nature, 1975, 43: 434
    [66] Parfitt et al, Phosphate Adsortion by Soils, I I.Reactions in Tropical Acid Soils[J]. Soil Sci. Soc.Am. Proc, 1975, 39:846
    [67] Ryden et al .,The Mechanism of Phosphate Sorption by Soil and Hydrous Ferric Oxide Gel.,J. Soil[J]. Sci. 1977, 28:172
    [68] Taylor et al, A Mechanism of Phosphate Adsorption on Soil and Anion Exchange Resin Surfaces[J]. Soil. Sci. Soc. An. J.,1978, 42:434
    [69] Mays, P.A. and Edwards, G..S. Comparison of heavy metal accumulation in a natural wetland and constructed wetlands recerving acid mine drainage[J]. Ecological Engineering, 2001,16: 487--500
    [70] Sistani, K.k.et al. Development of natural conditions in constructed wetlands:biological and chemical charges[J]. Ecological Engineering, 1999, 12:125--131
    [71] Brix H, Treatment of wastewater in the rhizosphere of the wetland plants--the root--zone method[J]. Water Scl.Tech.., 1987, 19: 107--118
    [72] Breen PF, A mass balance method for assessing the potential of artificial wetlands for
    
    wastewater treatment[J]. Water Res 1990, 24(6): 689--697
    [73] Coneley L M, Dick R I& Lion L W, An assessment of the root zone method of wastewater treatment[J]. Res. JWPCF, 1991, 63:239—247
    [74] Rogers et al, Nitrogen Removal in Experimental wetland treatment system; evidence for the role of aquatic plants[J]. Res., JWPCF, 1991, 63:934--941
    [75] Sherwood C. Reed; Donald Brown[J]. Water Environ. Res., 1995, 67(2): 224--250
    [76] Knight, R. L.,Ruble, R. W.,Kadlec, R. H. and Reed, S. Wetlands for waste water treatment: performance database in Moshiri, G.A.(ed.) Constructed wetlands for water quality improvement[J]. Lewis Publishers, Boca Raton, 1993:35--38
    [77] 胡康平,等.人工湿地污水处理系统初步研究[J].上海环境科学,1991,10(9):41
    [78] 丁廷华.污水芦苇湿地处理系统示范工程的研究[J].环境科学,1992,13(2):8
    [79] 李科德.芦苇床系统净化污水的机理[J].中国环境科学,1995,(2):140--144
    [80] 黄石达,王安庆等.从成都市活水公园看人工湿地系统处理工艺[J].四川环境,2000,19(2):8—12
    [81] 唐述虞铁矿废水的人工湿地处理[J].环境工程,1996,(4):3—7
    [82] 王宜明.人工湿地净化机理和影响因素探讨[J].昆明冶金高等专科学校学报,2000,16(2):3—4
    [83] 徐国兴.天然沸石用于蒸馏水生产中除氟[J].水处理技术,1990,16(6):456
    [84] 姚凤云.水处理技术,1987,13(4):224
    [85] 孙家寿,刘科星,等.CTMAB交联系累托石吸附苯胺废水的研究[J],离子交换与吸附,2002,24(1):51—53
    [86] 成水平,况琪军,等.香蒲、灯心草人工湿地的研究[J].湖泊科学,1997,9(4):352—356
    [87] 权新军,金为群,李群,等.改性天然沸石处理富营养化公园湖水样的实验研究[J].非金属矿,2002,21(1):48—49
    [88] 徐丽花,周琪.不同填料人工湿地处理系统的净化能力研究[J].上海环境科学,2002,21(10):603—605
    [89] 徐丽花,周琪.人工湿地控制暴雨径流污染的实验研究[J].上海环境科学,2002,21(5):275—277
    [90] 尹连庆,张建平,董树军,等.粉煤灰基质人工湿地系统净化污水的研究[J].华北电力大学学报,1999,26(4):76—79
    [91] 崔理华,朱夕珍,骆世明,等.垂直流人工湿地系统对污水磷的净化效果[J].环境污染治理技术与设备,2002,3(7):13—17
    [92] 刘远金,张新明,李华兴,等.天然沸石对鱼塘水及生活污水的氮磷去除效应[J].农业环境保护,2002,21(4):331—333
    [93] 赵小蓉,杜冬云,陆晓华,等.累拖石处理氨氮废水的试验研究[J].工业水处理,2003,23(2):37—41
    [94] 蒋建国,陈嫣,邓舟,等.沸石吸附法去除垃圾渗滤液中氨氮的研究[J].给水排水,29(3):6—8
    [95] Koon,J,H.; Kauirnan, W.J.; J.Wat. PULL.Cont. Fed.[M]; 1974, 47:443
    [96] Ciambelli, P.; Zeolites: Syntinesis, Structure, Technology and Application[M]. Elsevier Science Publishers, 1985.539
    [97] Gaspard, M,; Neveu, A.; Martin, G..; Wat. Res.[M]. 1983.270
    [98] 孙广智,于忠明.人工芦苇床污水处理技术[J].污染防治技术,1999,12(1):1—4
    
    
    [99] 石太宏,方建章,等.活性碳吸附Zn(Ⅱ)的热力学与机理研究[J].水处理技术,1999,25(2):103
    [100] 李立清.利用谷壳灰吸附水中Hg(Ⅱ)[J].污染防治技术,1998,11(2):98
    [101] 蒋引珊,董振亮.膨润土对干电池溶液中重金属离子的吸附作用[J].应用化学,1995,12(6):101
    [102] 李贞,何少先.利用硅藻土处理含镉废水机理的初步研究[J].环境科学进展,1993,1(6):64
    [103] 国家环保局.水和废水监测分析方法(第三版)[M].北京:中国环境科学出版社,1986.102—103,354—356,362—366
    [104] 高廷耀,顾国维.水污染控制工程(第二版)[M].北京:高等教育出版社,1999.226—228
    [105] 唐受印,等.废水处理工程[M].北京:化学工业出版社,1997.114—116
    [106] 陈培康,裘本昌.给水净化新工艺[M].学术出版社
    [107] 中国科学院地质研究所著.沸石矿物与应用研究[M].北京:科学出版社,1979
    [108] 古阶祥.沸石[M].北京:中国建筑工业出版社,1980
    [109] 高俊敏,等.沸石在水处理中的应用[J].重庆建筑大学学报,2001,23(1):114~117
    [110] Curkovic L, t al.Metal ion exchange by natural and modified zeolite[J]. Water Res, 1997, 31(6): 1379--1382
    [111] 楼莉萍,等.沸石吸附铵离子的若干性质的研究[J].浙江大学学报,2001,27(1):28—32
    [112] [日]北川浩,铃木谦一郎.吸附的基础与设计[M].北京:化学工业出版社
    [113] Burton S A Q, et al. Ammonia and nitrogen fluxs in landfill site Applic-ability to sustainable landfilling[J]. Waste Manage and Res, 1998, 16(1):41—53
    [114] 中国科学院地质研究所著.沸石矿物与应用研究[M].北京:科学出版社,1979
    [115] 古阶祥.沸石[M].北京:中国建筑工业出版社,1980
    [116] 物理化学(修订版)[M].冶金工业出版社
    [117] [美]M.A.安德森,A.J.鲁宾.水溶液吸附化学[M].科学出版社
    [118] 庄楚强,吴亚森编.应用数理统计基础[M].广州:华南理工大学出版社,1999:383
    [119] 李晖,谭光群,彭同江.蛭石对Cd的动态吸附研究[J].化学研究与应用,2000,12(6):661—663
    [120] 黄昌勇.土壤学[M].北京:中国农业出版社,1999:110—113
    [121] Booker N A, Cooney E L, Priestly A J, Ammonia Removal from Sewage Using Natural Australian Zeolite[J]. Water Sci. and Technol., 1996, 34:17—24
    [122] Ames L L, The Cation Sieve Properties of Clinoptilolite[J].The Am. Mineralogist, 1960, 45: 689—700